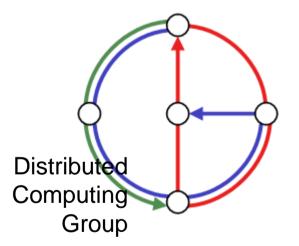
Chapter 10 CLUSTERING



Mobile Computing Winter 2005 / 2006

Overview

- Motivation
- Dominating Set
- Connected Dominating Set
- General Algorithms:
 - The "Greedy" Algorithm
 - The "Tree Growing" Algorithm

►∩-

- The "Marking" Algorithm
- The "k-Local" Algorithm
- Algorithms for Special Models:
 - Unit Ball Graphs: The "Largest ID" Algorithm
 - Independence-Bounded Graphs: The "MIS" Algorithm
 - Unstructured Radio Network Model

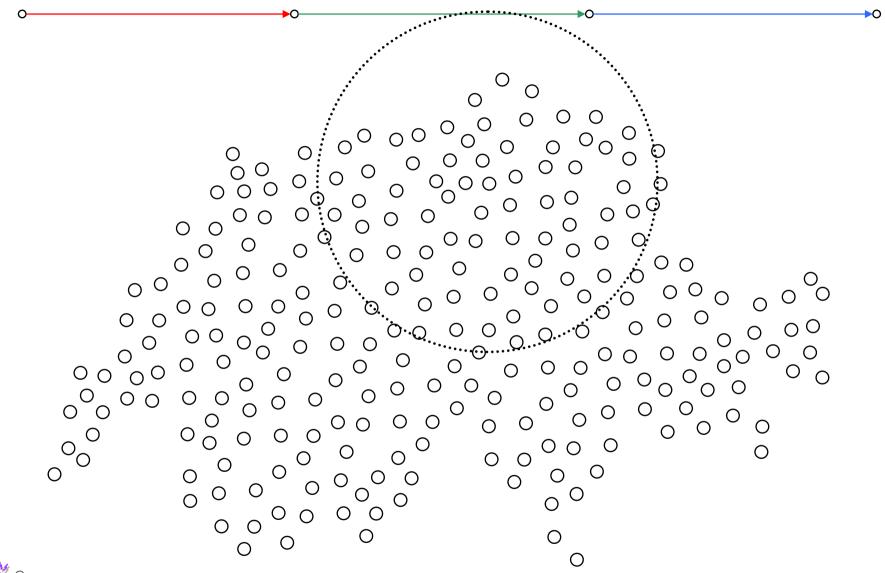
- We have seen: 10 Tricks \rightarrow 2¹⁰ routing algorithms
- In reality there are almost that many!

- Q: How good are these routing algorithms?!? Any hard results?
- A: Almost none! Method-of-choice is simulation...
- Perkins: "if you simulate three times, you get three different results"

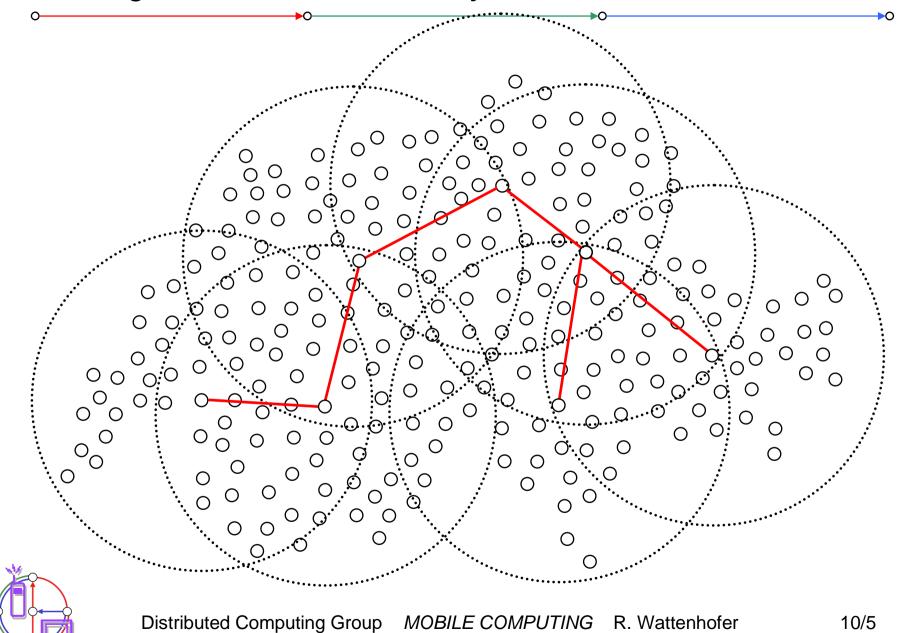
10/3

- Flooding is key component of (many) proposed algorithms, including most prominent ones (AODV, DSR)
- At least flooding should be efficient

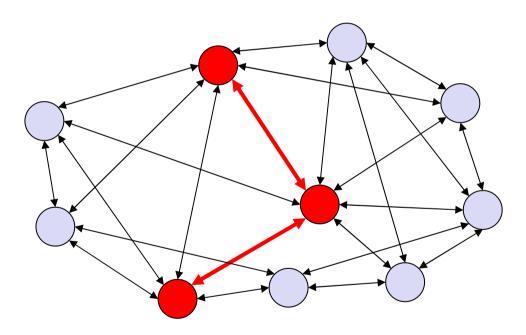
Finding a Destination by Flooding



Finding a Destination *Efficiently*

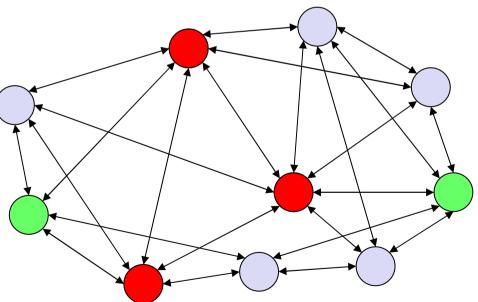


- Idea: Some nodes become backbone nodes (gateways). Each node can access and be accessed by at least one backbone node.
- Routing:
- If source is not a gateway, transmit message to gateway
- 2. Gateway acts as proxy source and routes message on backbone to gateway of destination.
- 3. Transmission gateway to destination.



