
Chapter 1
AUTOMATA and

LANGUAGES
Discrete Event Systems

Winter 2005 / 2006

Distributed
Computing

Group

Discrete Event Systems – R. Wattenhofer 1/2

Overview

• Motivation
• State Machines
• Alphabets and Strings
• Finite Automata
• Languages, Regular Languages
• Designing Finite Automata
• Regular Operators
• Closure
• Union et al.

• Nondeterministic automata
• Closure continued
• Regular expressions
• Simulations
• REX NFA
• NFA FA
• NFA REX
• Pumping Lemma
• Conclusions

Discrete Event Systems – R. Wattenhofer 1/3

The Coke Vending Machine

• Vending machine dispenses soda for $0.45 a pop.
• Accepts only dimes ($0.10) and quarters ($0.25).
• Eats your money if you don’t have correct change.

• You’re told to “implement” this functionality.

Discrete Event Systems – R. Wattenhofer 1/4

Vending Machine Java Code

Soda vend(){
int total = 0, coin;
while (total != 45){

receive(coin);
if ((coin==10 && total==40)
||(coin==25 && total>=25))

reject(coin);
else

total += coin;
}
return new Soda();

} Is this overkill?!?

Discrete Event Systems – R. Wattenhofer 1/5

Why this was overkill

• Vending machines have been around long before computers.
– Or Java, for that matter.

• Don’t really need int’s.
– Each int introduces 232 possibilities.

• Don’t need to know how to add integers to model vending machine
– total += coin.

• Java grammar, if-then-else, etc. complicate the essence.

Discrete Event Systems – R. Wattenhofer 1/6

Vending Machine “Logics”

Discrete Event Systems – R. Wattenhofer 1/7

Why was this simpler than Java Code?

• Only needed two coin types “D” and “Q”
– symbols/letters in alphabet

• Only needed 7 possible current total amounts
– states/nodes/vertices

• Much cleaner and more aesthetically pleasing than Java lingo

• Next: generalize and abstract…

Discrete Event Systems – R. Wattenhofer 1/8

Alphabets and Strings

• Definitions:

• An alphabet Σ is a set of symbols (characters, letters).
• A string (or word) over Σ is a sequence of symbols.

– The empty string is the string containing no symbols at all, and is
denoted by ε.

– The length of the string is the number of symbols, e.g. |ε| = 0.

• Questions:

1) What is Σ in our vending machine example?
2) What are some good or bad strings in our example?
3) What does ε signify in our example?

Discrete Event Systems – R. Wattenhofer 1/9

Alphabets and Strings

Answers:

1) Σ = {D, Q}

2) Good: QDD, DQD, DDQ, QQQQDD, etc.
Bad: Q, D, DD, etc.
Ugly: DDD …now you’re screwed!

3) The empty string ε signifies trying to get something for nothing.
• putting no money in at all…

Discrete Event Systems – R. Wattenhofer 1/10

Finite Automaton Example

0

1
1

0

1 1 0 0 1

01

sourceless
arrow
denotes
“start”

double
circle
denotes
“accept”

input put
on tape
read left
to right

What strings are “accepted”?

Discrete Event Systems – R. Wattenhofer 1/11

Formal Definition of a Finite Automaton

A finite automaton (FA) is a 5-tuple (Q, Σ, δ, q0, F), where
• Q is a finite set called the states
• Σ is a finite set called the alphabet
• δ: Q x Σ → Q is the transformation function
• q0 ∈ Q is the start state
• F ⊆ Q is the set of accept states (a.k.a. final states).

• Notice that the “input string” (and the tape containing the input
string) are implicit in the definition of an FA. The definition only deals
with static view. Further explaining needed for understanding how
FA’s interact with their input.

Discrete Event Systems – R. Wattenhofer 1/12

Accept States

• How does an FA operate on strings? Informally, imagine an
auxiliary tape containing the string. The FA reads the tape from left
to right with each new character causing the FA to go into another
state. When the string is completely read, the string is accepted
depending on whether the FA’s final state was an accept state.

• Definition: A string u is accepted by an automaton M iff (if and only
if) the path starting at q0 which is labeled by u ends in an accept
state.

