
Chapter 10
CLUSTERING

Mobile Computing
Winter 2005 / 2006

Distributed
Computing

Group

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/2

• Motivation
• Dominating Set
• Connected Dominating Set

• General Algorithms:
– The “Greedy” Algorithm
– The “Tree Growing” Algorithm

– The “Marking” Algorithm

– The “k-Local” Algorithm

• Algorithms for Special Models:
– Unit Ball Graphs: The “Largest ID” Algorithm

– Independence-Bounded Graphs: The “MIS” Algorithm
– Unstructured Radio Network Model

Overview

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/3

Discussion

• We have seen: 10 Tricks � 210 routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

• Flooding is key component of (many) proposed algorithms, including
most prominent ones (AODV, DSR)

• At least flooding should be efficient

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/4

Finding a Destination by Flooding

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/5

Finding a Destination Efficiently

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/6

Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node
can access and be accessed by at least one backbone node.

• Routing:
1. If source is not a

gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/7

(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there
is a path between any two nodes in CDS that does not use nodes
that are not in CDS.

• A CDS is a good choice
for a backbone.

• It might be favorable to
have few nodes in the
CDS. This is known as the
Minimum CDS problem

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/8

Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph.

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for

mobile ad-hoc network) – topology of graph “far away” should
not influence decision who belongs to (C)DS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/9

Greedy Algorithm for Dominating Sets

• Idea: Greedy choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the DS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log ∆ approximation, if ∆ is the
maximum node degree of the graph. (The proof is similar to the
“Tree Growing” proof on 6/13ff.)

• One can also show that there is no polynomial algorithm with better
performance unless P≈≈≈≈NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/10

CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the
tree that dominates as many as possible new nodes

• Black nodes are in the CDS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose a node with maximum degree, and make it the root of
the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white
neighbors and color it black (and its white neighbors grey).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/11

Example of the “too simple tree growing” algorithm

u u u

v v v

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: start … Minimum CDS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/12

Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node
with a maximum sum of white neighbors and color both black (and
their white neighbors grey).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/13

Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size
|CDS| � 2(1+H(∆)) · |DSOPT|.

• DSOPT is a (not connected) minimum dominating set

• ∆ is the maximum node degree in the graph
• H is the harmonic function with H(n) ≈ log(n)+0.7

• In other words, the connected dominating set of the tree growing
algorithm is at most a O(log(∆)) factor worse than an optimum
minimum dominating set (which is NP-hard to compute).

• With a lower bound argument (reduction to set cover) one can show
that a better approximation factor is impossible, unless P≈≈≈≈NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/14

Proof Sketch

• The proof is done with amortized analysis.

• Let Su be the set of nodes dominated by u ∈ DSOPT, or u itself. If a
node is dominated by more than one node, we put it in one of the
sets.

• We charge the nodes in the graph for each node we color black. In
particular we charge all the newly colored grey nodes. Since we
color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an Su is at most
2(1+H(∆)), for any u.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/15

Charge on Su

• Initially |Su| = u0.
• Whenever we color some nodes of Su, we call this a step.
• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored
(grey or black). Each vertex gets a charge of
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored (as
part of a pair with one of the grey nodes in Su). If u is not
chosen in step i (with a potential to paint ui nodes grey), then
we have found a better (pair of) node. That is, the charge to
any of the new grey nodes in step i in Su is at most 2/ui.

u

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/16

Adding up the charges in Su

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/17

Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically
optimal unless P≈≈≈≈NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real mobile
network? How do we figure out where the best grey/white pair of
nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider
local information.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/18

The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the

graph is undirected v is not in N(w)), then u marks itself being in the
set CDS.

+ Completely local; only exchange N(u) with all neighbors

+ Each node sends only 1 message, and receives at most ∆
+ Messages have size O(∆)
• Is the marking algorithm really producing a connected dominating

set? How good is the set?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/19

Example for the Marking Algorithm

[J. Wu]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/20

Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete.