(Connected) Dominating Set

- A Dominating Set DS is a subset of nodes such that each node is either in DS or has a neighbor in DS.
- A Connected Dominating Set CDS is a connected DS, that is, there is a path between any two nodes in CDS that does not use nodes that are not in CDS.
- A CDS is a good choice for a backbone.
- It might be favorable to have few nodes in the CDS. This is known as the Minimum CDS problem



 $\rightarrow 0$

- Input: We are given an (arbitrary) undirected graph.
- Output: Find a Minimum (Connected) Dominating Set, that is, a (C)DS with a minimum number of nodes.
- Problems
 - M(C)DS is NP-hard
 - Find a (C)DS that is "close" to minimum (approximation)
 - The solution must be local (global solutions are impractical for mobile ad-hoc network) – topology of graph "far away" should not influence decision who belongs to (C)DS

10/8

• Idea: Greedy choose "good" nodes into the dominating set.

- Black nodes are in the DS
- Grey nodes are neighbors of nodes in the DS
- White nodes are not yet dominated, initially all nodes are white.
- Algorithm: Greedily choose a node that colors most white nodes.
- One can show that this gives a log ∆ approximation, if ∆ is the maximum node degree of the graph. (The proof is similar to the "Tree Growing" proof on 6/13ff.)
- One can also show that there is no polynomial algorithm with better performance unless $P \approx NP$.

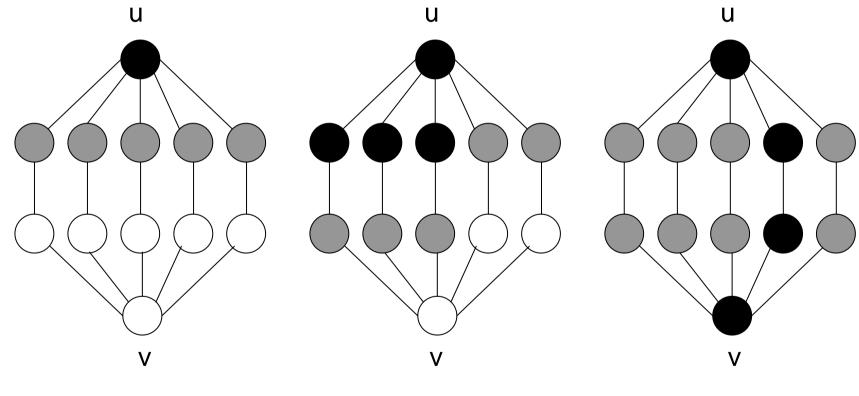
CDS: The "too simple tree growing" algorithm

• Idea: start with the root, and then greedily choose a neighbor of the tree that dominates as many as possible new nodes

- Black nodes are in the CDS
- Grey nodes are neighbors of nodes in the CDS
- White nodes are not yet dominated, initially all nodes are white.
- Start: Choose a node with maximum degree, and make it the root of the CDS, that is, color it black (and its white neighbors grey).
- Step: Choose a grey node with a maximum number of white neighbors and color it black (and its white neighbors grey).

Example of the "too simple tree growing" algorithm

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4



. . .

tree growing: start

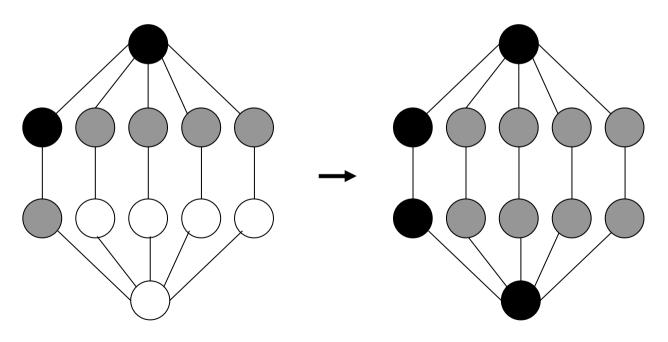
Minimum CDS

►O

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 10/11

- Idea: Don't scan one but two nodes!
- Alternative step: Choose a grey node and its white neighbor node with a maximum sum of white neighbors and color both black (and their white neighbors grey).

O



• Theorem: The tree growing algorithm finds a connected set of size $|CDS| \le 2(1+H(\Delta)) \cdot |DS_{OPT}|$.

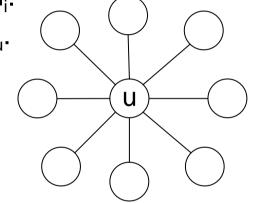
- DS_{OPT} is a (not connected) minimum dominating set
- Δ is the maximum node degree in the graph
- H is the harmonic function with $H(n) \approx log(n)+0.7$
- In other words, the connected dominating set of the tree growing algorithm is at most a O(log(Δ)) factor worse than an optimum minimum dominating set (which is NP-hard to compute).
- With a lower bound argument (reduction to set cover) one can show that a better approximation factor is impossible, unless $P \approx NP$.

- The proof is done with amortized analysis.
- Let S_u be the set of nodes dominated by $u \in DS_{OPT}$, or u itself. If a node is dominated by more than one node, we put it in one of the sets.

- We charge the nodes in the graph for each node we color black. In particular we charge all the newly colored grey nodes. Since we color a node grey at most once, it is charged at most once.
- We show that the total charge on the vertices in an S_u is at most $2(1+H(\Delta))$, for any u.

Charge on S_u

- Initially $|S_u| = u_0$.
- Whenever we color some nodes of S_u, we call this a step.
- The number of white nodes in S_u after step i is u_i .
- After step k there are no more white nodes in S_u.
- In the first step u₀ u₁ nodes are colored (grey or black). Each vertex gets a charge of at most 2/(u₀ – u₁).



After the first step, node u becomes eligible to be colored (as part of a pair with one of the grey nodes in S_u). If u is not chosen in step i (with a potential to paint u_i nodes grey), then we have found a better (pair of) node. That is, the charge to any of the new grey nodes in step i in S_u is at most 2/u_i.

Adding up the charges in S_u

$$C \le \frac{2}{u_0 - u_1} (u_0 - u_1) + \sum_{i=1}^{k-1} \frac{2}{u_i} (u_i - u_{i+1})$$

$$= 2 + 2\sum_{i=1}^{k-1} \frac{u_i - u_{i+1}}{u_i}$$

$$\leq 2 + 2 \sum_{i=1}^{k-1} (H(u_i) - H(u_{i+1}))$$

 $= 2 + 2(H(u_1) - H(u_k)) = 2(1 + H(u_1)) = 2(1 + H(\Delta))$

0

→O-

►O

Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically optimal unless $P \approx NP$. And even the constants are small.