• Note: This definition is somewhat informal. To really define what it
means for string to label a path, you need to break u up into its
sequence of characters and apply δ repeatedly, keeping track of
states.

Discrete Event Systems – R. Wattenhofer 1/13

Language

• Definition: The language accepted by an finite automaton M is the
set of all strings which are accepted by M. The language is denoted
by L(M). We also say that M recognizes L(M), or that M accepts
L(M).

• Intuitively, think of all the possible ways of getting from the start
state to any accept state.

• We will eventually see that not all languages can be described as
the accepted language of some FA.

• A language L is called a regular language if there exists a FA M that
recognizes the language L.

Discrete Event Systems – R. Wattenhofer 1/14

Designing Finite Automata

• Creative Process…

• “You are the automaton” method
– Given a language (for which we must design an automaton).
– Pretending to be automaton, you receive an input string.
– You get to see the symbols in the string one by one.
– After each symbol you must determine whether string

seen so far is part of the language.
– Like an automaton, you don’t see the end of the string,

so you must always be ready to answer right away.

• Main point: What is crucial, what defines the language?!

Discrete Event Systems – R. Wattenhofer 1/15

Designing Finite Automata: Examples

1) Binary Alphabet {0,1},
Language consists of all strings with odd number of ones.

2) Σ = {0,1},
Language consists of all strings with substring “001”,
for example 100101, but not 1010110101.

More examples in exercises…

Discrete Event Systems – R. Wattenhofer 1/16

Definition of Regular Language

• Recall the definition of a regular language: A language L is called a
regular language if there exists a FA M that recognizes the
language L.

• We would like to understand what types of languages are regular.
Languages of this type are amenable to super-fast recognition of
their elements.

• It would be nice to know for example, which of the following are
regular:
– Unary prime numbers: { 11, 111, 11111, 1111111, 11111111111, … }

= {12, 13, 15, 17, 111, 113, … } = { 1p | p is a prime number }
– Palindromic bit strings: {ε, 0, 1, 00, 11, 000, 010, 101, 111, …}

Discrete Event Systems – R. Wattenhofer 1/17

Finite Languages

• All the previous examples had the following property in common:
infinite cardinality

• Before looking at infinite languages, should quickly look at finite
languages.

• Question: Is the singleton language containing one string regular?
For example, is the language {banana} regular?

Discrete Event Systems – R. Wattenhofer 1/18

Languages of Cardinality 1

• Answer: Yes.

• Question: Huh? What’s wrong with this automaton?!? What if the
automation is in state q1 and reads a “b”?

• Answer: This a first example of a nondeterministic FA. The
difference between a deterministic FA (DFA) and a nondeterministic
FA (NFA) is that every state of a DFA has exactly one exiting
transition arrow for each symbol of the alphabet.

• Question: Is there a way of fixing it and making it deterministic?

Discrete Event Systems – R. Wattenhofer 1/19

Languages of Cardinality 1

• Answer: Yes, just add a new “fail state.”
• Create a state q7 that sucks in all prefixes of “banana” for all

eternity.
• A prefix of “banana” is the set {ε, b, ba, ban, bana, banan}.

Discrete Event Systems – R. Wattenhofer 1/20

Arbitrary Finite Number of Finite Strings

• Theorem: All finite languages are regular.

• Proof: One can always construct a tree whose leaves are word-
ending. Make word endings into accept states, add a fail sink-
state and add links to the fail state to finish the construction.
Since there’s only a finite number of finite strings, the automaton
is finite.

• Example for {banana, nab, ban, babba}: b
a a

b

a

n b

a

n

b

a
n

Discrete Event Systems – R. Wattenhofer 1/21

Infinite Cardinality

• Question: Are all regular languages finite?

• Answer: No! Many infinite languages are regular.

• Question: Give an example of an infinite but regular language.

• Answer: We have already seen quite a few
– For example, the language that consists of binary

strings with an odd number of ones.

Discrete Event Systems – R. Wattenhofer 1/22

Regular Operations

• You may have come across the regular operations when doing
advanced searches utilizing programs such as emacs, egrep,
perl, python, etc.