• Note: If G was complete then constructing a CDS would not make
sense. Note that in a complete graph, no node would be marked.

• We show:

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/21

Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node
that is not in the dominating set, and also not dominated. Since no
neighbor of u is in the dominating set, the nodes N+(u) := u ∪ N(u)
form:

• a complete graph
– if there are two nodes in N(u) that are not connected, u must be in the

dominating set by definition

• no node v ∈ N(u) has a neighbor outside N(u)
– or, also by definition, the node v is in the dominating set

• Since the graph G is connected it only consists of the complete
graph N+(u). We precluded this in the assumptions, therefore we
have a contradiction

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/22

Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v,
with u,v ∈ CDS.

• Assume for the sake of contradiction that there is a node w on this
shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a
shorter path. This is a contradiction.

w
vu

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/23

Improved Marking Algorithm

• If neighbors with larger ID are connected and cover all other
neighbors, then don’t join CDS, else join CDS

5

6

1

9

4

7

2

3

8

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/24

Correctness of Improved Marking Algorithm

• Theorem: Algorithm computes a CDS S

• Proof (by induction of node IDs):
– assume that initially all nodes are in S

– look at nodes u in increasing ID order and remove from S if higher-ID
neighbors of u are connected

– S remains a DS at all times: (assume that u is removed from S)

– S remains connected:
replace connection v-u-v’ by v-n1,…,nk-v’ (ni: higher-ID neighbors of u)

u

higher-ID

neighbors

lower-ID

neigbors higher-ID neighbors
cover lower-ID neighbors

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/25

Quality of the (Improved) Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
• The transmission range of each node is such that it is connected to

the k left and right neighbors, the id’s of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts
every k’th node into the CDS. Thus |CDSOPT| ≈ n/k; with k = n/c for
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the
nodes (except the k leftmost ones). Thus |CDSMarking| = n – k; with
k = n/c we have |CDSMarking| = Ω(n).

• The worst-case quality of the marking algorithm is worst-case! ☺

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/26

Algorithm Overview

0.2
0.5

0.2

0.80

0.2

0.3

0.1

0.3

0

Input:
Local Graph

Fractional
Dominating Set

Dominating
Set

Connected
Dominating Set

0.5

Phase C:
Connect DS
by “tree” of
“bridges”

Phase B:
Probabilistic
algorithm

Phase A:
Distributed
linear program
rel. high degree
gives high value

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/27

Phase A is a Distributed Linear Program

• Nodes 1, …, n: Each node u has variable xu with xu ≥ 0

• Sum of x-values in each neighborhood at least 1 (local)
• Minimize sum of all x-values (global)

0.5+0.3+0.3+0.2+0.2+0 = 1.5 ≥≥≥≥ 1

• Linear Programs can be solved optimally in polynomial time
• But not in a distributed fashion! That’s what we need here…

0.2
0.5

0.2

0.80

0.2

0.3

0.1

0.3

0

0.5

Linear Program

Adjacency matrix
with 1’s in diagonal

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/28

Phase A Algorithm

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/29

• Distributed Approximation for Linear Program
• Instead of the optimal values xi

* at nodes, nodes have xi
(α), with

• The value of α depends on the number of rounds k (the locality)

• The analysis is rather intricate… ☺

Result after Phase A

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/30

Phase B Algorithm

Each node applies the following algorithm:

1. Calculate (= maximum degree of neighbors in distance 2)

2. Become a dominator (i.e. go to the dominating set) with probability

3. Send status (dominator or not) to all neighbors

4. If no neighbor is a dominator, become a dominator yourself

From phase A Highest degree in distance 2

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/31

Result after Phase B

• Randomized rounding technique

• Expected number of nodes joining the dominating set in step 2 is
bounded by α log(∆+1) · |DSOPT|.

• Expected number of nodes joining the dominating set in step 4 is
bounded by |DSOPT|.

• Phase C � essentially the same result for CDS

Theorem:

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/32

A better algorithm?