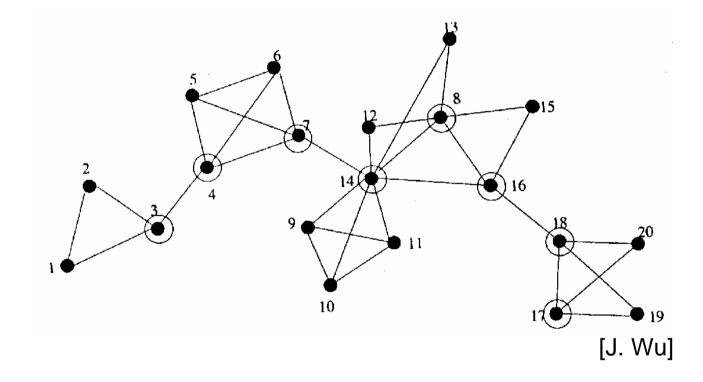
- Are we happy?
- Not really. How do we implement this algorithm in a real mobile network? How do we figure out where the best grey/white pair of nodes is? How slow is this algorithm in a distributed setting?
- We need a fully distributed algorithm. Nodes should only consider local information.

• Idea: The connected dominating set CDS consists of the nodes that have two neighbors that are not neighboring.

→O-

- 1. Each node u compiles the set of neighbors N(u)
- 2. Each node u transmits N(u), and receives N(v) from all its neighbors
- 3. If node u has two neighbors v,w and w is not in N(v) (and since the graph is undirected v is not in N(w)), then u marks itself being in the set CDS.
- + Completely local; only exchange N(u) with all neighbors
- + Each node sends only 1 message, and receives at most Δ
- + Messages have size $O(\Delta)$
- Is the marking algorithm really producing a connected dominating set? How good is the set?

Example for the Marking Algorithm



►O

►O

• We assume that the input graph G is connected but not complete.

 $\rightarrow 0$

- Note: If G was complete then constructing a CDS would not make sense. Note that in a complete graph, no node would be marked.
- We show:
 - The set of marked nodes CDS is
 - a) a dominating set
 - b) connected
 - c) a shortest path in G between two nodes of the CDS is in CDS

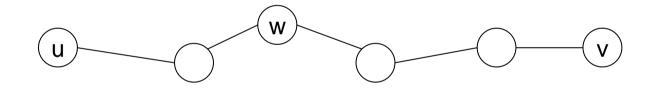
 Proof: Assume for the sake of contradiction that node u is a node that is not in the dominating set, and also not dominated. Since no neighbor of u is in the dominating set, the nodes N⁺(u) := u ∪ N(u) form:

- a complete graph
 - if there are two nodes in N(u) that are not connected, u must be in the dominating set by definition
- no node $v \in N(u)$ has a neighbor outside N(u)
 - or, also by definition, the node v is in the dominating set
- Since the graph G is connected it only consists of the complete graph N⁺(u). We precluded this in the assumptions, therefore we have a contradiction

Proof of b) connected, c) shortest path in CDS

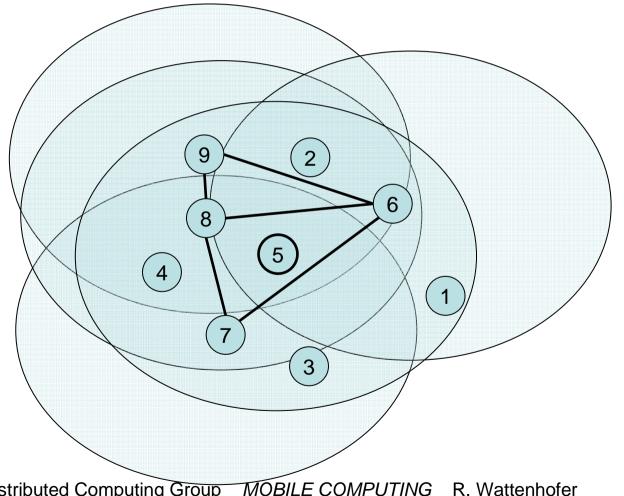
• Proof: Let p be any shortest path between the two nodes u and v, with $u,v \in CDS$.

• Assume for the sake of contradiction that there is a node w on this shortest path that is not in the connected dominating set.



• Then the two neighbors of w must be connected, which gives us a shorter path. This is a contradiction.

If neighbors with larger ID are connected and cover all other ulletneighbors, then don't join CDS, else join CDS

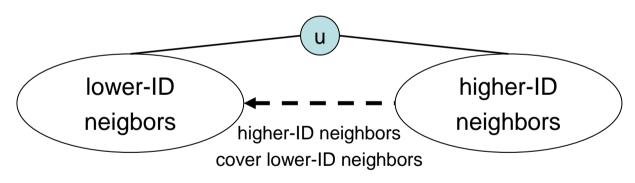


►O

Correctness of Improved Marking Algorithm

- Theorem: Algorithm computes a CDS S
- Proof (by induction of node IDs):
 - assume that initially all nodes are in S
 - look at nodes u in increasing ID order and remove from S if higher-ID neighbors of u are connected

- S remains a DS at all times: (assume that u is removed from S)



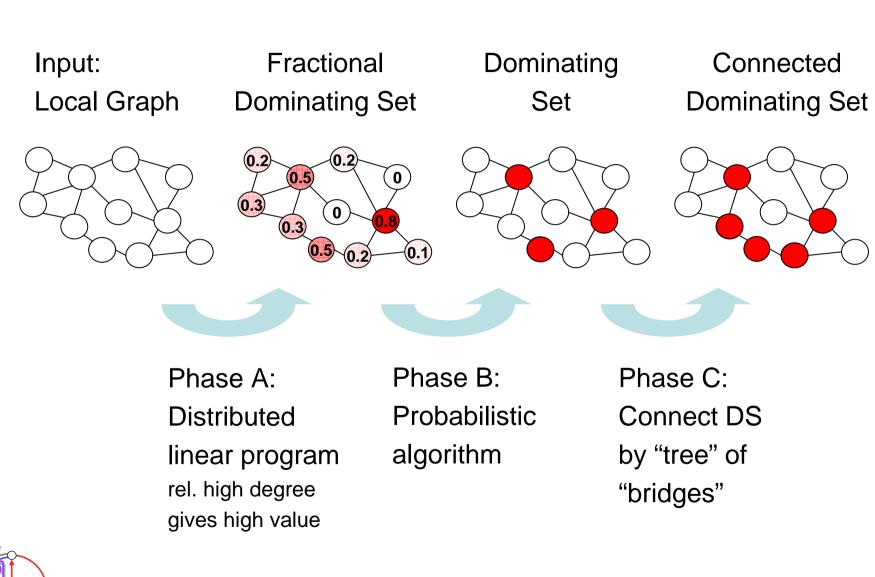
S remains connected:

replace connection v-u-v' by v- n_1, \dots, n_k -v' (n_i : higher-ID neighbors of u)

- Given an Euclidean chain of n homogeneous nodes
- The transmission range of each node is such that it is connected to the k left and right neighbors, the id's of the nodes are ascending.