• There are four basic operations we will work with:
– Union
– Concatenation
– Kleene-Star
– Kleene-Plus (which can be defined using the other three)

Discrete Event Systems – R. Wattenhofer 1/23

Regular Operations – Summarizing Table

Operation Symbol UNIX version Meaning

Union ∪ | Match one of the
patterns

Concatenation • implicit in UNIX Match patterns in
sequence

Kleene-star * * Match pattern 0 or
more times

Kleene-plus + + Match pattern 1 or
more times

Discrete Event Systems – R. Wattenhofer 1/24

Regular operations: Union

• In UNIX, to search for all lines containing vowels in a text one could
use the command
– egrep -i `a|e|i|o|u’

– Here the pattern “vowel” is matched by any line containing a vowel.
– A good way to define a pattern is as a set of strings, i.e. a language.

The language for a given pattern is the set of all strings satisfying the
predicate of the pattern.

• In UNIX, a pattern is implicitly assumed to occur as a substring of
the matched strings. In our course, however, a pattern needs to
specify the whole string, and not just a substring.

• Computability: Union is exactly what we expect. If you have patterns
A = {aardvark}, B = {bobcat}, C = {chimpanzee} the union of these is
A∪B ∪C = {aardvark, bobcat, chimpanzee}.

Discrete Event Systems – R. Wattenhofer 1/25

Regular operations: Concatenation

• To search for all consecutive double occurrences of vowels, use:
– egrep -i `(a|e|i|o|u)(a|e|i|o|u)’

– Here the pattern “vowel” has been repeated. Parentheses have been
introduced to specify where exactly in the pattern the concatenation is
occurring.

• Computability: Consider the previous result: L = {aardvark, bobcat,
chimpanzee}. When we concatenate L with itself we obtain L•L =
{aardvark, bobcat, chimpanzee} •{aardvark, bobcat, chimpanzee} =
{aardvarkaardvark, aardvarkbobcat, aardvarkchimpanzee,
bobcataardvark, bobcatbobcat, bobcatchimpanzee,
chimpanzeeaardvark, chimpanzeebobcat, chimpanzeechimpanzee}

• Questions: What is L•{ε}? What is L•Ø?
• Answers: L•{ε} = L. L•Ø = Ø.

Discrete Event Systems – R. Wattenhofer 1/26

Regular operations: Kleene-*

• We continue the UNIX example: now search for lines consisting
purely of vowels (including the empty line):
– egrep -i `^(a|e|i|o|u)*$’

– Note: ^ and $ are special symbols in UNIX regular expressions which
respectively anchor the pattern at the beginning and end of a line. The
trick above can be used to convert any Computability regular
expression into an equivalent UNIX form.

• Computability: Suppose we have a language B = {ba, na}.
Question: What is the language B* ?

• Answer: B * = { ba, na }* = {ε, ba, na, baba, bana, naba, nana,
bababa, babana, banaba, banana, nababa, nabana, nanaba,
nanana, babababa, bababana, … }

Discrete Event Systems – R. Wattenhofer 1/27

Regular operations: Kleene-+

• Kleene-+ is just like Kleene-* except that the pattern is forced to
occur at least once.

• UNIX: search for lines consisting purely of vowels (not including
the empty line):
– egrep -i `^(a|e|i|o|u)+$’

• Computability: B+ = {ba, na}+ = {ba, na, baba, bana, naba, nana,
bababa, babana, banaba, banana, nababa, nabana, nanaba,
nanana, babababa, bababana, … }

• The reason we are interested in regular languages is because
they can be generated starting from simple symbols of an
alphabet by applying the regular operations.

Discrete Event Systems – R. Wattenhofer 1/28

Closure of Regular Languages

• When applying regular operations to regular languages, regular
languages result. That is, regular languages are closed under the
operations of union, concatenation, and Kleene-*.

• Goal: Show that regular languages are closed under regular
operations. In particular, given regular languages L1 and L2, show:

1. L1 ∪ L2 is regular,
2. L1 • L2 is regular,
3. L1* is regular.

• No.’s 2 and 3 are deferred until we learn about NFA’s.
• However, No. 1 can be achieved immediately.

Discrete Event Systems – R. Wattenhofer 1/29

Union Example

• Problem: Draw the FA for

L = { x ∈ {0,1}* | |x|=even, or x ends with 11}

• The solution involves making a table of states with rows keeping
track of parity, and columns keeping track of the progress towards
achieving the 11 pattern (see next slide).

