Chapter 11
TIME SYNC

Distribu Mobile Computing

Computin

Group Winter 2005 / 2006

Overview

e} »0

* Motivation

» Reference-Broadcast Synchronization (RBS)

» Time-sync Protocol for Sensor Networks (TSPN)
» Gradient Clock Synchronization

/]
'&@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 11/2
Motivation Disturbing Influences on Packet Latency
o o »0
» Time synchronization is essential for many applications » Influences
« Coordination of wake-up and sleeping times e Sending Time S
* TDMA schedules * Medium Access Time A
» Ordering of sensed events in habitat environments * Propagation Time P, g
« Estimation of position information * Reception Time R
o) » Asymmetric packet delays due to non-determinism
» Scope of a Clock Synchronization Algorithm
* Packet delay / latency » Example: RTT-based synchronization
» Offset between clocks
« Drift between clocks B — Tamn
! W g o= (t,-t)-(t-t,) L frov? LE
= > mg‘/ Ao
'8 rom
B t, — ‘mes — t, g 0= t,—(t,+9)-(t,—-(t;+9)) ALty e T g,
Raqua/ Answer 2
fromA fromB
; =Lt -t)
Aty Gger — t, 2
SO Actud Time W
'@' 2 Distributed C ting G MOBILE COMPUTING R. Wattenhof 11/3 '/@'.' Distributed Computing G MOBILE COMPUTING R. Wattenhof 11/4
@ istributed Computing Group . Wattenhofer \!@ istributed Computing Group . Wattenhofer

Reference-Broadcast Synchronization (RBS)

o} 0

» A sender synchronizes a set of receivers with one another
» Point of reference: beacon’s arrival time

L=t +S+A TR LR, >
L=t +S§+A+R R
O=t,~t;= (R s~ Rsp) (R, Rs) t
1

v

Only sensitive to the difference in propagation and reception time
Time stamping at the interrupt time when a beacon is received

After a beacon is sent, all receivers exchange their reception times to
calculate their clock offset

A\ 4

v

Post-synchronization possible
Least-square linear regression to tackle clock drifts

v

O

A » _

\l-@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 11/5
N

Time-sync Protocol for Sensor Networks (TSPN)

o} »0

» Traditional sender-receiver synchronization (RTT-based)
> Initialization phase: Breadth-first-search flooding
* Root node at level 0 sends out a level discovery packet

* Receiving nodes which have not yet an assigned level set their level
to +1 and start a random timer

« After the timer is expired, a new level discovery packet will be sent
» Synchronization phase

* Root node issues a time sync packet which triggers a random timer at
all level 1 nodes

» After the timer is expired, the node asks its parent for synchronization
using a synchronization pulse

* The parent node answers with an acknowledgement

* Thus, the requesting node knows the round trip time and can calculate
its clock offset

» Child nodes receiving a synchronization pulse also start a random timer
themselves to trigger their own synchronization

'\Q"@. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 11/6

Time-sync Protocol for Sensor Networks (TSPN)

O o

t2:t1+SA+AA+PA,B+RB

t,=t,+S+A+P +R, t, @‘//\‘\‘\
o= S SAA)I R RIHRR))L
2 oy,

Time stamping packets at the MAC layer
In contrast to RBS, the signal propagation time might be negligible
About “two times” better than RBS

Again, clock drifts are taken into account using periodical
synchronization messages

vvyy

» Problem: What happens in a ring?!?
* Two neighbors will have exceptionally badly synchronization

'Qi-@' Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 117

Theoretical Bounds for Clock Synchronization

O >0

Network Model:

Each node has a private clock

n node network, with diameter A < n.

Reliable point-to-point communication with minimal delay p
Jitter € is the uncertainty in message delay

» Two neighboring nodes u, v cannot distinguish whether message is
faster from u to v and slower from v to u, or vice versa. Hence
clocks of neighboring nodes can be up to ¢ off.

* Hence, two nodes at distance A might have clocks which are €A off.

e This can be achieved by a simple flooding algorithm: Whenever a
node receives a new minimum value, it sets its clock to the new
value and forwards its new clock value to all its neighbors.

O
\@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 11/8

Gradient Clock Synchronization

o}

It could happen that a clock has to jump back to a much lower value

— Think again about a ring example, assume that in one leg of the ring
messages are forwarded fast all of a sudden.

Problem: At a node, you don’t want a clock to jump back all of a sudden.
— You don’t want new events to be registered earlier than older events.

— Instead, you want your clock always to move forward. Sometimes
faster, sometimes slower is OK. But there should be a minimum and a
maximum speed.

— This is called “gradient” clock synchronization in [Fan and Lynch, PODC
2004] .

In [Fan and Lynch, PODC 2004] it is shown that when logical clocks need to
obey minimum/maximum speed rules, the skew of two neighboring clocks

can be up to (log A)
loglog A
Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 11/9