- An optimal algorithm (and also the tree growing algorithm) puts every k'th node into the CDS. Thus $|CDS_{OPT}| \approx n/k$; with k = n/c for some positive constant c we have $|CDS_{OPT}| = O(1)$.
- The marking algorithm (also the improved version) does mark all the nodes (except the k leftmost ones). Thus |CDS_{Marking}| = n k; with k = n/c we have |CDS_{Marking}| = Ω(n).
- The worst-case quality of the marking algorithm is worst-case! ③

Algorithm Overview



►O

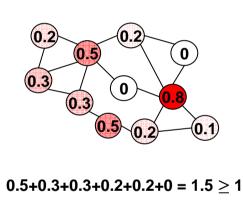
0

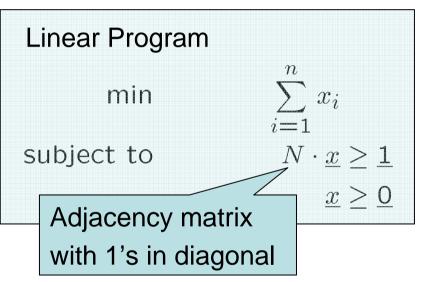
10/26

►O

Phase A is a Distributed Linear Program

- Nodes 1, ..., *n*: Each node *u* has variable x_u with $x_u \ge 0$
- Sum of *x*-values in each neighborhood at least 1 (local)
- Minimize sum of all *x*-values (global)





- Linear Programs can be solved optimally in polynomial time
- But not in a distributed fashion! That's what we need here...

Phase A Algorithm

o>0	▶0 ▶0
LP Approximation	LP Approximation
Algorithm for Primal Node $v_{i}^{(p)}$:	Algorithm for Dual Node $v_i^{(d)}$:
1: $x_i := 0$;	1: $y_i := y_i^+ := w_i := f_i := 0; r_i := 1;$
2: for $e_p := k_p - 2$ to $-f - 1$ by -1 do	2: for $e_p := k_p - 2$ to $-f - 1$ by -1 do
3: for 1 to h do	3: for 1 to h do
4: $(* \gamma_i := \frac{\mathbb{C}_{\max}}{\mathbb{C}_i} \sum_j a_{ji} r_j *)$	4: $\tilde{r_i} := r_i;$
5: for $e_d := k_d - 1$ to 0 by -1 do	5: for $e_d := k_d - 1$ to 0 by -1 do
6: $\tilde{\gamma_i} := \frac{\mathbb{C}_{\max}}{c_i} \sum_j a_{ji} \tilde{r_j};$	6:
7: if $\tilde{\gamma_i} \ge 1/\Gamma_p^{e_p/k_p}$ then	7:
8: $x_i^+ := 1/\Gamma_d^{e_d/k_d}; x_i := x_i + x_i^+;$ 9: fi ; 10: send $x_i^+, \tilde{\gamma_i}$ to dual neighbors; 11: 12: 13: 14:	8: 9: 10: 11: $y_i^+ := y_i^+ + \tilde{r}_i \sum_j$ 12: $w_i^+ := \sum_j a_{ij} x_j^+;$ 13: $w_i := w_i + w_i^+; f_i$ 14: $if w_i \ge 1$ then 2: $if f_i \ge f$ then 3: $y_i := y_i + y_i^+; y_i^+ := 0;$ 4: $r_i := 0; w_i := 0$ 5: $else if w_i \ge 2$ then 6: $y_i := y_i + y_i^+; y_i^+ := 0;$
15: receive $\tilde{r_j}$ from dual neighbors	15: send $\tilde{r_i}$ to primal n
16: od;	16: od ;
17:	17: increase_duals() ;
18: receive r_j from dual neighbors	18: send r_i to primal nei{
19: od	19: od
20: od;	20: od ;
21: $x_i := x_i / \min_{j \in N_i^{(p)}} \sum_{\ell} a_{j\ell} x_{\ell}$	21: $y_i := y_i / \max_{j \in N_i^{(d)}} \frac{1}{c_j} \sum_{j \in N_i^{(d)}} \frac{1}{c_j} $
	14: $w_i := w_i - \lfloor w_i \rfloor$ 15: fi

Result after Phase A

- Distributed Approximation for Linear Program
- Instead of the optimal values x_i^* at nodes, nodes have $x_i^{(\alpha)}$, with

$$\sum_{i=1}^n x_i^{(\alpha)} \le \alpha \cdot \sum_{i=1}^n x_i^*$$

▶0

• The value of α depends on the number of rounds *k* (the locality)

$$lpha \leq (\Delta+1)^{c/\sqrt{k}}$$

• The analysis is rather intricate... ③

10/29

►O

Each node applies the following algorithm:

- 1. Calculate $\delta_i^{(2)}$ (= maximum degree of neighbors in distance 2)
- 2. Become a dominator (i.e. go to the dominating set) with probability

$$p_i := \min\{1, x_i^{(\alpha)} \cdot \ln(\delta_i^{(2)} + 1)\}$$

From phase A Highest degree in distance 2

- 3. Send status (dominator or not) to all neighbors
- 4. If no neighbor is a dominator, become a dominator yourself

- Randomized rounding technique
- Expected number of nodes joining the dominating set in step 2 is bounded by $\alpha \log(\Delta+1) \cdot |DS_{OPT}|$.

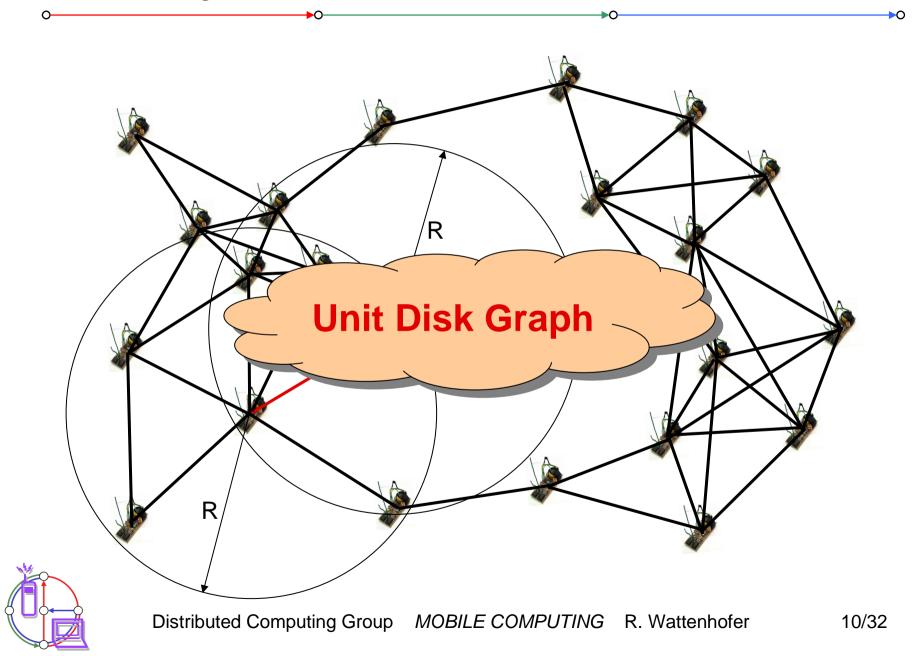
→∩

 Expected number of nodes joining the dominating set in step 4 is bounded by |DS_{OPT}|.