Discrete Event Systems – R. Wattenhofer 1/30

Union Example

suffix
length

ε 1 11

0 mod 2

1 mod 2
0

1

0 0

0

0

0

1
1

1

11

Discrete Event Systems – R. Wattenhofer 1/31

Union Example: L1 and L2

• L1 = { x ∈ {0,1}* | x has even length}

• L2 = { x ∈ {0,1}* | x ends with 11 }

0,1 0,1

0

1

0

0

1

1

Discrete Event Systems – R. Wattenhofer 1/32

Union Example: L1∪L2

• When using the Cartesian Product Construction:

0
1

0 0

0

0

0

1
1

1

11

Discrete Event Systems – R. Wattenhofer 1/33

Cartesian Product Construction

• Definition: The Cartesian product of two sets A and B – denoted by
A×B – is the set of all ordered pairs (a,b) where a∈A and b∈B.

• Question: What should the start state be?

• Answer: q0 = (a,x). The computation starts by starting from the start
state of both automata.

0

1

0

0

1

1

0,1 0,1

x y z

b

a

Discrete Event Systems – R. Wattenhofer 1/34

Cartesian Product Construction. δ-function.

• Question: What should δ be?!?

• Answer: Just follow the transition in both automata. Therefore
d((a,x), 0) = (b,x), and d((b,y),1) = (a,z)…

0

1

0

0

1

1

0,1 0,1

x y z

b

a

Discrete Event Systems – R. Wattenhofer 1/35

Formal Definition

• Given two automata
M1 = (Q1, Σ, δ1, q1, F1) and M2 = (Q2, Σ, δ2, q2, F2)

• Define the unioner of M1 and M2 by:
M∪ = (Q1×Q2, Σ, δ1×δ2 , (q1,q2), F∪)

• where F∪ is the set of ordered pairs in Q1×Q2 with at least one
state an accept state. That is: F∪ = Q1×F2 ∪ F1×Q2

• where the transition function δ is defined as
δ((q1,q2), j) = (δ1(q1,j), δ2(q2,j)) = δ1 × δ2.

Discrete Event Systems – R. Wattenhofer 1/36

Other constructions: Intersector

• Other constructions are possible, for example an intersector:

• This time should accept only when both ending states are accept
states. So the only difference is in the set of accept states.
Formally the intersector of M1 and M2 is given by

M∩ = (Q1×Q2, Σ, δ1×δ2 , (q0,1,q0,2), F∩), where F∩ = F1×F2.

(b,y)(b,x)

(a,x) (a,y) (a,z)

(b,z)

0
1

0 0

0

0

0

1
1

1

11

Discrete Event Systems – R. Wattenhofer 1/37

Other constructions: Difference

• The difference of two sets is defined by A - B = {x ∈ A | x ∉
B}

• In other words, accept when first automaton accepts and
second does not

M− = (Q1×Q2, Σ, δ1×δ2 , (q0,1,q0,2), F−), where F − = F1×Q2 − Q1×F2

(b,y)(b,x)

(a,x) (a,y) (a,z)

(b,z)

0
1

0 0

0

0

0

1
1

1

11

Discrete Event Systems – R. Wattenhofer 1/38

Other constructions: Symmetric difference

• The symmetric difference of two sets A, B is A⊕B =A∪B - A∩B

• Accept when exactly one automaton accepts:
M⊕ = (Q1×Q2, Σ, δ1×δ2 , (q1,q2), F⊕), where F⊕ = F∪ − F∩

(b,y)(b,x)

(a,x) (a,y) (a,z)

(b,z)

0
1

0 0

0

0

0

1
1

1

11

Discrete Event Systems – R. Wattenhofer 1/39

Complement

• How about the complement? The complement is only defined
with respect to some universe.

• Given the alphabet Σ, the default universe is just the set of all
possible strings Σ*. Therefore, given a language L over Σ, i.e.
L ⊆ Σ* the complement of L is Σ* − L

• Note: Since we know how to compute set difference, and we
know how to construct the automaton for Σ* we can construct
the automaton for ⎯L .

