
Chapter 3
SPECIFICATION

MODELS
Discrete Event Systems

Winter 2005 / 2006

Distributed
Computing

Group

Discrete Event Systems – R. Wattenhofer 3/2

Overview

• StateCharts
– Hierarchy
– Concurrency
– Events and Actions
– Simulation Semantics
– Non-Determinism and Conflicts

• Petri Nets
– Notation
– Concurrency
– Petri Net Languages
– Behavioral Properties
– Analysis

Discrete Event Systems – R. Wattenhofer 3/3

StateCharts

• Deficits of finite automata for modeling:
– Only one sequential process, no concurrency
– No hierarchical structuring capabilities

• Extension StateCharts:
– Model of David Harel [1987]
– StateCharts introduces hierarchy, concurrency and computation
– Model is used in many tools for the specification, analysis and

simulation of discrete event systems, e.g. Matlab-Stateflow, UML,
Rhapsody, Magnum

– Complicated semantics: We will only cover some basic mechanisms.

Discrete Event Systems – R. Wattenhofer 3/4

Introducing Hierarchy

FSM is in exactly one of
the sub states of S if S is
active
(either in A xor B xor …)

A B C D E

F

f
g h i j

k
kkk

k

m

A B C D E

F

f
g h i j

m

S

k

super-state

sub states

Discrete Event Systems – R. Wattenhofer 3/5

Definitions

A super-state S is called OR-super-state, if exactly one of its sub states
is active when S is active.

A B C D E

F

f

g h i j

m

S

k

A B C D E

F

f

g h i j

m

S

k

equivalent

• Current states of FSMs are called active states
• States which are not composed of other states are called basic
• States containing other states are called super states
• For each basic state s, the super-states containing s are called

ancestor states

Discrete Event Systems – R. Wattenhofer 3/6

Introducing Concurrency

A super-state S is called AND-super-state, if all (immediate) sub-states
are active when S is active.

OFF

Line monitoring

answering machine

ring

ON

hang-up
(caller)

Key monitoring (excl. ON / OFF)

Key
wait

Key
Process

done

key pressed
Line
wait

Line
Process

key-OFF key-ON

Discrete Event Systems – R. Wattenhofer 3/7

Entering and leaving AND-Super-States

New: on / off events handled by key process.

OFF

Line monitoring

answering machine

ring

ON

hang-up
(caller)

Key monitoring (incl. ON / OFF)

Key
wait

Key
Process

done

key pressed
Line
wait

Line
Process

ke
y-

O
FF

ke
y-

O
N

Discrete Event Systems – R. Wattenhofer 3/8

Representation of Computations

• Besides states, arbitrary many other variables can be
defined. This way, not all states of the system are modeled
explicitly.

• The variables can be changed as a result of a state
transaction (“action”). State transitions can be dependent on
these variables (“conditions”).

variables
action

condition

Discrete Event Systems – R. Wattenhofer 3/9

General form of edge labels

Event

Can be either internally or externally generated.

Condition
Refer to values of variables that keep their value until they are
reassigned.

State transition

Transition is enabled if event exists and condition holds

Reaction / action

Can be assignment to variables and/or creation of events

BA
event [condition] / reaction

Discrete Event Systems – R. Wattenhofer 3/10

Events and Actions

• An event can be composed of several events:
(e1 and e2) event that corresponds to the simultaneous

occurrence of e1 and e2.
(e1 or e2) event that corresponds to the occurrence of either

e1 or e2 or both.
(not e) event that corresponds to the absence of event e.

• Similarly for conditions
• A reaction can also be composed:

(a1; a2) actions a1 und a2 are executed sequentially.

• All events, states and actions are globally visible.

BA
event [condition] / reaction

Discrete Event Systems – R. Wattenhofer 3/11

Example

e:
a1:
a2:

c:

e:
a1:
a2:
c:

true
false

true
false

e / a1 [c] / a2

time

Discrete Event Systems – R. Wattenhofer 3/12

The StateCharts Simulation Phases

• The transitions are evaluated in simulation steps.