R

R

Unit Disk GraphUnit Disk Graph

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/33

Better and faster algorithm

• Assume that graph is a unit
disk graph (UDG)

• Assume that nodes know
their positions (GPS)

1

u

v

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/34

Then…

tra
ns

miss
ion

 ra
diu

s

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/35

Grid Algorithm

1. Beacon your position

2. If, in your virtual grid cell, you are the node closest to the center of
the cell, then join the CDS, else do not join.

3. That’s it.

• 1 transmission per node, O(1) approximation.

• If you have mobility, then simply “loop” through algorithm, as fast as
your application/mobility wants you to.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/36

The model determines the distributed
complexity of clustering

Comparison

k-local algorithm

• Algorithm computes DS

• k2+O(1) transmissions/node
• O(∆O(1)/k log ∆) approximation

• General graph
• No position information

Grid algorithm

• Algorithm computes DS

• 1 transmission/node
• O(1) approximation

• Unit disk graph (UDG)
• Position information (UDG)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/37

Let’s talk about models…

• General Graph

• Captures obstacles
• Captures directional radios
• Often too pessimistic

• UDG & GPS

• UDG is not realistic
• GPS not always available

– Indoors

• 2D � 3D?
• Often too optimistic

too pessimistic too optimistic

Let‘s look at models in
between these extremes!

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/38

Real Networks

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/39

Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded
Independence

Unit Ball
Graph

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/40

Unit Ball Graphs

• ∃ metric (V,d) describing distances between nodes u,v ∈ V

such that: d(u,v) � 1 : (u,v) ∈ E
such that: d(u,v) ≥ 1 : (u,v) ∈ E

• Assume that doubling dimension of metric is constant

• Doubling Dimension: log(#balls of radius r/2 to cover ball of radius r)

Unit Ball Graph

UBG based on
underlying doubling metric.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/41

The “Largest-ID” Algorithm

• All nodes have unique IDs, chosen at random.

• Algorithm for each node:
1. Send ID to all neighbors
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (extremely local!)

4

6
7

92

8

10

5
3

1

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/42

“Largest ID” Algorithm, Analysis I

• To simplify analysis: assume graph is UDG
(same analysis works for UBG based on doubling metric)

• We look at a disk S of diameter 1:

S

Diameter: 1

Nodes inside S have
distance at most 1.
→ they form a clique

How many nodes in S
are selected for the DS?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/43

S

“Largert ID” Algorithm, Analysis II

1 11

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks Si of diameter 1
(UBG: number of small disks depends on doubling dimension)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/44

“Largest ID” Algorithm: Analysis III

• How many nodes in S are chosen by nodes in a disk Si?

• x = # of nodes in S, y = # of nodes in Si:

• A node u∈S is only chosen by a node in Si if
(all nodes in Si see each other).

• The probability for this is:

• Therefore, the expected number of nodes in S chosen by nodes in
Si is at most:

Because at most y nodes in Si can

choose nodes in S
and because of linearity of expectation.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/45

“Largest ID” Algorithm, Analysis IV

• From x�n and y�n, it follows that:

• Hence, in expectation the DS contains at most nodes
per disk with diameter 1.

• An optimal algorithm needs to choose at least 1 node in the disk
with radius 1 around any node.

• This disk can be covered by a constant (9) number of disks of
diameter 1.

• The algorithm chooses at most times more disks than an
optimal one

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/46

“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes an
-approximation (analysis is tight).

complete

sub-graph

complete
sub-graph

nodes

Optimal DS: size 2

“Largest ID” alg:

• bottom nodes choose
top nodes with
probability≈1/2

• 1 node every 2nd group

• nodes

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/47

Iterative “Largest ID” Algorithm

• Assume that nodes know the distances to their neighbors:

all nodes are active;
for i := k to 1 do
∀ act. nodes: select act. node with largest ID in dist. � 1/2i;
selected nodes remain active

od;
DS = set of active nodes

• Set of active nodes is always a DS (computing CDS also possible)
• Number of rounds: k
• Approximation ratio n(1/2k)