• Question: Is there a simpler construction for⎯L ?

• Answer: Just switch accept-states with non-accept states.

Discrete Event Systems – R. Wattenhofer 1/40

Complement Example

x y z
1

0

0

1

1

Original:

x y z
1

0

0

1

1

Complement: zx

Discrete Event Systems – R. Wattenhofer 1/41

Boolean-Closure Summary

• We have shown constructively that regular languages are closed
under boolean operations. I.e., given regular languages L1 and L2
we saw that:

1. L1 ∪ L2 is regular,
2. L1 ∩ L2 is regular,
3. L1−L2 is regular,
4. L1 ⊕ L2 is regular,
5. ⎯L1 is regular.

• No. 1 also happens to be a regular operation. We still need to
show that regular languages are closed under concatenation and
Kleene-*.

• Tough question: Can’t we do a similar trick for concatenation?

Discrete Event Systems – R. Wattenhofer 1/42

Back to Nondeterministic FA

• Question: Draw an FA which accepts the language
L1 = { x ∈ {0,1}* | 4th bit from left of x is 0 }

• FA for L1:

• Question: What about the 4th bit from the right?

• Looks as complicated: L2 = { x ∈ {0,1}* | 4th bit from right of x is 0 }

0,1

0,1

0,1 0,1
0

0,1
1

Discrete Event Systems – R. Wattenhofer 1/43

Weird Idea

• Notice that L2 is the reverse L1.

• I.e. saying that 0 should be the 4th from the left is reverse of
saying that 0 should be 4th from the right. Can we simply reverse
the picture (reverse arrows, swap start and accept)?!?

• Here’s the reversed version:

0,1

0,1

0,1 0,1
0

0,1
1

0,1

0,1

0,1 0,1
0

0,1
1

Discrete Event Systems – R. Wattenhofer 1/44

Discussion of weird idea

1. Silly unreachable state. Not pretty, but allowed in model.

2. Old start state became a crashing accept state.
Underdeterminism. Could fix with fail state.

3. Old accept state became a state from which we don’t know
what to do when reading 0. Overdeterminism. Trouble.

4. (Not in this example, but) There could be more than one start
state! Seemingly outside standard nondeterministic model.

• Still, there is something about our automaton. It turns out that
NFA’s (=Nondeterministic FA) are actually quite useful and
are embedded in many practical applications.

• Idea, keep more than 1 active state if necessary.

Discrete Event Systems – R. Wattenhofer 1/45

Introduction to Nondeterministic Finite Automata

• The static picture of an NFA is as a graph whose edges are
labeled by Σ and by ε (together called Σε) and with start vertex q0
and accept states F.

• Example:

0,1 0,1

0

1

0

0

1

1ε ε

Discrete Event Systems – R. Wattenhofer 1/46

NFA: What’s different from a [D]FA?

• FA’s are labeled graphs. However, determinism gives an extra
constraint on the form that the graphs can take. Specifically, δ must
be a function. Graph theoretically this means that every vertex has
exactly one edge of a given label sticking out of it. (Of course, ε’s
cannot appear either.)

• Any labeled graph you can come up with is an NFA, as long as it
only has one start state. Later, even this restriction will be dropped.

Discrete Event Systems – R. Wattenhofer 1/47

More NFA Examples

M1:

M2:

M3:

M4:

ε

ε

0,10

1
ε

1

Discrete Event Systems – R. Wattenhofer 1/48

NFA: Formal Definition.

• Definition: A nondeterministic finite automaton (NFA) is encapsulated
by M = (Q, Σ, δ, q0, F) in the same way as an FA, except that δ has
different domain and co- domain:

• Here, P(Q) is the power set of Q so that δ(q,a) is the set of all
endpoints of edges from q which are labeled by a.

• Example, for NFA M4 of the previous slide:

δ(q0,0) = {q1,q3},
δ(q0,1) = {q2,q3},
δ(q0,ε) = ∅,
...
δ(q3,ε) = {q2}.