• Each step is divided in three phases:

1. Effect of changes on events and conditions is evaluated

2. The set of transitions to be made in the current step and

right hand sides of assignments are computed

3. Transitions become effective, variables obtain new values.

BA
event [condition] / reaction

Discrete Event Systems – R. Wattenhofer 3/13

Example – Swap

• In phase 2, variables a and b are assigned to temporary
variables

• In phase 3, these are assigned to b and a, respectively
• As a result, variables a and b are swapped

swap

A

e / a:=b

B

e / b:=a

/a:=1; b:=0

Discrete Event Systems – R. Wattenhofer 3/14

More on semantics of StateCharts

• Unfortunately, there are several time-semantics of StateCharts in
use. This is one possibility:
– A step is executed in arbitrarily small time.
– Internal (generated) events exist only within the next step.
– External events can only be detected after a stable state has

been reached.

external events

steptransport of internal events

stable
state

stable
state t

state
transitions

Discrete Event Systems – R. Wattenhofer 3/15

Example, State Diagram

A1 B1

B2A2

a/a’ c/c’

A1 B1

B2A2

a b/a

Corresponding state diagrams:

A1,B1

A2,B1 A1,B2

A2,B2

ac/a’ ac/c’

ac/a’c’

c/c’ a/a’

A1,B1

A2,B1 A1,B2

A2,B2

ba/aab

ab/a

b/a a

unstable state

Discrete Event Systems – R. Wattenhofer 3/16

Example – Non-Determinism

A,B C,D
E,H

F,G

a

e

e
State Diagram

Which one
is chosen?

A C
a

B D
a

F H

E G
e

e

Discrete Event Systems – R. Wattenhofer 3/17

bc

Conflicts – OR or XOR?

A

B

b

C

c What if the events b and c
occur simultaneously?

A

B

bc

C

bc

XOR

A

B

b

C

bc

XOR’
(with priority to b if

simultaneous events)

A

B C

bc

OR

bc

B C

Discrete Event Systems – R. Wattenhofer 3/18

Real Time Exercise – Reservoir

H1

L1

H2

L2

F1 F2

G1 G2

m

• Initial Condition
– Empty pools, faucets closed

• Sensors & regulators
– Fi, Gi = 1 if closed
– Hi, Li = 1 if water is above sensor

• Operation
After pressing m, the pools are
filled up to level Hi. When pool i has
reached Hi, close Fi and open Gi

until the water level reaches Li.
Restarting is only possible after both
pools have been emptied.

• Q: Draw a StateChart that models
this system.

reservoir

Pool 1 Pool 2

Discrete Event Systems – R. Wattenhofer 3/19

Real Time Solution – Reservoir

A

B1 B2

m \ F1=1;F2=1

C1

H1 \ F1=0;G1=1 H2 \ F2=0;G2=1

C2

D1

L1 \ G1=0

D2

L2 \ G2=0

ε [D1 && D2]

H1
L1

H2
L2

F1 F2

G1 G2

m

reservoir

Pool 1 Pool 2

Discrete Event Systems – R. Wattenhofer 3/20

Usability

• Intuitive language to describe event driven automata
• New: Concurrency incl. synchronization
• Used in different flavors in industry and even for kids:

Discrete Event Systems – R. Wattenhofer 3/21

Summary

• Advantages of hierarchical state machines:
– Simple transformation into efficient hardware and software

implementations.
– Efficient simulation.
– Basis for formal verification (usually via symbolic model checking),

if in reactions only events are generated.

• Disadvantages:
– Intricate for large systems, limited re-usability of models.
– No formal representation of operations on data.
– Large part of the system state is hidden in variables. This limits

possibilities for efficient implementation and formal verification.

Discrete Event Systems – R. Wattenhofer 3/22

Where are we?

• StateCharts
– Hierarchy
– Concurrency
– Events and Actions
– Simulation Semantics
– Non-Determinism and Conflicts

• Petri Nets
– Notation
– Concurrency
– Petri Net Languages
– Behavioral Properties
– Analysis

Discrete Event Systems – R. Wattenhofer 3/23

Petri nets – Motivation

• In contrast to hierarchical state machines, state transitions in Petri
nets are asynchronous. The ordering of transitions is partly
uncoordinated; it is specified by a partial order.

