MOBILE COMPUTING

Roger Wattenhofer Winter 2005 / 2006

Chapter 1

Distributed Computing Group Mobile Computing Winter 2005 / 2006

Overview

Distribu

Computing

Group

- What is it?
- Who needs it?
- History
- Future
- Course overview
- Organization of exercises
- Literature
- Thanks to J. Schiller for slides

1/3

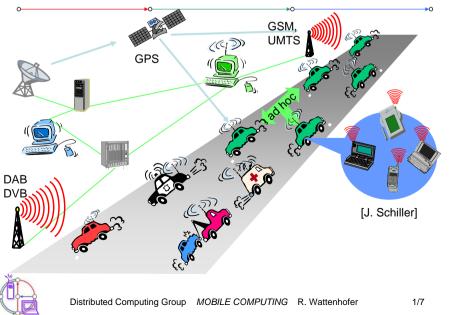
A computer in 2010?

- Advances in technology
 - More computing power in smaller devices
 - Flat, lightweight displays with low power consumption
 - New user interfaces due to small dimensions
 - More bandwidth (per second? per space?)
 - Multiple wireless techniques
- Technology in the background
 - Device location awareness: computers adapt to their environment
 - User location awareness: computers recognize the location of the user and react appropriately (call forwarding)
- "Computers" evolve
 - Small, cheap, portable, replaceable
 - Integration or disintegration?

What is Mobile Computing?

Aspects of mobility

x

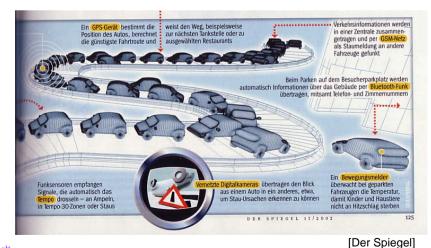

 \checkmark

- User mobility: users communicate "anytime, anywhere, with anyone" (example: read/write email on web browser)
- Device portability: devices can be connected anytime, anywhere to the network
- Wireless vs. mobile Examples x
 - × Stationary computer
 - \checkmark Notebook in a hotel
 - x Wireless LANs in historic buildings \checkmark
 - Personal Digital Assistant (PDA)
- The demand for mobile communication creates the need for integration of wireless networks and existing fixed networks
 - Local area networks: standardization of IEEE 802.11 or HIPERLAN
 - Wide area networks: GSM and ISDN
 - Internet: Mobile IP extension of the Internet protocol IP

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 1/5

Vehicles

Application Scenarios


- Vehicles .
- Nomadic user
- Smart mobile phone
- Invisible computing
- Wearable computing
- Intelligent house or office
- Meeting room/conference
- Taxi/Police/Fire squad fleet
- Service worker
- Lonely wolf
- Disaster relief and Disaster alarm
- Games
- Military / Security •

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

What is important?

Vehicles 2

Nomadic user

- Nomadic user has laptop/palmtop
- Connect to network infrequently
- Interim period operate in disconnected mode
- Access her or customer data
- Consistent database for all agents
- Print on local printer (or other service)
 - How do we find it?

Is it safe?

- Do we need wires?
- Does nomadic user need her own hardware?
 - Read/write email on web browser
 - Access data OK too

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Invisible/ubiquitous/pervasive and wearable computing

- Tiny embedded "computers"
- Everywhere
- Example: Microsoft's Doll
- I refer to my colleagues Friedemann Mattern and Bernt Schiele and their courses

[ABC, Schiele]

1/9

Smart mobile phone/device

- Converge with PDA?
- Voice calls, video calls (really?)
- Email or instant messaging
- Play games
- Up-to-date localized information
 - Мар
 - Pull: Find the next Pizzeria
 - Push: "Hey, we have great Pizza!"
- Stock/weather/sports info
- Ticketing
- Trade stock
- etc.
- Connecting Devices (Bluetooth)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/10

[Blackberry]

Object Tracking: RFID

- Book, pallet, packet, airline baggage, container, truck tracking
- Identification badges for building/car access control or animal identification
- Electronic toll collection
- Electronic cash in smart cards or credit cards
- Prisoner tracking
- Store checkout as cashier replacement

[J. Schiller]

Intelligent Office and Intelligent House

- Bluetooth replaces cables
- Plug and play, without the "plug"
- Again: Find the local printer
- House recognizes inhabitant
- House regulates temperature according to person in a room
- Typical application of sensor/actor network

[MS]

1/13

- Trade Shows
- Home without cables looks better
- LAN in historic buildings

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Community Mesh Networking

- Neighbors cooperate and forward each others packets; fewer gateways to the Internet needed.
- Neighbors can cooperatively deploy backup technology.
- Local information and community building:
 - "Who has a high pressure cleaner?"
- "Bill Gated Community"