)(Σ:δ QPQ →× ε

q1

q0
q2

q3
0,10

1
ε

1

Discrete Event Systems – R. Wattenhofer 1/49

Formal Definition of an NFA: Dynamic

• Just as with FA’s, there is an implicit auxiliary tape containing
the input string which is operated on by the NFA. As opposed to
FA’s, NFA’s are parallel machines – able to be in several states
at any given instant. The NFA reads the tape from left to right
with each new character causing the NFA to go into another set
of states. When the string is completely read, the string is
accepted depending on whether the NFA’s final configuration
contains an accept state.

• Definition: A string u is accepted by an NFA M iff there exists a
path starting at q0 which is labeled by u and ends in an accept
state. The language accepted by M is the set of all strings which
are accepted by M and is denoted by L(M).

• Following a label ε is for free (without reading an input symbol). In
computing the label of a path, you should delete all ε’s.

• The only difference in acceptance for NFA’s vs. FA’s are the words
“there exists”. In FA’s the path always exists and is unique.

Discrete Event Systems – R. Wattenhofer 1/50

Example

M4:

Question: Which of the following strings is accepted?
1. ε
2. 0
3. 1
4. 0111

q1

q0
q2

q3
0,10

1
ε

1

Discrete Event Systems – R. Wattenhofer 1/51

Answers

1. ε is rejected. There is no path

2. 0 is accepted. E.g., the path

3. 1 is accepted. E.g., the path

4. 0111 is accepted. There is only one accepted path:

q1

q0
q2

q3
0,10

1
ε

1

100 qq →

310 qq →

3ε213ε213ε21300 qqqqqqqq →→→→→→→

Discrete Event Systems – R. Wattenhofer 1/52

NFA’s vs. Regular Operations

• On the following few slides we will study how NFA’s interact with
regular operations.

• We will use the following schematic drawing for a general NFA.

• The red circle stands for the start state q0, the green portion
represents the accept states F, the other states are gray.

Discrete Event Systems – R. Wattenhofer 1/53

NFA: Union

• The union A∪B is formed by putting the automata A and B in
parallel. Create a new start state and connect it to the former
start states using ε-edges:

Discrete Event Systems – R. Wattenhofer 1/54

Union Example

• L = {x has even length} ∪ {x ends with 11}

c

b

0,1 0,1

d e f

0

1

0

0

1

1

a
ε ε

Discrete Event Systems – R. Wattenhofer 1/55

NFA: Concatenation

• The concatenation A•B is formed by putting the automata in
serial. The start state comes from A while the accept states
come from B. A’s accept states are turned off and connected via
ε-edges to B ’s start state:

Discrete Event Systems – R. Wattenhofer 1/56

Concatenation Example

• L = {x has even length} • {x ends with 11}

• Remark: This example is somewhat questionable…

c

b

0,1 0,1

d e f

0

1

0

0
1

1
ε

Discrete Event Systems – R. Wattenhofer 1/57

NFA’s: Kleene-+.

• The Kleene-+ A+ is formed by creating a feedback loop. The
accept states connect to the start state via ε-edges:

Discrete Event Systems – R. Wattenhofer 1/58

Kleene-+ Example

L = { }+

= { }

x is a streak of one or more 1’s followed
by a streak of two or more 0’s

00
c d f

1

1
0

ε

e

x starts with 1, ends with 0, and alternates
between one or more consecutive 1’s

and two or more consecutive 0’s

Discrete Event Systems – R. Wattenhofer 1/59

NFA’s: Kleene-*

• The construction follows from Kleene-+ construction using the
fact that A* is the union of A+ with the empty string. Just create
Kleene-+ and add a new start accept state connecting to old
start state with an ε-edge:

Discrete Event Systems – R. Wattenhofer 1/60

Closure of NFA under Regular Operations

• The constructions above all show that NFA’s are constructively
closed under the regular operations. More formally,

• Theorem: If L1 and L2 are accepted by NFA’s, then so are L1 ∪
L2 , L1 • L2, L1

+ and L1*. In fact, the accepting NFA’s can be
constructed in linear time.

• This is almost what we want. If we can show that all NFA’s can
be converted into FA’s this will show that FA’s – and hence
regular languages – are closed under the regular operations.

Discrete Event Systems – R. Wattenhofer 1/61

Regular Expressions (REX)

• We are already familiar with the regular operations. Regular
expressions give a way of symbolizing a sequence of regular
operations, and therefore a way of generating new languages
from old.

