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Overview

• StateCharts
– Hierarchy
– Concurrency
– Events and Actions
– Simulation Semantics
– Non-Determinism and Conflicts

• Petri Nets
– Notation
– Concurrency
– Petri Net Languages
– Behavioral Properties
– Analysis
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StateCharts

• Deficits of finite automata for modeling:
– Only one sequential process, no concurrency
– No hierarchical structuring capabilities

• Extension StateCharts:
– Model of David Harel [1987]
– StateCharts introduces hierarchy, concurrency and computation
– Model is used in many tools for the specification, analysis and 

simulation of discrete event systems, e.g. Matlab-Stateflow, UML, 
Rhapsody, Magnum

– Complicated semantics: We will only cover some basic mechanisms.
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Introducing Hierarchy

FSM is in exactly one of 
the sub states of S if S is 
active
(either in A xor B xor …)
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Definitions

A super-state S is called OR-super-state, if exactly one of its sub states 
is active when S is active. 
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• Current states of FSMs are called active states
• States which are not composed of other states are called basic
• States containing other states are called super states
• For each basic state s, the super-states containing s are called 

ancestor states
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Introducing Concurrency

A super-state S is called AND-super-state, if all (immediate) sub-states 
are active when S is active.
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Entering and leaving AND-Super-States

New: on / off events handled by key process. 
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Representation of Computations

• Besides states, arbitrary many other variables can be 
defined. This way, not all states of the system are modeled 
explicitly.

• The variables can be changed as a result of a state 
transaction (“action”). State transitions can be dependent on 
these variables (“conditions”).

variables
action

condition
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General form of edge labels

Event

Can be either internally or externally generated.

Condition
Refer to values of variables that keep their value until they are 
reassigned.

State transition

Transition is enabled if event exists and condition holds

Reaction / action

Can be assignment to variables and/or creation of events

BA
event [condition] / reaction
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Events and Actions

• An event can be composed of several events:
(e1 and e2) event that corresponds to the simultaneous 

occurrence of e1 and e2.
(e1 or e2) event that corresponds to the occurrence of either

e1 or e2 or both.
(not e) event that corresponds to the absence of event e.

• Similarly for conditions
• A reaction can also be composed:

(a1; a2) actions a1 und a2 are executed sequentially.

• All events, states and actions are globally visible.

BA
event [condition] / reaction
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Example

e:
a1:
a2:

c:

e:
a1:
a2:
c:

true
false

true
false

e / a1 [c] / a2

time
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The StateCharts Simulation Phases

• The transitions are evaluated in simulation steps. 

• Each step is divided in three phases:

1. Effect of changes on events and conditions is evaluated

2. The set of transitions to be made in the current step and 

right hand sides of assignments are computed

3. Transitions become effective, variables obtain new values.

BA
event [condition] / reaction
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Example – Swap 

• In phase 2, variables a and b are assigned to temporary 
variables

• In phase 3, these are assigned to b and a, respectively
• As a result, variables a and b are swapped

swap

A

e / a:=b

B

e / b:=a

/a:=1; b:=0
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More on semantics of StateCharts

• Unfortunately, there are several time-semantics of StateCharts in 
use. This is one possibility:
– A step is executed in arbitrarily small time.
– Internal (generated) events exist only within the next step.
– External events can only be detected after a stable state has 

been reached.

external events

steptransport of internal events

stable
state

stable
state t

state 
transitions
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Example, State Diagram

A1 B1

B2A2

a/a’ c/c’

A1 B1

B2A2

a b/a

Corresponding state diagrams:

A1,B1

A2,B1 A1,B2

A2,B2

ac/a’ ac/c’

ac/a’c’

c/c’ a/a’

A1,B1

A2,B1 A1,B2

A2,B2

ba/aab

ab/a

b/a a

unstable state
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Example – Non-Determinism

A,B C,D
E,H

F,G

a

e

e
State Diagram

Which one 
is chosen?

A C
a

B D
a

F H

E G
e

e
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bc

Conflicts – OR or XOR?

A

B

b

C

c What if the events b and c
occur simultaneously?

