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• Motivation
• Dominating Set
• Connected Dominating Set

• General Algorithms:
– The “Greedy” Algorithm
– The “Tree Growing” Algorithm

– The “Marking” Algorithm

– The “k-Local” Algorithm

• Algorithms for Special Models:
– Unit Ball Graphs: The “Largest ID” Algorithm

– Independence-Bounded Graphs: The “MIS” Algorithm
– Unstructured Radio Network Model

Overview
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Discussion

• We have seen: 10 Tricks � 210 routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

• Flooding is key component of (many) proposed algorithms, including 
most prominent ones (AODV, DSR)

• At least flooding should be efficient
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Finding a Destination by Flooding
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Finding a Destination Efficiently
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Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node 
can access and be accessed by at least one backbone node. 

• Routing:
1. If source is not a

gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.
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(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there 
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

• A CDS is a good choice
for a backbone. 

• It might be favorable to
have few nodes in the 
CDS. This is known as the
Minimum CDS problem



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 10/8

Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph. 

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for 

mobile ad-hoc network) – topology of graph “far away” should 
not influence decision who belongs to (C)DS
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Greedy Algorithm for Dominating Sets

• Idea: Greedy choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the DS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log ∆ approximation, if ∆ is the 
maximum node degree of the graph. (The proof is similar to the 
“Tree Growing” proof on 6/13ff.) 

• One can also show that there is no polynomial algorithm with better 
performance unless P≈≈≈≈NP.
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CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the 
tree that dominates as many as possible new nodes

• Black nodes are in the CDS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose a node with maximum degree, and make it the root of 
the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white 
neighbors and color it black (and its white neighbors grey).
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Example of the “too simple tree growing” algorithm

u u u

v v v

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: start                        … Minimum CDS



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 10/12

Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node
with a maximum sum of white neighbors and color both black (and 
their white neighbors grey).
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Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size 
|CDS| � 2(1+H(∆)) · |DSOPT|. 

• DSOPT is a (not connected) minimum dominating set

• ∆ is the maximum node degree in the graph
• H is the harmonic function with H(n) ≈ log(n)+0.7

• In other words, the connected dominating set of the tree growing
algorithm is at most a O(log(∆)) factor worse than an optimum 
minimum dominating set (which is NP-hard to compute).

• With a lower bound argument (reduction to set cover) one can show 
that a better approximation factor is impossible, unless P≈≈≈≈NP.
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Proof Sketch

• The proof is done with amortized analysis. 

• Let Su be the set of nodes dominated by u ∈ DSOPT, or u itself. If a 
node is dominated by more than one node, we put it in one of the
sets.

• We charge the nodes in the graph for each node we color black. In 
particular we charge all the newly colored grey nodes. Since we 
color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an Su is at most 
2(1+H(∆)), for any u.
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Charge on Su

• Initially |Su| = u0.
• Whenever we color some nodes of Su, we call this a step.
• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored 
(grey or black). Each vertex gets a charge of 
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored (as 
part of a pair with one of the grey nodes in Su). If u is not 
chosen in step i (with a potential to paint ui nodes grey), then 
we have found a better (pair of) node. That is, the charge to 
any of the new grey nodes in step i in Su is at most 2/ui. 

u
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Adding up the charges in Su
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Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically 
optimal unless P≈≈≈≈NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real mobile 
network? How do we figure out where the best grey/white pair of 
nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider 
local information. 
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The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that 
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the 

graph is undirected v is not in N(w)), then u marks itself being in the 
set CDS.

+ Completely local; only exchange N(u) with all neighbors

+ Each node sends only 1 message, and receives at most ∆
+ Messages have size O(∆)
• Is the marking algorithm really producing a connected dominating

set? How good is the set?



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 10/19

Example for the Marking Algorithm

[J. Wu]
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Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete. 

• Note: If G was complete then constructing a CDS would not make 
sense. Note that in a complete graph, no node would be marked.

• We show: 

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS
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Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node 
that is not in the dominating set, and also not dominated. Since no 
neighbor of u is in the dominating set, the nodes N+(u) := u ∪ N(u) 
form:

• a complete graph 
– if there are two nodes in N(u) that are not connected, u must be in the 

dominating set by definition

• no node v ∈ N(u) has a neighbor outside N(u) 
– or, also by definition, the node v is in the dominating set

• Since the graph G is connected it only consists of the complete 
graph N+(u). We precluded this in the assumptions, therefore we 
have a contradiction
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Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v,
with u,v ∈ CDS.