Meeting Room or Conference

- Share data instantly
- Send a message to someone else in the room
- Secretly vote on controversial issue
- Find person with similar interests
- Broadcast last minute changes
- Ad-Hoc Network
- e.g. Shockfish SpotMe

1/14

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Taxi / Police / Fire squad / Service fleet

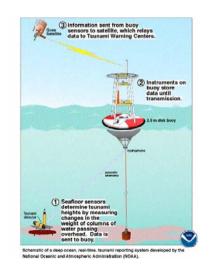
- Connect
- Control
- Communicate
- Service Worker
- Example: SBB service workers have PDA
 - Map help finding broken signal
 - PDA gives type of signal, so that service person can bring the right tools right away

Lonely wolf

- We really mean everywhere!
- · Cargo's and yachts
- Journalists
- Scientists
- Travelers
- Sometimes cheaper than infrastructure?
- Commercial flop

[Motorola]

1/17


1/19

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Disaster alarm

- With sensors you might be able to alarm early
- Example: Tsunami
- Example: Cooling room
- Or simpler: Weather station
- Satellite
- Ad-Hoc network

Disaster relief

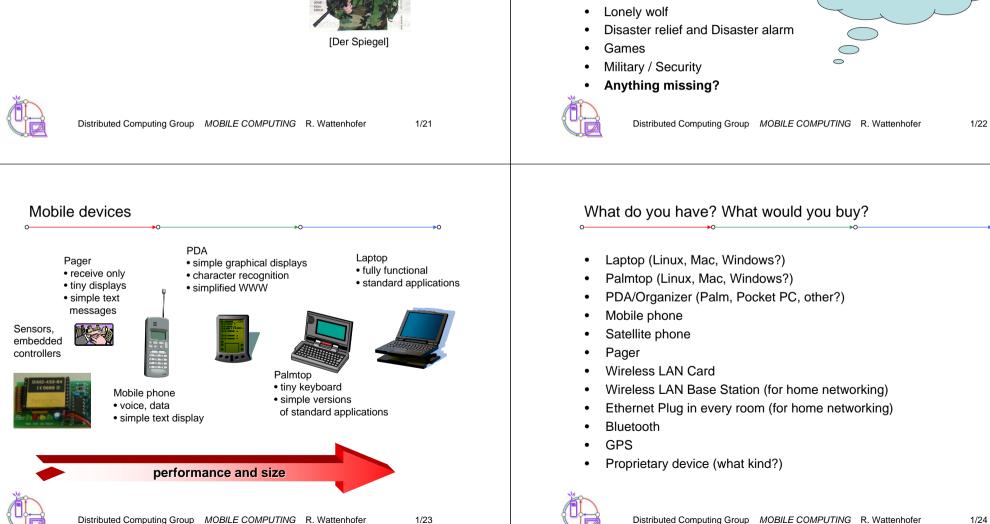
- After earthquake, tsunami, volcano, etc:
- You cannot rely on infrastructure but you need to orchestrate disaster relief
- Early transmission of patient data to hospital
- Satellite
- Ad-Hoc network

[Red Cross]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Games

- Nintendo Gameboy [Advance]: Industry standard mobile game station
- Connectable to other Gameboys
- Can be used as game pad for Nintendo Gamecube
- Cybiko [Extreme] is a competitor that has radio capabilities built in
- Second generation already
- Also email, chat, etc.


[Cybiko]

Military / Security

- · From a technology standpoint this is similar to disaster relief
- ٠ Sensoria says "US army is the best costumer"
- Not (important) in this course ٠

Application Scenarios: Discussion

Vehicles

Nomadic user

Smart mobile phone Invisible computing

Wearable computing

Service worker

Intelligent house or office Meeting room/conference

Taxi/Police/Fire squad fleet

What do you like?

Effects of device portability

- Energy consumption
 - there is no Moore's law for batteries or solar cells
 - limited computing power, low guality displays, small disks
 - Limited memory (no moving parts)
 - Radio transmission has a high energy consumption
 - CPU: power consumption ~ CV²f
 - · C: total capacitance, reduced by integration
 - V: supply voltage, can be reduced to a certain limit
 - f: clock frequency, can be reduced temporally
- Limited user interfaces
 - compromise between size of fingers and portability
 - integration of character/voice recognition, abstract symbols
- Loss of data
 - higher probability (e.g., defects, theft)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 1/25

History: Antiquity – 1890

- Many people in history used light for communication
 - Heliographs (sun on mirrors), flags ("semaphore"), ...
 - 150 BC: smoke signals for communication (Polybius, Greece)
 - 1794: Optical telegraph by Claude Chappe
- Electromagnetic waves
 - 1831: Michael Faraday (and Joseph Henry) demonstrate electromagnetic induction
 - 1864: James Maxwell (1831-79): Theory of electromagnetic fields, wave equations
 - 1886: Heinrich Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/27