Theorem: E [|DS|] = O
$$\left((\Delta + 1)^{c/\sqrt{k}} \log \Delta \cdot |DS_{OPT}| \right)$$

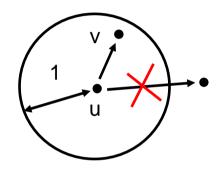
• Phase C \rightarrow essentially the same result for CDS

A better algorithm?

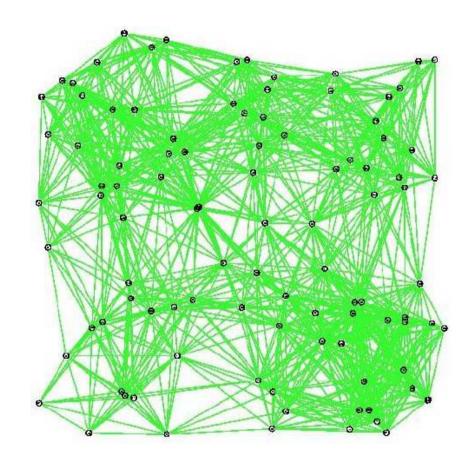


Better and faster algorithm

 Assume that graph is a unit disk graph (UDG)



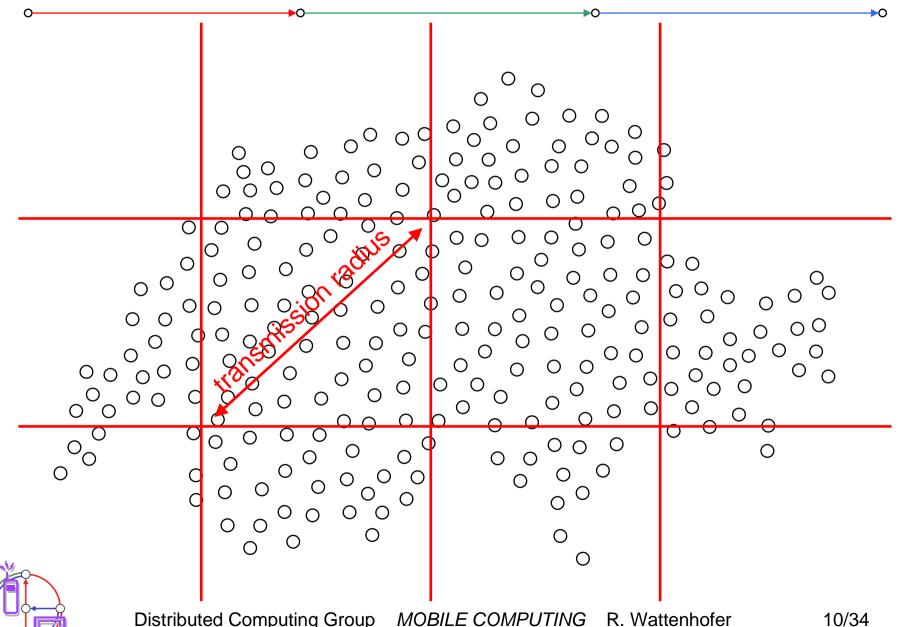
Assume that nodes know their positions (GPS)



10/33

►O

Then...



Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Grid Algorithm

- 1. Beacon your position
- 2. If, in your virtual grid cell, you are the node closest to the center of the cell, then join the CDS, else do not join.

3. That's it.

- 1 transmission per node, O(1) approximation.
- If you have mobility, then simply "loop" through algorithm, as fast as your application/mobility wants you to.

Comparison

k-local algorithm

- Algorithm computes DS
- k²+O(1) transmissions/node

- $O(\Delta^{O(1)/k} \log \Delta)$ approximation
- General graph
- No position information

Grid algorithm

- Algorithm computes DS
- 1 transmission/node
- O(1) approximation
- Unit disk graph (UDG)
- Position information (UDG)

The model determines the distributed complexity of clustering

►O

Let's talk about models...

- General Graph
- Captures obstacles
- Captures directional radios
- Often too pessimistic

• UDG & GPS

- UDG is not realistic
- GPS not always available
 Indoors
- $2D \rightarrow 3D$?
- Often too optimistic