• For example, to generate the finite language {banana,nab}* from
the atomic languages {a},{b} and {n} we could do the following:

(({b}•{a}•{n}•{a}•{n}•{a})∪({n}•{a}•{b}))*

Regular expressions specify the same in a more compact form:

(banana∪nab)*

Discrete Event Systems – R. Wattenhofer 1/62

Regular Expressions (REX)

• Definition: The set of regular expressions over an alphabet Σ
and the languages in Σ* which they generate are defined
recursively:
– Base Cases: Each symbol a ∈ Σ as well as the symbols ε

and ∅ are regular expressions:
• a generates the atomic language L(a) = {a}
• ε generates the language L(ε) = {ε}
• ∅ generates the empty language L(∅) = { } = ∅

– Inductive Cases: if r1 and r2 are regular expressions so are
r1∪r2, (r1)(r2), (r1)* and (r1)+:

• L(r1∪r2) = L(r1)∪L(r2), so r1∪r2 generates the union
• L((r1)(r2)) = L(r1)•L(r2), so (r1)(r2) is the concatenation
• L((r1)*) = L(r1)*, so (r1)* represents the Kleene-*
• L((r1)+) = L(r1)+, so (r1)+ represents the Kleene-+

Discrete Event Systems – R. Wattenhofer 1/63

Regular Expressions: Table of Operations including UNIX

Operation Notation Language UNIX

Union r1∪r2 L(r1)∪L(r2) r1|r2

Concatenation (r1)(r2) L(r1)•L(r2) (r1)(r2)

Kleene-* (r)* L(r)* (r)∗

Kleene-+ (r)+ L(r)+ (r)+

Exponentiation (r)n L(r)n (r){n}

Discrete Event Systems – R. Wattenhofer 1/64

Regular Expressions: Simplifications

• Just as algebraic formulas can be simplified by using less
parentheses when the order of operations is clear, regular
expressions can be simplified. Using the pure definition of
regular expressions to express the language {banana,nab}* we
would be forced to write something nasty like

((((b)(a))(n))(((a)(n))(a))∪(((n)(a))(b)))*

• Using the operator precedence ordering *, • , ∪ and the
associativity of • allows us to obtain the simpler:

(banana∪nab)*

• This is done in the same way as one would simplify the
algebraic expression with re-ordering disallowed:

((((b)(a))(n))(((a)(n))(a))+(((n)(a))(b)))4 = (banana+nab)4

Discrete Event Systems – R. Wattenhofer 1/65

Regular Expressions: Example

• Question: Find a regular expression that generates the language
consisting of all bit-strings which contain a streak of seven 0’s or
contain two disjoint streaks of three 1’s.
– Legal: 010000000011010, 01110111001, 111111
– Illegal: 11011010101, 10011111001010, 00000100000

• Answer: (0∪1)*(07∪13(0∪1)*13)(0∪1)*
– An even briefer valid answer is: Σ*(07∪13Σ*13)Σ*
– The official answer using only the standard regular operations is:

(0∪1)*(0000000∪111(0∪1)*111)(0∪1)*
– A brief UNIX answer is:

(0|1)*(0{7}|1{3}(0|1)*1{3})(0|1)*

Discrete Event Systems – R. Wattenhofer 1/66

Regular Expressions: Examples

1) O*1O*

2) (ΣΣ)*

3) 1*Ø

4) Σ = {0,1}, {w | w has at least one 1}

5) Σ = {0,1}, {w | w starts and ends with the same symbol}

6) {w | w is a numerical constant with sign and/or fractional part}
• E.g. 3.1415, -.001, +2000

Discrete Event Systems – R. Wattenhofer 1/67

Regular Expressions: A different view…

• Regular expressions are just strings. Consequently, the set of all
regular expressions is a set of strings, so by definition is a language.

• Question: Supposing that only union, concatenation and Kleene-*
are considered. What is the alphabet for the language of regular
expressions over the base alphabet Σ ?

• Answer: Σ ∪ { (,), ∪, *}

Discrete Event Systems – R. Wattenhofer 1/68

REX NFA

• Since NFA’s are closed under the regular operations we
immediately get

• Theorem: Given any regular expression r there is an NFA N which
simulates r. That is, the language accepted by N is precisely the
language generated by r so that L(N) = L(r). Furthermore, the NFA
is constructible in linear time.