Wireless networks in comparison to fixed networks

- Higher loss-rates due to interference
 - emissions of, e.g., engines, lightning
- · Restrictive regulations of frequencies
 - frequencies have to be coordinated, useful frequencies are almost all occupied
- Low transmission rates
 - local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM
- Higher delays, more jitter
 - connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems, tens of seconds with Bluetooth
- Lower security, simpler active attacking
 - radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones
- Always shared medium
 - secure access mechanisms important

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

History: 1890 – 1920

- 1895: Guglielmo Marconi (1874 1937)
 - first demonstration of wireless telegraphy (digital!)
 - long wave transmission, high transmission power necessary (> 200kW)
 - Nobel Prize in Physics 1909
- 1901: First transatlantic connection
- 1906 (Xmas): First radio broadcast
- 1906: Vacuum tube invented
 - By Lee DeForest and Robert von Lieben
- 1907: Commercial transatlantic connections
- huge base stations (30 100m high antennas)
- 1911: First mobile sender
- 1915: Wireless voice transmission NY SF
- 1920: First commercial radio station

- - - on board of a Zeppelin

History: 1920 – 1945

- 1920: Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver
 - Possible with vacuum tube
- 1926: First phone on a train
 - Hamburg Berlin
 - wires parallel to the railroad track
- 1926: First car radio
- 1928: First TV broadcast
 - John L. Baird (1888 1946)
 - Atlantic, color TV
 - WGY Schenectady
- 1933: Frequency modulation
 - Edwin H. Armstrong (1890 1954)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Boston Post

VILD SEE OVER RA

1/29

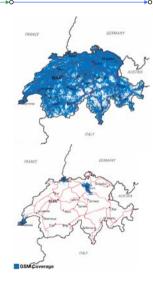
1/31

History: 1980 – 1991

- 1982: Start of GSM-specification (Groupe spéciale mobile)
 - goal: pan-European *digital* mobile phone system with *roaming*
- 1984: CT-1 standard for cordless telephones
- 1986: German C-Netz
 - analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
 - still in use today, services: FAX, modem, X.25, e-mail, 98% coverage
 - American AMPS: 1983 today
 - PTT NATEL C: 1986 1999
- 1991: DECT
 - Digital European Cordless Telephone. Today: "Enhanced"
 - 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 users/km², used in more than 40 countries

History: 1945 – 1980

- 1958: German A-Netz
 - Analog, 160MHz, connection setup only from mobile station, no handover, 80% coverage, 16kg, 15k Marks
 - 1971: 11000 customers
 - Compare with PTT (Swisscom) NATEL: 1978 – 1995, maximum capacity 4000, which was reached 1980


- 1972: German B-Netz
 - Analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
 - available also in A, NL and LUX, 1979 13000 customer in D
 - PTT NATEL B: 1984 1997, maximum capacity 9000
- 1979: NMT Nordic Mobile Telephone System
 - 450MHz (Scandinavia)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

History: 1991 – 1995

- 1992/3: Start of GSM "D-Netz"/"NATEL D"
 - 900MHz, 124 channels
 - automatic location, hand-over, cellular
 - roaming in Europe
 - now worldwide in more than 130 countries - services: data with 9.6kbit/s, FAX, voice, ...
- 1994/5: GSM with 1800MHz
 - smaller cells
 - supported by many countries
 - SMS
 - Multiband phones

1/30

History: 1995 – today

- 1996: HiperLAN
 - High Performance Radio Local Area Network
 - Products?
- 1997: Wireless LAN
 - IEEE 802.11
 - 2.4 2.5 GHz and infrared, 2Mbit/s
 - already many products (with proprietary extensions)
- 1998: Specification of GSM successors
 - GPRS is packet oriented
 - UMTS is European proposal for IMT-2000
- 1998: Iridium
 - 66 satellites (+6 spare)
 - 1.6GHz to the mobile phone

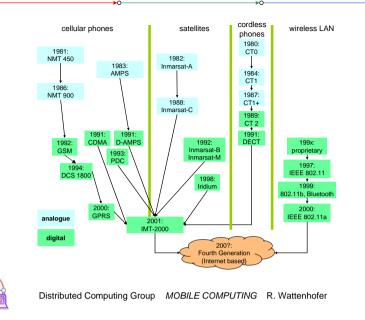
1/33

0

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

The future: ITU-R - Recommendations for IMT-2000

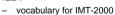
- M.687-2
 - IMT-2000 concepts and goals
- M.816-1
 - framework for services
- M.817
 - IMT-2000 network architectures
- M.818-1
 - satellites in IMT-2000
- M.819-2
 - IMT-2000 for developing countries
- M.1034-1
 - requirements for the radio interface(s)
- M.1035
 - framework for radio interface(s) and radio sub-system functions
- M.1036
 - spectrum considerations