A

B

bc

C

bc

XOR

A

B

b

C

bc

XOR’
(with priority to b if 

simultaneous events)

A

B C

bc

OR

bc

B C
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Real Time Exercise – Reservoir

H1

L1

H2

L2

F1 F2

G1 G2

m

• Initial Condition
– Empty pools, faucets closed

• Sensors & regulators
– Fi, Gi = 1 if closed
– Hi, Li = 1 if water is above sensor

• Operation
After pressing m, the pools are 
filled up to level Hi. When pool i has 
reached Hi, close Fi and open Gi

until the water level reaches Li. 
Restarting is only possible after both 
pools have been emptied.

• Q: Draw a StateChart that models 
this system.

reservoir

Pool 1 Pool 2



Discrete Event Systems – R. Wattenhofer 3/19

Real Time Solution – Reservoir

A

B1 B2

m \ F1=1;F2=1

C1

H1 \ F1=0;G1=1 H2 \ F2=0;G2=1

C2

D1

L1 \ G1=0

D2

L2 \ G2=0

ε [D1 && D2]

H1
L1

H2
L2

F1 F2

G1 G2

m

reservoir

Pool 1 Pool 2
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Usability

• Intuitive language to describe event driven automata
• New: Concurrency incl. synchronization
• Used in different flavors in industry and even for kids:
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Summary

• Advantages of hierarchical state machines:
– Simple transformation into efficient hardware and software 

implementations.
– Efficient simulation.
– Basis for formal verification (usually via symbolic model checking), 

if in reactions only events are generated. 

• Disadvantages:
– Intricate for large systems, limited re-usability of models.
– No formal representation of operations on data.
– Large part of the system state is hidden in variables. This limits 

possibilities for efficient implementation and formal verification.
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Where are we?

• StateCharts
– Hierarchy
– Concurrency
– Events and Actions
– Simulation Semantics
– Non-Determinism and Conflicts

• Petri Nets
– Notation
– Concurrency
– Petri Net Languages
– Behavioral Properties
– Analysis
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Petri nets – Motivation

• In contrast to hierarchical state machines, state transitions in Petri 
nets are asynchronous. The ordering of transitions is partly 
uncoordinated; it is specified by a partial order. 

• Therefore, Petri nets can be used to model concurrent distributed 
systems.

• Many flavors of Petri nets are in use, e.g. 
– Activity charts (UML)
– Data flow graphs and marked graphs

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation
mit Automaten”
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• A Petri net is a bipartite, directed graph defined by a tuple
(S, T, F, M0), where

– S is a set of places pi

– T is a set of transitions ti

– F is a set of edges (flow relations) fi
– M0 : S → N; the initial marking

Petri net – Definition

p1 p3

p5 p4

p2

t1 t2
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Token marking

• Each place pi is marked with a certain 
number of tokens

• The initial distribution of the tokens is given 
by M0

• M(s) denotes the marking of a place s

• The distribution of tokens on places defines 
the state of a Petri net

• The dynamics of a Petri net is defined by a 
token game

1

2

t1
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Token game of Petri nets

• A marking M activates a transition t ∈ T if each place pi connected 
through an edge fi to t contains at least one token.

• If a transition t is activated by M, a state transition to M’ fires
(happens) eventually.

• Only one transition is fired at any time.
• When a transition fires, it

– Consumes a token from each of its input places
– Adds a token to each of its output places

3 4

1 2

t1

3 4

1 2

t1t1 fires
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Non-Deterministic Evolution

• Any of the activated transactions might fire

The evolution of Petri nets is not deterministic.

3 4

1 2

t1t2

3 4

1 2

t1t2

3 4

1 2

t1t2

t2 t1
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Syntax Exercise

Q:  Is it a valid Petri Net?     Which transitions are activated?     Marking after firing?

A B C D E

F G H I
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Syntax Exercise (2)

Q:  Is it a valid Petri Net?     Which transitions are activated?     Marking after firing?

J K

L

t2t1
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Weighted Edges

• Associating weights to edges:
– Each edge fi has an associated weight W(fi) (defaults to 1)
– A transition t is active if each place pi connected through an 

edge fi to t contains at least W(f) tokens.

H2 O2

Reaction
2 H2 + O2 → 2H2O

2

2

H2O

H2 O2

2

2

H2O
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Finite Capacity Petri Net

• Each place pi can hold maximally K(pi) tokens
• A transition t is only active if all output places pi of t cannot exceed 

K(pi) after firing t. 

