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Overview

• Motivation / Introduction
• Preliminary concepts
• Min-Plus linear system theory
• The composition theorem

• Adversarial queuing theory
• Instability of FIFO
• Stability of LIS

• Sections 1.2, 1.3, 1.4.1
• Section 3.1
• Section 1.4.2

in Book “Network Calculus” by 
Le Boudec and Thiran 
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What is Network Calculus/Adversarial Queuing Theory?

• Problem:
– Queuing theory (Markov/Jackson assumptions) too optimistic.
– Online theory too pessimistic.

• Worst-case analysis (with bounded adversary) of queuing / flow 
systems arising in communication networks

• Network Calculus
– Algebra developed by networking (“EE”) researchers

• Adversarial Queuing Theory
– Worst-case analysis developed by algorithms (“CS”) researchers
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An example

• assume R(t) = sum of arrived traffic in [0, t] is known
• required buffer for a bit rate c is

sups ≤ t {R(t) – R(s) – c·(t-s)}

CBR trunk

bit rate c

R(t)
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• Similarly to queuing thoery, Internet integrated services use the
concepts of arrival curve and service curves

Arrival and Service Curves
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• Arrival curve α: R(t) -R(s) ≤ α(t-s)

Examples:
• leaky bucket α(u) = ru+b

• reasonable arrival curve in the Internet
α(u) = min (pu + M, ru + b)

time

bits

b

M

slope r

slope p

Arrival Curves
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• Theorem (without proof):

α can be replaced by a sub-additive function

• sub-additive means: α(s+t) ≤ α(s) + α(t)

• concave ⇒ subadditive

Arrival Curves can be assumed sub-additive
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Service Curve

• System S offers a service curve β to a flow iff for all t there exists
some s such that

ts

R*(t)

R(s)

R

R*
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Proof: take s = beginning of busy period. Then,

R*(t) – R*(s) = c·(t-s)
R*(t) – R(s)   = c·(t-s)

buffer

s           t

Theorem: The constant rate server has service curve β(t)=ct
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seconds

≤ T

R
R*

0     T

δT (t)

Function δT

t

The guaranteed-delay node has service curve δT
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• rate-latency service curve

T

bits

R

seconds

A reasonable model for an Internet router
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Tight Bounds on delay and backlog

If flow has arrival curve α and node offers service curve β then
• backlog ≤ sup (α(s) – β(s))
• delay ≤ h(α, β)

α

β

h(α, β)
backlog
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For reasonable arrival and service curves

• delay bound:b/R + T
• backlog bound: b + rT

T

h(α, β)

x

b

r

R
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• Standard algebra: R, +, ×
a × (b + c) = (a × b) + (a × c)

• Min-Plus algebra: R, min, +
a + (b ∧ c) = (a + b) ∧ (a + c)

Another linear system theory: Min-Plus
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Min-plus convolution

• Standard convolution:

• Min-plus convolution
f ⊗ g (t) = infu { f(t-u) + g(u) }

∫ −=∗ duugutftgf )()())((

t

f(t)
g(t)

(f ⊗ g)(t)
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r1
r2

s1
s2

u1

⊗ =

t1

Examples of Min-Plus convolution

• f ⊗ δT (t) = f (t-T)

• convex piecewise linear curves, put segments end to end with
increasing slope

s1

u1

r1

u1 + t1

r2
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• We can express arrival and service curves with min-plus

• Arrival Curve property means

R ≤ R ⊗ α

• Service Curve guarantee means

R* ≥ R ⊗ β

Arrival and Service Curves vs. Min-Plus
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The composition theorem

• Theorem: the concatenation of two network elements offering service 
curves βi and β2 respectively, offers the service curve β1 ⊗ β2

β1 ⊗ β2

β2β1
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R1 R2

T2

⊗ =

T1

Example: Tandem of Routers

R1

T2 T1+T2
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Pay Bursts Only Once

β2

D1 D2

α β1

D       

α β1⊗ β2

D ≤ b /R + T1 + T2

end to end delay bound is less

D ≤ b /R + T1 + T2

end to end delay bound is less

D1 +D2 ≤ (2b + RT1)/ R + T1 + T2D1 +D2 ≤ (2b + RT1)/ R + T1 + T2
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Adversarial Queuing Theory

• We will revise several models of connectionless packet networks.

• We have a bounded adversary which defines the network traffic.
– Like network calculus

• Our objective is to study stability under these adversaries.
– If a network is stable, we study latency.

• [Thanks to Antonio Fernández for many of the following slides.]
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Network Model

• The general network model assumed is as follows
– A network is a directed graph.
– Packets arrive continuously into the nodes of the network.
– Link queues are not bounded.
– A packet has to be routed from its source to its destination.
– At each link packets must be scheduled: if there are several candidates 

to cross, one must be chosen by the scheduler.