• Therefore, Petri nets can be used to model concurrent distributed
systems.

• Many flavors of Petri nets are in use, e.g.
– Activity charts (UML)
– Data flow graphs and marked graphs

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation
mit Automaten”

Discrete Event Systems – R. Wattenhofer 3/24

• A Petri net is a bipartite, directed graph defined by a tuple
(S, T, F, M0), where

– S is a set of places pi

– T is a set of transitions ti

– F is a set of edges (flow relations) fi
– M0 : S → N; the initial marking

Petri net – Definition

p1 p3

p5 p4

p2

t1 t2

Discrete Event Systems – R. Wattenhofer 3/25

Token marking

• Each place pi is marked with a certain
number of tokens

• The initial distribution of the tokens is given
by M0

• M(s) denotes the marking of a place s

• The distribution of tokens on places defines
the state of a Petri net

• The dynamics of a Petri net is defined by a
token game

1

2

t1

Discrete Event Systems – R. Wattenhofer 3/26

Token game of Petri nets

• A marking M activates a transition t ∈ T if each place pi connected
through an edge fi to t contains at least one token.

• If a transition t is activated by M, a state transition to M’ fires
(happens) eventually.

• Only one transition is fired at any time.
• When a transition fires, it

– Consumes a token from each of its input places
– Adds a token to each of its output places

3 4

1 2

t1

3 4

1 2

t1t1 fires

Discrete Event Systems – R. Wattenhofer 3/27

Non-Deterministic Evolution

• Any of the activated transactions might fire

The evolution of Petri nets is not deterministic.

3 4

1 2

t1t2

3 4

1 2

t1t2

3 4

1 2

t1t2

t2 t1

Discrete Event Systems – R. Wattenhofer 3/28

Syntax Exercise

Q: Is it a valid Petri Net? Which transitions are activated? Marking after firing?

A B C D E

F G H I

Discrete Event Systems – R. Wattenhofer 3/29

Syntax Exercise (2)

Q: Is it a valid Petri Net? Which transitions are activated? Marking after firing?

J K

L

t2t1

Discrete Event Systems – R. Wattenhofer 3/30

Weighted Edges

• Associating weights to edges:
– Each edge fi has an associated weight W(fi) (defaults to 1)
– A transition t is active if each place pi connected through an

edge fi to t contains at least W(f) tokens.

H2 O2

Reaction
2 H2 + O2 → 2H2O

2

2

H2O

H2 O2

2

2

H2O

Discrete Event Systems – R. Wattenhofer 3/31

Finite Capacity Petri Net

• Each place pi can hold maximally K(pi) tokens
• A transition t is only active if all output places pi of t cannot exceed

K(pi) after firing t.

• Pure finite capacity Petri Nets can be transformed into equivalent
infinite capacity Petri Nets (without capacity restrictions).

• Equivalence: Both nets have the same set of all possible firing
sequences

1

2 K(2)=1

t1

t2

1

2 K(2)=1

t1

t2

1

2 K(2)=1

t1

t2

t1

t2

Discrete Event Systems – R. Wattenhofer 3/32

Removing Capacity Constraints

• For each place p with K(p) > 1, add a complementary place p’ with
initial marking M0(p’) = K(p) – M0(p).

• For each outgoing edge e = (p, t), add an edge e’ from t to p’ with
weight W(e).

• For each incoming edge e = (t, p), add an edge e’ from p’ to t with
weight W(e).

1

2 K(2)=3

t1

t2

1

2

t1

t2

2’

2 2

2

rm capacity
constraint

Note: Only works for
pure Petri nets, i.e.
without self loops.

1

3

K(p)=5

Discrete Event Systems – R. Wattenhofer 3/33

1

Resolving Self-Loops

• The algorithm to remove capacity constraints works if the Petri net
has no self loops (is pure).