• Pure finite capacity Petri Nets can be transformed into equivalent 
infinite capacity Petri Nets (without capacity restrictions).

• Equivalence: Both nets have the same set of all possible firing 
sequences

1

2 K(2)=1

t1

t2

1

2 K(2)=1

t1

t2

1

2 K(2)=1

t1

t2

t1

t2
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Removing Capacity Constraints

• For each place p with K(p) > 1, add a complementary place p’ with 
initial marking M0(p’) = K(p) – M0(p).

• For each outgoing edge e = (p, t), add an edge e’ from t to p’ with 
weight W(e).

• For each incoming edge e = (t, p), add an edge e’ from p’ to t with 
weight W(e).

1

2 K(2)=3

t1

t2

1

2

t1

t2

2’

2 2

2

rm capacity
constraint

Note: Only works for 
pure Petri nets, i.e. 
without self loops.

1

3

K(p)=5
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1

Resolving Self-Loops

• The algorithm to remove capacity constraints works if the Petri net 
has no self loops (is pure).

• No Problem! Rewrite the Petri net without self loops: 

1t1

1’

t1 t2

dummy 
transition

dummy 
place



Discrete Event Systems – R. Wattenhofer 3/34

Your turn!

• Remove the capacity constraint from place 3

2

3
K(3)=3

t2

t3

1

4

t4

t1

t5
2

2

3

t2

t3

1

4

t4

t1

t5
2

3’

2
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Modeling FSM 

• FSM can be represented by a subclass of Petri nets, where each 
transition has exactly one incoming edge and one outgoing edge.

• Such Petri nets are called state machines
• Coke vending machine revisited

1

2

4

5

D

Q

Q

3

D

4

D|Q

Q

D
6

D

Q D

4

Q

D|Q

Soda

10 ¢

40 ¢

30 ¢20 ¢

≥ 45 ¢

35 ¢

25 ¢
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Concurrent Activities

• State machines allow representation of decision, but no 
synchronization.

• General Petri nets support concurrency with intuit notation:

decision / conflict fork join / synchronization
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Petri Net Languages

• Transitions labeled with (not necessarily distinct) symbols
• Sequence of firing the transitions generates string of symbols

ε ε ε

a b c

Final 
place

L(M0) = {an bm cm | n ≥ m ≥ 0 }???

• Every finite-state machine can be modeled by a Petri net

Every regular language is a Petri net language
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Behavioral Properties

Reachability
A marking Mn is reachable iff there exists a sequence of firings 
{t1, t2, … tn} s.t. Mn = M0 · t1 · t2 · … · tn

Reachability is decidable, but takes exponential space (and time) for 
the general case

K-Boundedness
A Petri net (N, M0) is K-bounded if the number of tokens in every 
place never exceeds K.

Safety
1-Boundedness: Every node holds at most 1 token at any time
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Behavioral Properties (2)

Liveness
Having reached Mn from M0, can we eventually fire any transition?

Closely related to the complete absence of dead locks

A transition t in a Petri net (N, M0) is
dead if t cannot be fired in any firing sequence of L(M0)
L1-live if t can be fired at least once in some sequence of L(M0)
L2-live if, ∀ k ∈ N+, t can be fired at least k times in some 

sequence of L(M0)
L3-live if t appears infinitely often in some sequence of L(M0)
L4-live (live) if t is L1-live for every marking reachable from M0

Note: L4-liveness ⇒ L3-liveness ⇒ L2-liveness ⇒ L1-liveness
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Liveness Example

1

2

t1

t2

3

1

2

3

t1

t2

t3



Discrete Event Systems – R. Wattenhofer 3/41

Analysis Methods

Coverability tree
Enumeration of all reachable markings, limited to small nets

Incidence Matrix
A necessary condition for reachability

Reduction Rules
Simplification rules to rewrite a Petri net, conserving liveness, 
safeness and boundedness properties. 
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Coverability Tree

• Question: What token distributions are reachable?
• Problem: There might be infinitely many ⇒ must avoid infinite tree
• Solution: Detect & handle infinite cycles

– Special symbol ω to denote an arbitrary number of tokens

2

t3

t2

1

3

t1

t0

M0 = [1 0 0]

