
SS 2004 Roger Wattenhofer, Nicolas Burri, Fabian Kuhn, Pascal von Rickenbach, Aaron Zollinger

Mobile Computing

Exercise 3, Sample Solution

1 Walsh Codes

1.1 Orthogonality

We use induction over the length of the code to prove that the the code words of a Walsh code are
pairwise orthogonal. We denote code words of a Walsh code of length 2k by c

(k)
i for 0 ≤ i ≤ k− 1.

Therefore, we have:

c
(0)
0 = (+1)

c
(1)
0 = (+1, +1) c

(1)
1 = (+1,−1)

c
(2)
0 = (+1, +1, +1, +1) c

(2)
1 = (+1, +1,−1,−1) c

(2)
2 = (+1,−1, +1,−1) c

(2)
3 = (+1,−1,−1, +1)

. . .

For the basis of the induction, we can easily verify that the three codes above are orthogonal. In
the induction step, we have to show that the code words of length 2k+1 are pairwise orthogonal
given that the code words of length 2k are pairwise orthogonal. If we write down the code words
of length 2k+1 in dependence on the code words of length 2k, we get:

c
(k+1)
2i := c

(k)
i |c(k)

i , c
(k+1)
2i+1 := c

(k)
i |c(k)

i for 0 ≤ i ≤ k − 1

where c|d denotes the concatenation of two code words and c is the inverse of code word c,
i.e. c := −c. Among the code words of length 2k+1 there are four possible kind of pairs (i �= j).

1. c
(k)
i |c(k)

i and c
(k)
i |c(k)

i : For the inner product, we have

c
(k)
i |c(k)

i · c(k)
i |c(k)

i = c
(k)
i · c(k)

i + c
(k)
i · c(k)

i = c
(k)
i · c(k)

i + c
(k)
i · (−c

(k)
i) = 0.

2. c
(k)
i |c(k)

i and c
(k)
j |c(k)

j : By the induction hypothesis, we know that c
(k)
i · c(k)

j = 0.

3. c
(k)
i |c(k)

i and c
(k)
j |c(k)

j : We have c
(k)
i · c(k)

j = −c
(k)
i · c(k)

j = 0 and therefore this case follows
from the induction hypothesis, as well.

4. For similar arguments as in cases 2 and 3, case 4 follows from the induction hypothesis.

�

1.2 Balance of the Code Words

We use the orthogonality of the code words to get a very simple proof for this exercise. From the
definition of the Walsh codes, it is clear that the code word with all ones is always a code word
((+1, +1, . . . ,+1) ∈ C). Since this code word has to be orthogonal to all other code words of C,
the other code words have to be balanced, i.e. they need to have the same number of +1 and -1
among their components. �

WS 2005-2006 Roger Wattenhofer, Nicolas Burri, Pascal von Rickenbach, Yves Weber, and Andreas Wetzel

4

2 Random White Noise and Orthogonal Codes

2.1 Distribution of X

We have to compute the distribution of X = ±m + s · N where s ∈ {−1, +1}m and

N =
k∑

i=1

Ni, Ni =
(N (0, σ2),N (0, σ2), . . . ,N (0, σ2)

)
.

We denote the random part of X by Y := s · N and calculate the distribution of Y . We have

Y =
k∑

i=1

s · Ni =
k∑

i=1

m∑
j=1

±1 · N (0, σ2) =
k∑

i=1

m∑
j=1

N (0, σ2) =
k∑

i=1

N (0,mσ2) = N (0, kmσ2).

Note that +N (0, σ2) = −N (0, σ2) since the density function of the normal distribution with
expectation value 0 is symmetric with respect to the y-axis. We also use the fact that the sum of
two independent Gaussian random variables is a Gaussian random variable as well (cf. the hint
on the exercise sheet).

For the distribution of X, we therefore get

X ∼
{
N (m, kmσ2) if S sends a 1
N (−m, kmσ2) if S sends a 0.

2.2

To decode a signal, we check if the value of X is positive (decode as a 1) or negative (decode as a
0). For symmetry reasons, we have that

Pr(X decoded correctly) = Pr(X > 0|S sends a 1) = 1 − Φ
(

0 − m√
kmσ2

)
= Φ

(√
m

k

)
.

We get that Φ(x) ≥ 0.99 for x ≥ 2.326 (e.g. by using a table for Φ(·)). We therefore have to choose
k such that

√
m
k ≥ 2.326 which yields k ≤ 0.185m. For m = 128, we then have to choose k ≤ 23

such that at least 99% of the received signals are decoded correctly.

3 Slotted Aloha

We define the function P : R
2 → R as

P (p, n) := Pr(success) = n · p(1 − p)n−1.

For a fixed p, P (p, n) is monotone increasing for n ≤ −1/ ln(1 − p) and monotone decreasing for
n ≥ −1/ ln(1 − p) and therefore P (p, n) is minimized either at n = A or at n = B for n ∈ [A,B].
Therefore, we have to find

popt := max
p

(min {P (p, A), P (p, B)}) .

For a fixed n, P (p, n) is monotone increasing for p ≤ 1/n and monotone decreasing for p ≥ 1/n
(for p ∈ [0, 1]). Furthermore, P (1/A, A) ≥ P (1/A, B) and P (1/B,B) ≥ P (1/B,A) for B ≥ A + 1
and therefore the intersection between P (p, A) and P (p, B) is between the maxima of P (p, A) and
P (p, B), respectively. Thus popt is found where P (popt, A) = P (popt, B).

Apopt(1 − popt)A−1 = Bpopt(1 − popt)B−1

A

B
= (1 − popt)B−1−(A−1) = (1 − popt)B−A

popt = 1 − B−A

√
A

B
.

For A = 100 and B = 200, we get

popt = 0.006908 =
1

144.8
.

2