• No Problem! Rewrite the Petri net without self loops:

1t1

1’

t1 t2

dummy
transition

dummy
place

Discrete Event Systems – R. Wattenhofer 3/34

Your turn!

• Remove the capacity constraint from place 3

2

3
K(3)=3

t2

t3

1

4

t4

t1

t5
2

2

3

t2

t3

1

4

t4

t1

t5
2

3’

2

Discrete Event Systems – R. Wattenhofer 3/35

Modeling FSM

• FSM can be represented by a subclass of Petri nets, where each
transition has exactly one incoming edge and one outgoing edge.

• Such Petri nets are called state machines
• Coke vending machine revisited

1

2

4

5

D

Q

Q

3

D

4

D|Q

Q

D
6

D

Q D

4

Q

D|Q

Soda

10 ¢

40 ¢

30 ¢20 ¢

≥ 45 ¢

35 ¢

25 ¢

Discrete Event Systems – R. Wattenhofer 3/36

Concurrent Activities

• State machines allow representation of decision, but no
synchronization.

• General Petri nets support concurrency with intuit notation:

decision / conflict fork join / synchronization

Discrete Event Systems – R. Wattenhofer 3/37

Petri Net Languages

• Transitions labeled with (not necessarily distinct) symbols
• Sequence of firing the transitions generates string of symbols

ε ε ε

a b c

Final
place

L(M0) = {an bm cm | n ≥ m ≥ 0 }???

• Every finite-state machine can be modeled by a Petri net

Every regular language is a Petri net language

Discrete Event Systems – R. Wattenhofer 3/38

Behavioral Properties

Reachability
A marking Mn is reachable iff there exists a sequence of firings
{t1, t2, … tn} s.t. Mn = M0 · t1 · t2 · … · tn

Reachability is decidable, but takes exponential space (and time) for
the general case

K-Boundedness
A Petri net (N, M0) is K-bounded if the number of tokens in every
place never exceeds K.

Safety
1-Boundedness: Every node holds at most 1 token at any time

Discrete Event Systems – R. Wattenhofer 3/39

Behavioral Properties (2)

Liveness
Having reached Mn from M0, can we eventually fire any transition?

Closely related to the complete absence of dead locks

A transition t in a Petri net (N, M0) is
dead if t cannot be fired in any firing sequence of L(M0)
L1-live if t can be fired at least once in some sequence of L(M0)
L2-live if, ∀ k ∈ N+, t can be fired at least k times in some

sequence of L(M0)
L3-live if t appears infinitely often in some sequence of L(M0)
L4-live (live) if t is L1-live for every marking reachable from M0

Note: L4-liveness ⇒ L3-liveness ⇒ L2-liveness ⇒ L1-liveness

Discrete Event Systems – R. Wattenhofer 3/40

Liveness Example

1

2

t1

t2

3

1

2

3

t1

t2

t3

Discrete Event Systems – R. Wattenhofer 3/41

Analysis Methods

Coverability tree
Enumeration of all reachable markings, limited to small nets

Incidence Matrix
A necessary condition for reachability

Reduction Rules
Simplification rules to rewrite a Petri net, conserving liveness,
safeness and boundedness properties.

Discrete Event Systems – R. Wattenhofer 3/42

Coverability Tree

• Question: What token distributions are reachable?
• Problem: There might be infinitely many ⇒ must avoid infinite tree
• Solution: Detect & handle infinite cycles

– Special symbol ω to denote an arbitrary number of tokens

2

t3

t2

1

3

t1

t0

M0 = [1 0 0]

M1 = [0 0 1]
t1 t3

M3 = [1 ω 0]

M4 = [0 ω 1]
t2

M5 = [0 ω 1]

t1 t3

M6 = [1 ω 0]

deadend

old

old

Discrete Event Systems – R. Wattenhofer 3/43

Coverability Tree – the Algorithm

Special symbol ω, similar to ∞: ∀n∈N: ω > n; ω = ω + n; ω ≥ ω

• Label initial marking M0 as root and tag it as new
• while new markings exist, pick one, say M

– If M is identical to a marking on the way from the root to M, mark
it as old; break;

– If no transitions are enabled at M, tag it as deadend;
– For each enabled transition t at M do

• Obtain marking M’ = M · t
• If there exists a marking M’’ on the way from the root to M

s.t. M’(p) ≥ M’’(p) for each place p and M’ ≠ M’’, replace
M’(p) with ω for p where M’(p) > M’’(p).