• To make the analyses simpler initially, we assume
– All packets have the same unit length.
– All links have the same bandwidth.
– This allows to consider a synchronous system, that is, the network 

evolves in steps. In each step each link can be crossed by at most one 
packet.
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Example

• We are given two packets, each needs to cross three links.
• There is congestion on the link B D, the execution needs 4 steps. 
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Adversarial Queuing Theory Model

• [Borodin, Kleinberg, Raghavan, Sudan, Williamson, STOC96]
• [Andrews, Awerbuch, Fernandez, Kleinberg, Leighton, Liu, FOCS96]

• There is an adversary that chooses the arrival times and the routes of 
all the packets

• The adversary is bounded by parameters (r, b), where b ≥ 1 is an 
integer and r · 1, such that, for any link e, for any s ≥ 1, at most rs + 
b packets injected in any s-step interval must cross edge e.

• We have a scheduling problem.
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Stability

• A scheduling policy P is stable at rate (r, b) in a network G if there is 
a bound C(G, r, b) such that no (r, b)-adversary can force more than 
C(G, r, b) simultaneous packets in the network.

• A scheduling policy P is universally stable if it is stable at any rate r 
< 1 in any network.

• A network G is universally stable if it is stable at any rate r < 1 with 
any greedy scheduling policy.
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Some Results

• Any acyclic directed graph (DAG) is universally stable, even for r = 1 
[BKRSW01].

• The ring is universally stable
– There are never more than O(bn/(1 − r)) packets in any queue.
– A packet never spends more than O(bn/(1 − r)2) steps in the system.
– Any added link makes the ring unstable with some greedy policy (for 

instance with Nearest-to-Go, NTG).

• FIFO is unstable
for r > 0.85 with 
these networks:
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Proof of FIFO Instability

• Initially we have s packets in a queue with a given configuration.
– Think of these packets to be inserted in an initial burst

• Then the algorithm proceeds in phases
– Each phase is a bit longer than the phase before.
– After each phase, we have the initial configuration, however, with more 

packets in a specific queue than in the previous phase.
– By chaining infinite phases, any number of packets in the system can 

be reached.

• We show here the behavior of the adversary and the system in  one 
phase.
– Each phase has three rounds.
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Initial Situation
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Injecting packets in the first round (s steps)
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Situation after the first round
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Injecting packets in the second round (rs steps)
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Situation after the second round
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Injecting packets in the third round (r2s steps)
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Final situation (end of phase, after the third round)
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More Results

• Several simple greedy policies are universally stable
– Longest-in-System (LIS): Gives priority to oldest packet (in the system).
– Shortest-in System (SIS): Gives priority to newest packet (in the system).
– Farthest-to-Go (FTG): Gives priority to the packet farthest from destination.
– Nearest-to-Source (NTS): Gives priority to the packet closest to its origin.

• All mentioned greedy policies can suffer delays that are exponential 
in d, where d is the maximum routing distance.
– Moreover, any deterministic policy that does not use information about the 

packet routes to schedule can suffer delays exponential in √d [Andrews Z 
04].

– There are deterministic distributed algorithms that guarantee polynomial 
delays and queue lengths [Andrews FGZ 05].
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Universal stability of LIS (Longest-in-System)

• Network G, adversary in bucket AQT with parameters 
r = 1−ε < 1 and b ≥ 1.

• Def.: Class L is the set of packets injected in step L.
• Def.: A class L is active at the end of step t if there are some 

packets of class L’ · L in the system at the end of step t.

• Let us consider a packet p injected in step T0. Packet p must cross d 
links, it crosses the ith link in step Ti.

• Def.: c(t) is the number of active classes at the end of step t. 
Let c = maxT0 · t < Td

c(t), that is the maximum number of active 
classes during the lifetime of packet p.
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Lemma: 

• p arrives to the queue of its ith link in Ti−1.
• Only the packets in c − (Ti−1−T0) active classes can block p.
• There are no more than (1-ε)(c+T0−Ti−1) + b packets in these 

classes (p included), that is at most (1-ε)( c+T0−Ti−1) + b−1 packets 
can block p. Then, 
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Lemma: Bounding both classes and steps 

• Let t be the first time when either the system features more than c 
classes, or there is a packet in the system for more than c steps, for 
some c. 

• Clearly, “classes” cannot be violated first, because there can only be 
c+1 classes if there is at least one packet in the system for at least 
c+1 steps. 

• So we know that “steps” must be violated first. Let p be a first packet 
which is in the system for at least c+1 steps. (Note that during this 
time, we had at most c classes.)

• Let c = b/((1-ε)εd). Then the packet p cannot be in the system for 
more than c steps, because using our previous lemma (and b≥1 
and ε>0), the number of steps of p is bounded:
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Theorem: LIS is universally stable

• Each packet leaves the system after c = b/((1-ε)εd) steps.

• In addition one can show that there are at most b+b/εd packets in 
each queue at all times.

• That’s all folks!