• Assume for the sake of contradiction that there is a node w on this 
shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a 
shorter path. This is a contradiction.

w
vu
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Improved Marking Algorithm

• If neighbors with larger ID are connected and cover all other 
neighbors, then don’t join CDS, else join CDS

5

6

1
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4

7

2

3

8
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Correctness of Improved Marking Algorithm

• Theorem: Algorithm computes a CDS S

• Proof (by induction of node IDs):
– assume that initially all nodes are in S

– look at nodes u in increasing ID order and remove from S if higher-ID 
neighbors of u are connected

– S remains a DS at all times: (assume that u is removed from S)

– S remains connected:
replace connection v-u-v’ by v-n1,…,nk-v’ (ni: higher-ID neighbors of u)

u

higher-ID

neighbors

lower-ID

neigbors higher-ID neighbors
cover lower-ID neighbors
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Quality of the (Improved) Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
• The transmission range of each node is such that it is connected to 

the k left and right neighbors, the id’s of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts 
every k’th node into the CDS. Thus |CDSOPT| ≈ n/k; with k = n/c for 
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the 
nodes (except the k leftmost ones). Thus |CDSMarking| = n – k; with 
k = n/c we have |CDSMarking| = Ω(n).

• The worst-case quality of the marking algorithm is worst-case! ☺
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Algorithm Overview
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Phase A is a Distributed Linear Program

• Nodes 1, …, n: Each node u has variable xu with xu ≥ 0

• Sum of x-values in each neighborhood at least 1 (local)
• Minimize sum of all x-values (global)

0.5+0.3+0.3+0.2+0.2+0 = 1.5 ≥≥≥≥ 1

• Linear Programs can be solved optimally in polynomial time
• But not in a distributed fashion! That’s what we need here…
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Linear Program

Adjacency matrix
with 1’s in diagonal
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Phase A Algorithm
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• Distributed Approximation for Linear Program
• Instead of the optimal values xi

* at nodes, nodes have xi
(α), with

• The value of α depends on the number of rounds k (the locality)

• The analysis is rather intricate… ☺

Result after Phase A
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Phase B Algorithm

Each node applies the following algorithm:

1. Calculate (= maximum degree of neighbors in distance 2)

2. Become a dominator (i.e. go to the dominating set) with probability

3. Send status (dominator or not) to all neighbors

4. If no neighbor is a dominator, become a dominator yourself

From phase A Highest degree in distance 2
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Result after Phase B

• Randomized rounding technique 

• Expected number of nodes joining the dominating set in step 2 is
bounded by α log(∆+1) · |DSOPT|.

• Expected number of nodes joining the dominating set in step 4 is
bounded by |DSOPT|.

• Phase C � essentially the same result for CDS

Theorem:
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A better algorithm?

R

R

Unit Disk GraphUnit Disk Graph
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Better and faster algorithm

• Assume that graph is a unit 
disk graph (UDG)

• Assume that nodes know 
their positions (GPS)

1

u

v
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Then…

tra
ns

miss
ion

 ra
diu

s
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Grid Algorithm

1. Beacon your position

2. If, in your virtual grid cell, you are the node closest to the center of 
the cell, then join the CDS, else do not join.

3. That’s it.

• 1 transmission per node, O(1) approximation.

• If you have mobility, then simply “loop” through algorithm, as fast as 
your application/mobility wants you to.
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The model determines the distributed
complexity of clustering

Comparison

k-local algorithm 

• Algorithm computes DS

• k2+O(1) transmissions/node
• O(∆O(1)/k log ∆) approximation

• General graph
• No position information

Grid algorithm

• Algorithm computes DS

• 1 transmission/node
• O(1) approximation

• Unit disk graph (UDG)
• Position information (UDG)
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Let’s talk about models…

• General Graph

• Captures obstacles
• Captures directional radios
• Often too pessimistic

• UDG & GPS

• UDG is not realistic
• GPS not always available

– Indoors

• 2D � 3D?
• Often too optimistic

too pessimistic too optimistic

Let‘s look at models in 
between these extremes!
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Real Networks
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph
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Unit Ball Graphs

• ∃ metric (V,d) describing distances between nodes u,v ∈ V

such that:  d(u,v) � 1 : (u,v) ∈ E
such that: d(u,v) ≥ 1 : (u,v) ∈ E

• Assume that doubling dimension of metric is constant

• Doubling Dimension: log(#balls of radius r/2 to cover ball of radius r)

Unit Ball Graph

UBG based on
underlying doubling metric.
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The “Largest-ID” Algorithm

• All nodes have unique IDs, chosen at random.

• Algorithm for each node:
1. Send ID to all neighbors
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (extremely local!)
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“Largest ID” Algorithm, Analysis I

• To simplify analysis: assume graph is UDG
(same analysis works for UBG based on doubling metric)

• We look at a disk S of diameter 1:

S

Diameter: 1

Nodes inside S have
distance at most 1.
→ they form a clique

How many nodes in S
are selected for the DS?



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 10/43

S

“Largert ID” Algorithm, Analysis II

1 11

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks  Si of diameter 1
(UBG: number of small disks depends on doubling dimension)
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“Largest ID” Algorithm: Analysis III

• How many nodes in S are chosen by nodes in a disk Si?

• x = # of nodes in S, y = # of nodes in Si:

• A node u∈S is only chosen by a node in Si if 
(all nodes in Si see each other).

• The probability for this is: 

• Therefore, the expected number of nodes in S chosen by nodes in 
Si is at most:

Because at most y nodes in Si can

choose nodes in S
and because of linearity of expectation.
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“Largest ID” Algorithm, Analysis IV

• From x�n and y�n, it follows that:

• Hence, in expectation the DS contains at most              nodes
per disk with diameter 1.