• Introduce M’ as a node, draw an arc with label t from M to
M’ and tag M’ new.

Discrete Event Systems – R. Wattenhofer 3/44

Results from the Coverability Tree T

• The net is bounded iff ω does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M0, then there exists a node M’ s.t. M · M’.
(This is a necessary, but not sufficient condition for reachability.)

• For bounded Petri nets, this tree is also called reachability tree, as
all reachable markings are contained in it.

Discrete Event Systems – R. Wattenhofer 3/45

Incidence Matrix

• Goal: Describe a Petri net through equations
• The incidence matrix A describes the token-flow according for the

different transitions
• Aij = gain of tokens at node i when transition j fires
• A marking M is written as a m × 1 column vectors

1

t2
2

t3

3

4

t1

2

2
2

Discrete Event Systems – R. Wattenhofer 3/46

State Equation

• The firing vector ui describes the firing of
transition i. It consists of all ‘0’, except for the
i-th position, where it has a ‘1’.

E.g.

• A transition t from Mk to Mk+1 is written as

M1 is obtained from M0 by firing t3

1

t2
2

t3

3

4

t1

2

2
2

Mk+1 =Mk +A · ui
A =

⎡⎢⎢⎢⎣
−2 1 1
1 −1 0
1 0 −1
0 −2 2

⎤⎥⎥⎥⎦

M0 =

⎡⎢⎢⎢⎣
2
0
1
0

⎤⎥⎥⎥⎦

Discrete Event Systems – R. Wattenhofer 3/47

State Equation: Reachability

• A marking Mk is reachable from M0 if there is a
sequence of transitions {t1, t2, …, tk} such that
Mk = M0 · t1 · t2 · … · tk.

• Expressed with the incidence matrix:

which can be rewritten as

If Mk is reachable from M0, equation (2) must
have a solution where all components of
are positive integers.

(This is a necessary, but not sufficient condition for reachability.)

Mk =M0+A ·
kX
i=1

ui

1

t2
2

t3

3

4

t1

2

2
2

A =

⎡⎢⎢⎢⎣
−2 1 1
1 −1 0
1 0 −1
0 −2 2

⎤⎥⎥⎥⎦

M0 =

⎡⎢⎢⎢⎣
2
0
1
0

⎤⎥⎥⎥⎦

(1)

(2)Mk −M0 = ∆M= A · ~x

Discrete Event Systems – R. Wattenhofer 3/48

Reduction Rules

• Analysis of Petri nets tedious, especially for large, complex nets

• Often, the complexity for analysis increases exponentially with the
size of the Petri net

• Solution: Simplify the net while retaining the properties to analyze.

• In our case, the properties in question are
– Liveness
– Safeness
– Boundedness

• 6 of the simplest reduction rules are shown in the sequel

Discrete Event Systems – R. Wattenhofer 3/49

Reduction Rules (2)

Fusion of Series Places (FSP) Fusion of Series Transformations (FST)

Fusion of Parallel Places (FPP) Fusion of Parallel Transformations (FPT)

Discrete Event Systems – R. Wattenhofer 3/50

Reduction Rules (3)

Elimination of Self Loop Places (ESP) Elimination of Self Loop Transitions (EST)

Discrete Event Systems – R. Wattenhofer 3/51

Reduction Example

1

2

3 4

t2t1

t3

t4

Discrete Event Systems – R. Wattenhofer 3/52

Common Extensions

• Colored Petri nets: Tokens carry values (colors)
Any Petri net with finite number of colors can
be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be real.
Cannot be transformed to a regular Petri net

• Inhibitor Arcs: Enable a transition if a place contains no tokens
Cannot be transformed to a regular Petri net

ε ε ε

a b c

Final
place