too pessimistic

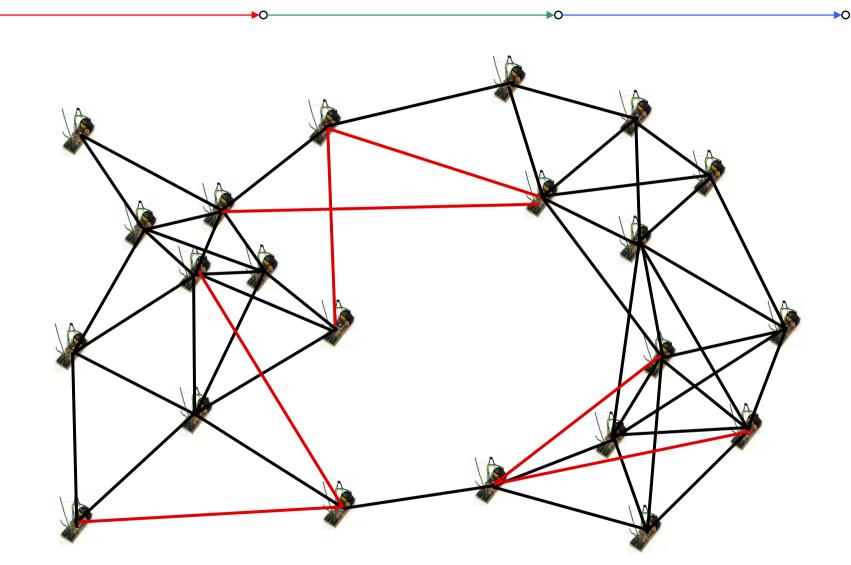
too optimistic

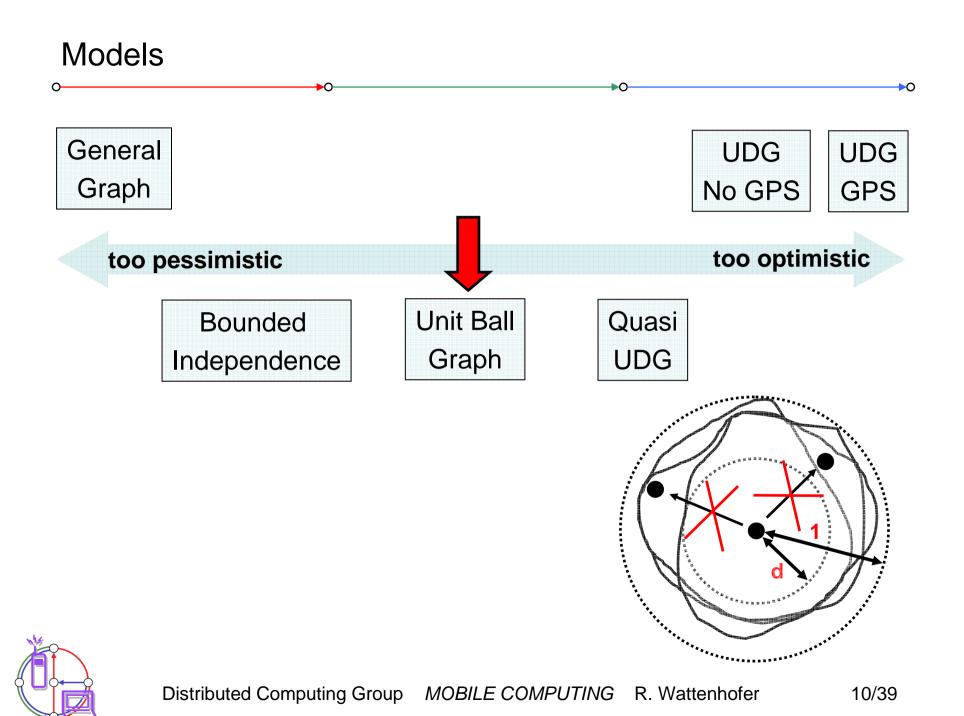
Let's look at models in between these extremes!

O

10/37

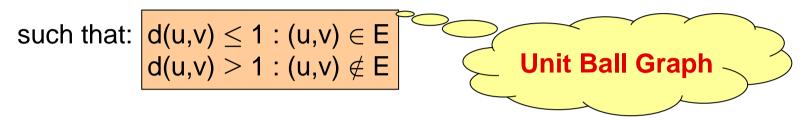
Real Networks





Unit Ball Graphs

• \exists metric (V,d) describing distances between nodes $u, v \in V$



 $\rightarrow 0$

- Assume that doubling dimension of metric is constant
- Doubling Dimension: log(#balls of radius r/2 to cover ball of radius r)

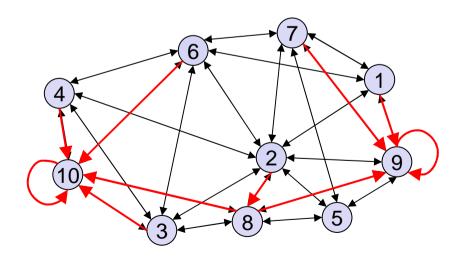
UBG based on underlying doubling metric.

The "Largest-ID" Algorithm

- All nodes have unique IDs, chosen at random.
- Algorithm for each node:
 - 1. Send ID to all neighbors
 - 2. Tell node with largest ID in neighborhood that it has to join the DS

►O

• Algorithm computes a DS in 2 rounds (extremely local!)

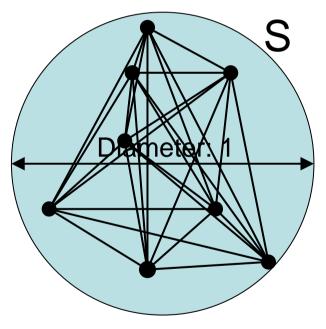


"Largest ID" Algorithm, Analysis I

- To simplify analysis: assume graph is UDG (same analysis works for UBG based on doubling metric)
- We look at a disk S of diameter 1:

Nodes inside S have distance at most 1. \rightarrow they form a clique

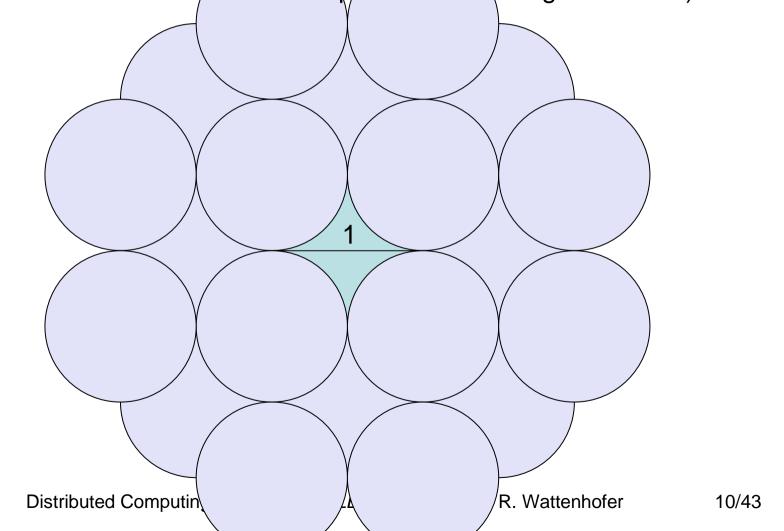
How many nodes in S are selected for the DS?



10/42

"Largert ID" Algorithm, Analysis II

Nodes which select nodes in S are in disk of radius 3/2 which can be covered by S and 20 other disks S, of diameter 1 (UBG: number of small disks depends on doubling dimension)



O

"Largest ID" Algorithm: Analysis III

- How many nodes in S are chosen by nodes in a disk S_i?
- x = # of nodes in S, y = # of nodes in S_i:
- A node u∈S is only chosen by a node in S_i if ID(u) > max{ID(v)} (all nodes in S_i see each other).

 $\rightarrow 0$

- The probability for this is: $\frac{1}{1+y}$
- Therefore, the expected number of nodes in S chosen by nodes in S_i is at most:

$$\min\left\{y, \frac{x}{1+y}\right\}$$

Because at most y nodes in S_i can choose nodes in S and because of linearity of expectation.