• For k=O(loglog n), approximation ratio = O(1)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/48

Iterative “Largest ID” Algorithm, Remarks

• Possible to do everything in O(1) rounds
(messages get larger, local computations more complicated)

• If we slightly change the algorithm such that largest radius is 1/4:
– Sufficient to know IDs of all neighbors, distances to neighbors, and

distances between adjacent neighbors
– Every node can then locally simulate relevant part of algorithm to find

out whether or not to join DS

Doubling UBG: O(1) approximation in O(1) rounds

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/49

Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded
Independence

Unit Ball
Graph

In a doubling
metric:

Number of
independent
neighbors
is bounded
(UDG: 5)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/50

Real Networks

• No links between far-away nodes

• Close nodes tend to be connected

• In particular: Densely covered area � many connections

Wireless Networks are not unit disk graphs, but:

Bounded Independence:
Bounded neighborhoods have bounded independent sets

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/51

• Def.: A graph G has bounded independence if there is a function f(r)
such that every r-neighborhood in G contains at most f(r)
independent nodes.
– Note: f(r) does not depend on size of the graph!
– Polynomially Bounded Independence: f(r) = poly(r), e.g. O(r3)

Bounded Independence

1) A node can have many neighbors
2) But not all of them can be

independent!
3) Can model obstacles, walls, ...

• Definition includes:
- (Quasi) Unit Disk Graphs, Doubling Unit Ball Graphs
- Coverage Area Graphs, Bounded Disk Graphs, ...

f(1) = 5f(1) = 6

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/52

Maximal Independent Set I

• Maximal Independent Set (MIS):
(non-extendable set of pair-wise non-adjacent nodes)

• An MIS is also a dominating set:
– assume that there is a node v which is not dominated
– v∉MIS, (u,v)∈E → u∉MIS

– add v to MIS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/53

Maximal Independent Set II

• Lemma:

On independence-bounded graphs: |MIS| ���� O(1)····|DSOPT|

• Proof:
1. Assign every MIS node to an adjacent node of DSOPT

2. u∈DSOPT has at most f(1) neighbors v∈MIS

3. At most f(1) MIS nodes assigned to every node of DSOPT

� |MIS| � f(1)·|DSOPT|

• Time to compute MIS on independence-bounded graphs:

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/54

MIS (DS) � CDS

• MIS gives a dominating set.
• But it is not connected.

• Connect any two MIS nodes
which can be connected by
one additional node.

• Connect unconnected MIS
nodes which can be conn. by
two additional nodes.

• This gives a CDS!

• #2-hop connectors�f(2)·|MIS|
#3-hop connectors�2f(3)·|MIS|

• |CDS| = O(|MIS|)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/55

Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

Bounded
Independence

Unit Ball
Graph

too realistic too simplistic

Message
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio
Network Model

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/56

Unstructured Radio Network Model

• Multi-Hop
• No collision detection

– Not even at the sender!

• No knowledge about (the number of) neighbors
• Asynchronous Wake-Up

– Nodes are not woken up by messages !

• Unit Disk Graph (UDG) to model wireless multi-hop network
– Two nodes can communicate iff Euclidean distance is at most 1

• Upper bound n for number of nodes in network is known
– This is necessary due to Ω(n / log n) lower bound

[Jurdzinski, Stachowiak, ISAAC 2002]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/57

• Can MDS and MIS be solved efficiently in such a harsh model?

Unstructured Radio Network Model

There is a MIS algorithm
with running time

O(log2n) with high probability.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/58

Summary Dominating Set I

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
Distances

Bounded
Independence

UBG
Distances

too realistic too simplistic

Message
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio
Network Model

UDG, no
Distances

Time:

Approximation:

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/59

Summary Dominating Set II

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
Distances

Bounded
Independence

UBG
Distances

too realistic too simplistic

Message
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio
Network Model

UDG, no
Distances