M1 = [0 0 1]
t1 t3

M3 = [1 ω 0]

M4 = [0 ω 1]
t2

M5 = [0 ω 1]

t1 t3

M6 = [1 ω 0]

deadend

old

old



Discrete Event Systems – R. Wattenhofer 3/43

Coverability Tree – the Algorithm

Special symbol ω, similar to ∞: ∀n∈N: ω > n; ω = ω + n; ω ≥ ω

• Label initial marking M0 as root and tag it as new
• while new markings exist, pick one, say M

– If M is identical to a marking on the way from the root to M, mark 
it as old; break;

– If no transitions are enabled at M, tag it as deadend;
– For each enabled transition t at M do

• Obtain marking M’ = M · t
• If there exists a marking M’’ on the way from the root to M 

s.t. M’(p) ≥ M’’(p) for each place p and M’ ≠ M’’, replace 
M’(p) with ω for p where M’(p) > M’’(p).

• Introduce M’ as a node, draw an arc with label t from M to 
M’ and tag M’ new. 
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Results from the Coverability Tree T

• The net is bounded iff ω does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M0, then there exists a node M’ s.t. M · M’. 
(This is a necessary, but not sufficient condition for reachability.)

• For bounded Petri nets, this tree is also called reachability tree, as 
all reachable markings are contained in it.
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Incidence Matrix

• Goal: Describe a Petri net through equations
• The incidence matrix A describes the token-flow according for the 

different transitions
• Aij = gain of tokens at node i when transition j fires
• A marking M is written as a m × 1 column vectors

1

t2
2

t3

3

4

t1

2

2
2
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State Equation

• The firing vector ui describes the firing of 
transition i. It consists of all ‘0’, except for the 
i-th position, where it has a ‘1’.

E.g. 

• A transition t from Mk to Mk+1 is written as 

M1 is obtained from M0 by firing t3

1

t2
2

t3

3

4

t1

2

2
2

Mk+1 =Mk +A · ui
A =

⎡⎢⎢⎢⎣
−2 1 1
1 −1 0
1 0 −1
0 −2 2

⎤⎥⎥⎥⎦

M0 =

⎡⎢⎢⎢⎣
2
0
1
0

⎤⎥⎥⎥⎦
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State Equation: Reachability

• A marking Mk is reachable from M0 if there is a 
sequence of transitions {t1, t2, …, tk} such that 
Mk = M0 · t1 · t2 · … · tk.

• Expressed with the incidence matrix:

which can be rewritten as

If Mk is reachable from M0, equation (2) must 
have a solution where all components of 
are positive integers.

(This is a necessary, but not sufficient condition for reachability.)

Mk =M0+A ·
kX
i=1

ui

1

t2
2

t3

3

4

t1

2

2
2

A =

⎡⎢⎢⎢⎣
−2 1 1
1 −1 0
1 0 −1
0 −2 2

⎤⎥⎥⎥⎦

M0 =

⎡⎢⎢⎢⎣
2
0
1
0

⎤⎥⎥⎥⎦

(1)

(2)Mk −M0 = ∆M= A · ~x
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Reduction Rules

• Analysis of Petri nets tedious, especially for large, complex nets

• Often, the complexity for analysis increases exponentially with the 
size of the Petri net

• Solution: Simplify the net while retaining the properties to analyze.

• In our case, the properties in question are
– Liveness
– Safeness
– Boundedness

• 6 of the simplest reduction rules are shown in the sequel
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Reduction Rules (2)

Fusion of Series Places (FSP) Fusion of Series Transformations (FST)

Fusion of Parallel Places (FPP) Fusion of Parallel Transformations (FPT)
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Reduction Rules (3)

Elimination of Self Loop Places (ESP) Elimination of Self Loop Transitions (EST)



Discrete Event Systems – R. Wattenhofer 3/51

Reduction Example

1

2

3 4

t2t1

t3

t4
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Common Extensions

• Colored Petri nets: Tokens carry values (colors)
Any Petri net with finite number of colors can 
be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be real.
Cannot be transformed to a regular Petri net

• Inhibitor Arcs: Enable a transition if a place contains no tokens
Cannot be transformed to a regular Petri net

ε ε ε

a b c

Final 
place