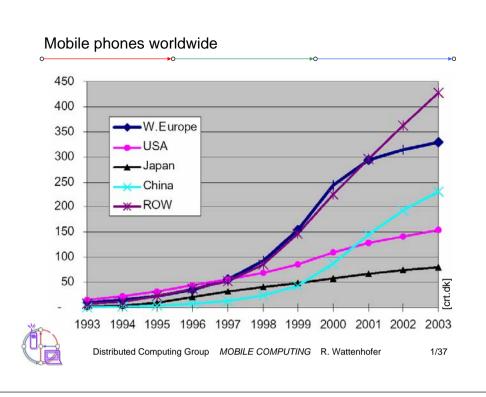

- M.1078
- M.1079
- M.1167
- M.1168
- framework for management
- M.1223
 - evaluation of security mechanisms
- M.1224
- M.1225
 - evaluation of transmission technologies

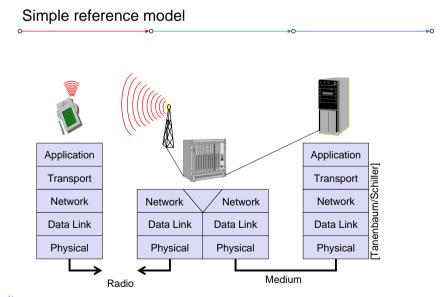
· etc.

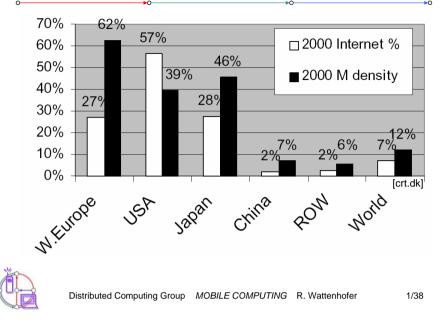
Wireless systems: overview of the development

The success story of "Mobile Computing"


- Mobile Phones
 - Switzerland February 2002: More mobile phones than fixnet phones
 - Worldwide: More mobile phones than Internet connections
 - SMS: "More net profit with SMS than with voice"
- Laptops
 - Switzerland: Market share of mobile machines growing


1/34


- security in IMT-2000
- speech/voiceband data performance
- framework for satellites

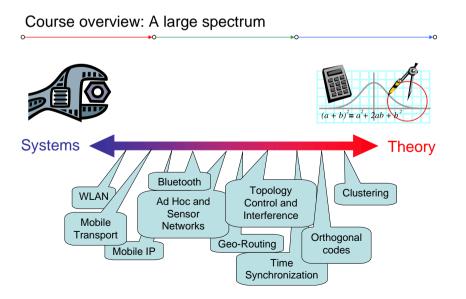


Internet vs. Mobile phones

Course overview: Networking Bottom – Up Approach

<u></u>

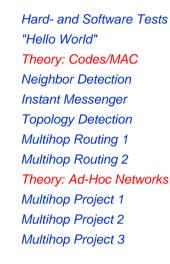
Application layer	 service location new applications, multimedia adaptive applications
Transport layer	 congestion and flow control quality of service addressing, routing,
Network layer	 device location hand-over authentication
Data link layer	 media access multiplexing media access control
Physical layer	 encryption modulation interference attenuation frequency



Course Overview: Acronyms

HERD LACTOR DS TOTAL TOTAL TOTAL TOTAL DS TOTAL

Ö


Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Ö

Course overview: Lectures and Exercises

Introduction Physical and Link Layer WLAN Media Access Control Mobile IP & TCP Ad Hoc and Sensor Networks Geometric Routing Clustering Topology Control & Interference Data Gathering Time Synchronization Localization / Positioning

1/41

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

1/42

Course specialties

- Maximum possible spectrum of systems and theory
- New area, more open than closed questions
- · Lecture and exercises are hard to synchronize
- New this year: Focus on ad hoc and sensor networks
- dcg.ethz.ch \rightarrow courses

Literature

- Jochen Schiller Mobile Communications / Mobilkommunikation
- Charles E. Perkins Ad-hoc networking
- Andrew Tanenbaum Computer Networks, plus other books
- Ivan Stojmeniovic Handbook of Wireless Networks and Mobile Computing
- C. Siva Murthy and B. S. Manoj Ad Hoc Wireless Networks
- Selected chapters from upcoming book on Ad Hoc and Sensor Networks edited by Dorothea Wagner and Roger Wattenhofer
- Plus tons of other books/articles on specialized topics
- Papers, papers, papers, ...

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Famous last words

"Mobile wireless computers are like mobile pipeless bathrooms – portapotties. They will be common on vehicles, and at construction sites, and rock concerts. My advice is to wire up your home and stay there."

Bob Metcalfe, 1995 (Ethernet inventor)

1/45

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer