ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

WS 2005-2006 Roger Wattenhofer, Nicolas Burri, Pascal von Rickenbach,
Yves Weber, and Andreas Wetzel

Mobile Computing
Exercise 5

Assigned: December 05, 2005
Due: December 19, 2005

1 Dynamic Source Routing Continued

In the last exercise we introduced a variant of Dynamic Source Routing (DSR). You have already
implemented one major part of this algorithm, that is flooding. In this exercise you are going to
complete the implementation of the algorithm.

As you remember, this is a completely demand-driven routing algorithm. Messages are only
transmitted as necessary: There is no periodic message exchange. A source wishing to send a
(user) message, first checks whether a route to the destination is already stored in its route cache.
If so, the packet is equipped with the route and transmitted. The destination receiving the message
will reply with an acknowledge message, reverting the route from the received message. If this
message arrives back at the original sender, the latter can report successful transmission of the
initial message. If however there is no cached route or if the message is not acknowledged within a
certain timeout (for instance due to moving network nodes), the source will initiate route discovery.
We suggest to first broadcast a route request message with TTL 1 in order to detect a neighboring
destination without flooding the network. In case of failure, again after a certain timeout, retry
by sending route request messages with TTL values 2, 4, and 8, as long as necessary. If still no
route has been discovered, finally set TTL to 0, which will lead to flooding of the whole network.
If again there is no positive answer, we give up and report an error message.

As in the last exercise we define different message types: source route message (SRMSG), source
route acknowledgement (SRACK), route request (RREQ, listed for the sake of completeness),
and route reply (RREP). The following table defines the packet format for these messages. For
simplicity, we use the same format for every message type.

| Message Type | Message Format (field size in bytes) \
RREQ
RREP type (1) | ID (2) | sender (2) | receiver (2) | ttl (1) | route index (1) |
SRMSG route length (1) | route (variable) | data length (2) | data (variable)
SRACK

The type field contains the message type value (see below). The (message and flood) IDs are
necessary to match corresponding messages and acknowledgements and to control flooding: Only
a route request containing a (sender, flood ID) pair seen for the first time should be rebroadcasted
or answered to with an RREQ message, respectively. The IDs are unsigned 16 bit numbers which
should be generated increasingly and wrap around (start again from 0) when reaching Oxffff.!
The sender and receiver fields contain the addresses of the source and the destination of the
complete route. The route index field holds a pointer to the next hop in the route. The route

n order to cope with this wrap-around (and also relaunched applications—which therefore restart to increment
their IDs at 0), a perfect implementation should contain some kind of “ID ageing”, having “old” IDs lose their
validity. In a preliminary version this problem can however be neglected.

length describes the length of the route. The complete route (including source and destination)
consists of a sequence of 2 byte-addresses, starting with the source. Fields that are not used for a
specific message type should be filled with zeroes.

The following table defines the message type values and summarizes the ways a routing node

must react upon receipt of a message of according type. Again, in some cases additional local
action will be useful, if not necessary.

’ Message Type \ Type Value \ Reaction upon Receipt ‘

RREQ 0x11 if the destination is reached, reply with an RREP;
otherwise: if TTL > 1, decrement TTL, append my address
to the route, and rebroadcast; if TTL = 1, do not rebroadcast;
if TTL = 0, rebroadcast leaving TTL unchanged
(flood complete network)

RREP 0x12 if the destination is not reached yet, forward

SRMSG 0x21 if the destination is reached, reply with an SRACK;
otherwise forward the message to the next node in the route

SRACK 0x22 if the destination is not reached yet, forward

A final hint: Choose the timeouts according to the maximum number of hops in a roundtrip

(message — acknowledgement). Find a reasonable timeout for the “final” route discovery try
(TTL = 0).