• An optimal algorithm needs to choose at least 1 node in the disk
with radius 1 around any node.

• This disk can be covered by a constant (9) number of disks of 
diameter 1.

• The algorithm chooses at most                  times more disks than an 
optimal one
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“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes an
-approximation (analysis is tight).

complete

sub-graph

complete
sub-graph

nodes

Optimal DS: size 2

“Largest ID” alg:

• bottom nodes choose 
top nodes with 
probability≈1/2

• 1 node every 2nd group

• nodes
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Iterative “Largest ID” Algorithm

• Assume that nodes know the distances to their neighbors:

all nodes are active;
for i := k to 1 do
∀ act. nodes: select act. node with largest ID in dist. � 1/2i;
selected nodes remain active

od;
DS = set of active nodes

• Set of active nodes is always a DS (computing CDS also possible)
• Number of rounds: k
• Approximation ratio n(1/2k)

• For k=O(loglog n), approximation ratio = O(1)
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Iterative “Largest ID” Algorithm, Remarks

• Possible to do everything in O(1) rounds
(messages get larger, local computations more complicated)

• If we slightly change the algorithm such that largest radius is 1/4:
– Sufficient to know IDs of all neighbors, distances to neighbors, and 

distances between adjacent neighbors
– Every node can then locally simulate relevant part of algorithm to find 

out whether or not to join DS

Doubling UBG: O(1) approximation in O(1) rounds
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

d

1

Bounded 
Independence

Unit Ball
Graph

In a doubling 
metric:

Number of
independent
neighbors
is bounded
(UDG: 5)
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Real Networks

• No links between far-away nodes

• Close nodes tend to be connected

• In particular: Densely covered area � many connections

Wireless Networks are not unit disk graphs, but:

Bounded Independence:
Bounded neighborhoods have bounded independent sets
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• Def.: A graph G has bounded independence if there is a function f(r)
such that every r-neighborhood in G contains at most f(r)
independent nodes.
– Note: f(r) does not depend on size of the graph!
– Polynomially Bounded Independence:  f(r) = poly(r), e.g. O(r3)

Bounded Independence

1) A node can have many neighbors
2) But not all of them can be

independent!
3) Can model obstacles, walls, ... 

• Definition includes:
- (Quasi) Unit Disk Graphs, Doubling Unit Ball Graphs
- Coverage Area Graphs, Bounded Disk Graphs, ...

f(1) = 5f(1) = 6
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Maximal Independent Set I

• Maximal Independent Set (MIS):
(non-extendable set of pair-wise non-adjacent nodes)

• An MIS is also a dominating set:
– assume that there is a node v which is not dominated
– v∉MIS, (u,v)∈E → u∉MIS

– add v to MIS
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Maximal Independent Set II

• Lemma:

On independence-bounded graphs: |MIS| ���� O(1)····|DSOPT|

• Proof:
1. Assign every MIS node to an adjacent node of DSOPT

2. u∈DSOPT has at most f(1) neighbors v∈MIS

3. At most f(1) MIS nodes assigned to every node of DSOPT

� |MIS| � f(1)·|DSOPT|

• Time to compute MIS on independence-bounded graphs:
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MIS (DS) � CDS

• MIS gives a dominating set.
• But it is not connected.

• Connect any two MIS nodes 
which can be connected by 
one additional node.

• Connect unconnected MIS 
nodes which can be conn. by 
two additional nodes.

• This gives a CDS!

• #2-hop connectors�f(2)·|MIS|
#3-hop connectors�2f(3)·|MIS|

• |CDS| = O(|MIS|)
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Models

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
No GPS

Quasi
UDG

Bounded 
Independence

Unit Ball
Graph

too realistic too simplistic

Message 
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model
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Unstructured Radio Network Model 

• Multi-Hop
• No collision detection

– Not even at the sender!

• No knowledge about (the number of) neighbors
• Asynchronous Wake-Up

– Nodes are not woken up by messages !

• Unit Disk Graph (UDG) to model wireless multi-hop network
– Two nodes can communicate iff Euclidean distance is at most 1

• Upper bound n for number of nodes in network is known
– This is necessary due to Ω(n / log n) lower bound

[Jurdzinski, Stachowiak, ISAAC 2002]
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• Can MDS and MIS be solved efficiently in such a harsh model?

Unstructured Radio Network Model

There is a MIS algorithm
with running time

O(log2n) with high probability. 
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Summary Dominating Set I

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
Distances

Bounded 
Independence

UBG
Distances

too realistic too simplistic

Message 
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model

UDG, no
Distances

Time:

Approximation:
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Summary  Dominating Set II

too pessimistic too optimistic

General
Graph

UDG
GPS

UDG
Distances

Bounded 
Independence

UBG
Distances

too realistic too simplistic

Message 
Passing
Models

Physical Signal
Propagation

Radio Network
Model

Unstructured Radio 
Network Model

UDG, no
Distances