"Largest ID" Algorithm, Analysis IV

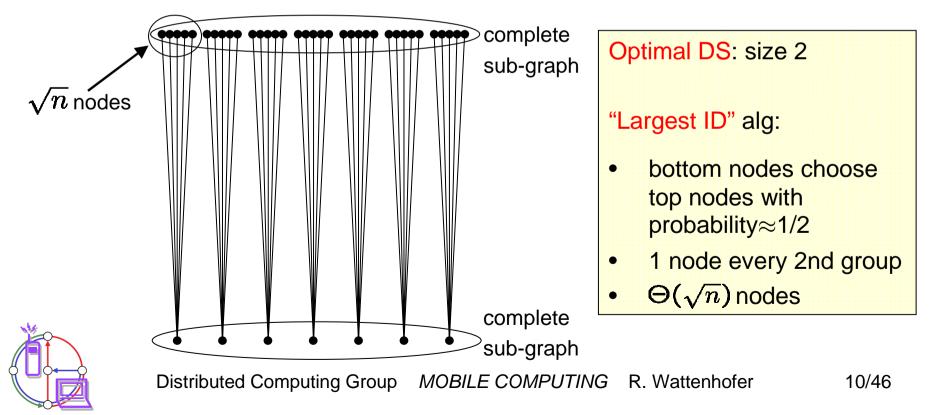
• From x ≤ n and y ≤ n, it follows that: $\min \left\{ y, \frac{x}{1+y} \right\} \le \sqrt{n}$

- Hence, in expectation the DS contains at most $20\sqrt{n}$ nodes per disk with diameter 1.
- An optimal algorithm needs to choose at least 1 node in the disk with radius 1 around any node.
- This disk can be covered by a constant (9) number of disks of diameter 1.
- The algorithm chooses at most $\mathrm{O}(\sqrt{n})$ times more disks than an optimal one

"Largest ID" Algorithm, Remarks

• For typical settings, the "Largest ID" algorithm produces very good dominating sets (also for non-UDGs)

• There are UDGs where the "Largest ID" algorithm computes an $\Theta(\sqrt{n})$ -approximation (analysis is tight).



• Assume that nodes know the distances to their neighbors:

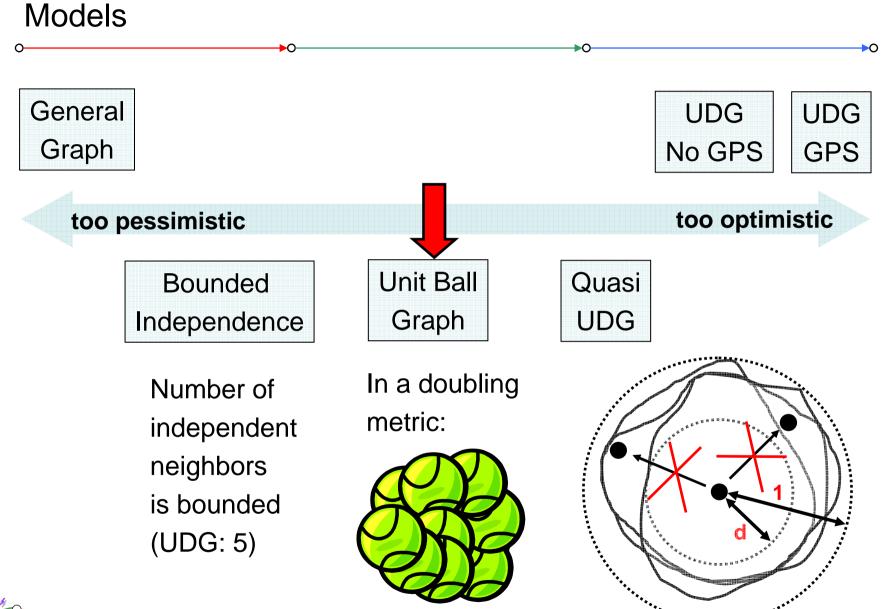
```
all nodes are active;
for i := k to 1 do
\forall act. nodes: select act. node with largest ID in dist. \leq 1/2^i;
selected nodes remain active
od;
DS = set of active nodes
```

→O-

- Set of active nodes is always a DS (computing CDS also possible)
- Number of rounds: k
- Approximation ratio n^(1/2^k)
- For k=O(loglog n), approximation ratio = O(1)

- Possible to do everything in O(1) rounds (messages get larger, local computations more complicated)
- If we slightly change the algorithm such that largest radius is 1/4:
 - Sufficient to know IDs of all neighbors, distances to neighbors, and distances between adjacent neighbors
 - Every node can then locally simulate relevant part of algorithm to find out whether or not to join DS

Doubling UBG: O(1) approximation in O(1) rounds



 \cap

Wireless Networks are not unit disk graphs, but:

►O

• No links between far-away nodes

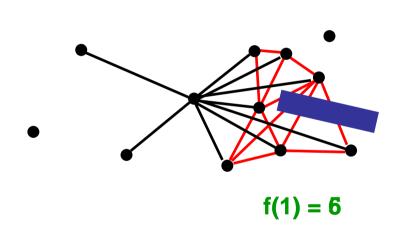
- Close nodes tend to be connected
- In particular: Densely covered area \rightarrow many connections

Bounded Independence:

Bounded neighborhoods have bounded independent sets

Bounded Independence

- Def.: A graph *G* has bounded independence if there is a function *f(r)* such that every *r*-neighborhood in G contains at most *f(r)* independent nodes.
 - Note: f(r) does not depend on size of the graph!
 - Polynomially Bounded Independence: f(r) = poly(r), e.g. $O(r^3)$



 A node can have many neighbors
 But not all of them can be independent!

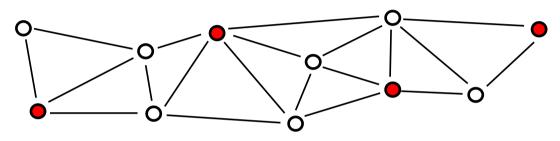
10/51

3) Can model obstacles, walls, ...

- Definition includes:
 - (Quasi) Unit Disk Graphs, Doubling Unit Ball Graphs
 - Coverage Area Graphs, Bounded Disk Graphs, ...

Maximal Independent Set I

 Maximal Independent Set (MIS): (non-extendable set of pair-wise non-adjacent nodes)



- An MIS is also a dominating set:
 - assume that there is a node v which is not dominated
 - $v \not\in MIS, \, (u,v) \in E \rightarrow u \not\in MIS$
 - add v to MIS

Maximal Independent Set II

• Lemma:

On independence-bounded graphs: $|MIS| \leq O(1) \cdot |DS_{OPT}|$

►O-

- Proof:
 - 1. Assign every MIS node to an adjacent node of DS_{OPT}
 - 2. $u \in DS_{OPT}$ has at most f(1) neighbors $v \in MIS$
 - 3. At most f(1) MIS nodes assigned to every node of DS_{OPT}

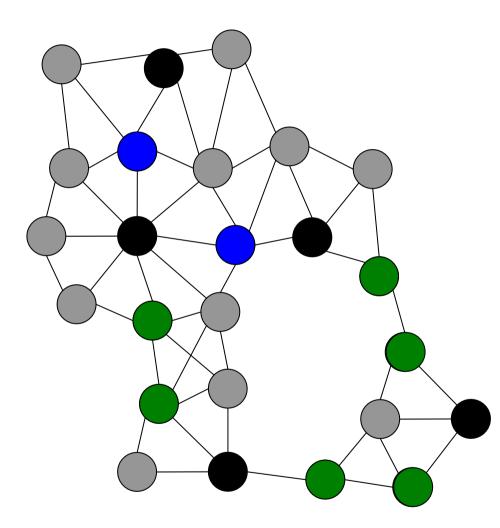
 $\boldsymbol{\rightarrow} |\mathsf{MIS}| \leq \mathsf{f}(1) \cdot |\mathsf{DS}_{\mathsf{OPT}}|$

• Time to compute MIS on independence-bounded graphs:

$O(\log \Delta \cdot \log^* n)$

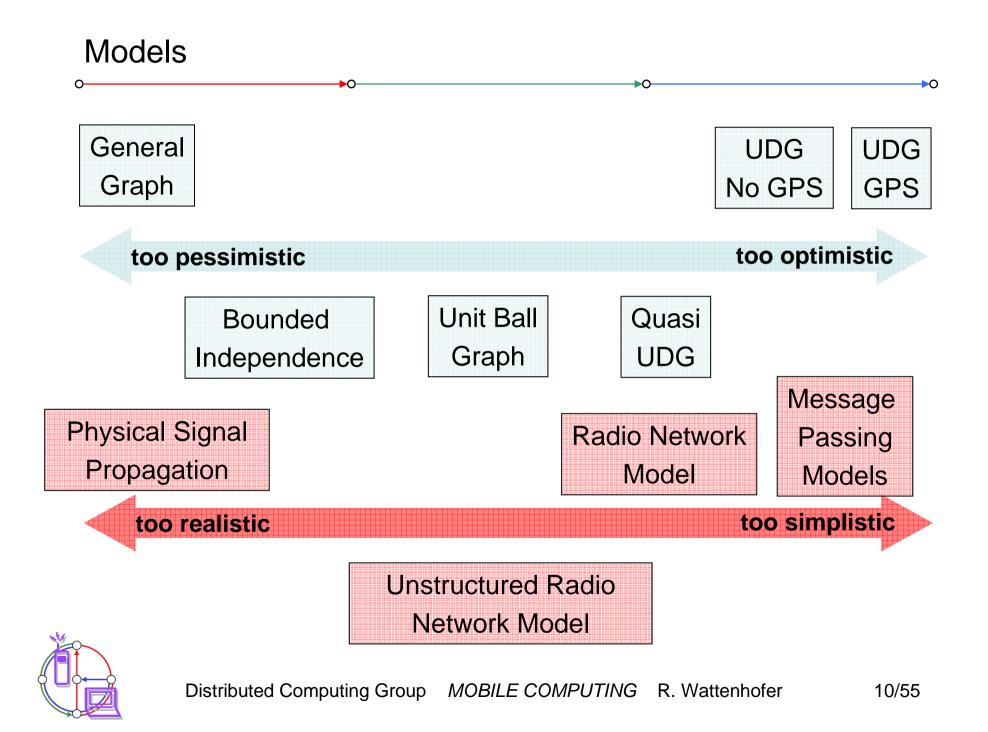
10/53

$\mathsf{MIS}\ (\mathsf{DS}) \to \mathsf{CDS}$



- MIS gives a dominating set.
- But it is not connected.
- Connect any two MIS nodes which can be connected by one additional node.
- Connect unconnected MIS nodes which can be conn. by two additional nodes.
- This gives a CDS!
- #2-hop connectors <a>f(2)/MIS
 #3-hop connectors <>2f(3)
 MIS
- |CDS| = O(|MIS|)

10/54



Unstructured Radio Network Model

- Multi-Hop
- No collision detection
 - Not even at the sender!
- No knowledge about (the number of) neighbors
- Asynchronous Wake-Up
 - Nodes are not woken up by messages !
- Unit Disk Graph (UDG) to model wireless multi-hop network
 - Two nodes can communicate iff Euclidean distance is at most 1

>

- Upper bound n for number of nodes in network is known
 - This is necessary due to $\Omega(n / \log n)$ lower bound [Jurdzinski, Stachowiak, ISAAC 2002]

C

• Can MDS and MIS be solved efficiently in such a harsh model?

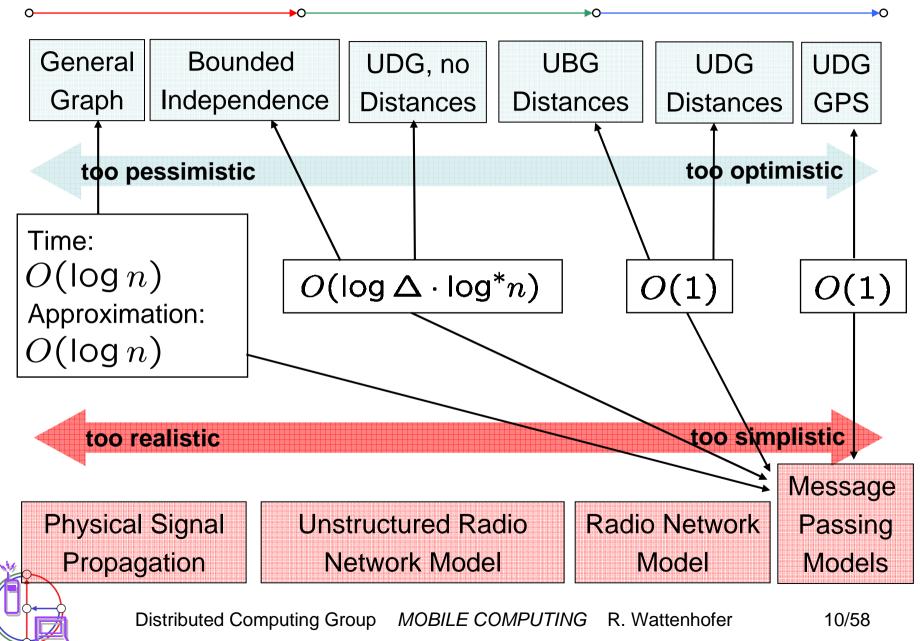
There is a MIS algorithm with running time O(log²n) with high probability.

→O-

0

10/57

Summary Dominating Set I



Summary Dominating Set II