Discrete Event Systems – R. Wattenhofer 1/69

REX NFA

• Proof: The proof works by induction, using the recursive definition of
regular expressions. First we need to show how to accept the base
case regular expressions a∈Σ, ε and ∅. These are respectively
accepted by the NFA’s:

• Finally, we need to show how to inductively accept regular
expressions formed by using the regular operations. These are just
the constructions that we saw before, encapsulated by:

q0 q0q1q0
a

Discrete Event Systems – R. Wattenhofer 1/70

REX NFA exercise: Find NFA for (ab ∪ a)*

Discrete Event Systems – R. Wattenhofer 1/71

REX NFA: Example

• Question: Find an NFA for the regular expression
(0∪1)*(0000000∪111(0∪1)*111)(0∪1)*

of the previous example.

Discrete Event Systems – R. Wattenhofer 1/72

REX NFA FA ?!?

• The fact that regular expressions can be converted into NFA’s
means that it makes sense to call the languages accepted by
NFA’s “regular.”

• However, the regular languages were defined to be the
languages accepted by FA’s, which are by default, deterministic.
It would be nice if NFA’s could be “determinized” and converted
to FA’s, for then the definition of “regular” languages, as being
FA-accepted would be justified.

• Let’s try this next.

Discrete Event Systems – R. Wattenhofer 1/73

NFA’s have 3 types of non-determinism

Nondeterminism
type

Machine
Analog

δ -function Easy to fix? Formally

Under-determined Crash No output yes, fail-
state |δ(q,a)|= 0

Over-determined Random
choice

Multi-
valued no |δ(q,a)|> 1

ε
Pause
reading

Redefine
alphabet no |δ(q,ε)|> 1

Discrete Event Systems – R. Wattenhofer 1/74

Determinizing NFA’s: Example

• Idea: We might keep track of all parallel active states as the
input is being called out. If at the end of the input, one of the
active states happened to be an accept state, the input was
accepted.

• Example, consider the following NFA, and its deterministic FA.

1

2 3

a

a

ε

a,b

b

Discrete Event Systems – R. Wattenhofer 1/75

One-Slide-Recipe to Derandomize

• Instead of the states in the NFA, we consider the power-states in
the FA. (If the NFA has n states, the FA has 2n states.)

• First we figure out which power-states will reach which power-states
in the FA. (Using the rules of the NFA.)

• Then we must add all epsilon-edges: We redirect pointers that are
initially pointing to power-state {a,b,c} to power-state {a,b,c,d,e,f}, if
and only if there is an epsilon-edge-only-path pointing from any of
the states a,b,c to states d,e,f (a.k.a. transitive closure). We do the
very same for the starting state: starting state of FA = {starting state
of NFA, all NFA states that can recursively be reached from there}

• Accepting states of the FA are all states that include a accepting
NFA state.

Discrete Event Systems – R. Wattenhofer 1/76

Remarks

• The previous recipe can be made totally formal. More details can be
found in the reading material, and presented in the lecture.

• Just following the recipe will often produce a too complicated FA.
Sometimes obvious simplifications can be made. In general
however, this is not an easy task.

• Exercise: Let’s derandomize the simplifed two-state NFA from slide
1/70 which we derived from regular expression (ab ∪ a)*

Discrete Event Systems – R. Wattenhofer 1/77

Automata Simplification

• The FA can be simplified. States {1,2} and {1}, for example,
cannot be reached. Still the result is not as simple as the NFA.

Discrete Event Systems – R. Wattenhofer 1/78

REX NFA FA

• Summary: Starting from any NFA, we can use subset construction
and the epsilon-transitive-closure to find an equivalent FA accepting
the same language. Thus,

• Theorem: If L is any language accepted by an NFA, then there
exists a constructible [deterministic] FA which also accepts L.

• Corollary: The class of regular languages is closed under the
regular operations.

• Proof: Since NFA’s are closed under regular operations, and FA’s
are by default also NFA’s, we can apply the regular operations to
any FA’s and determinize at the end to obtain an FA accepting the
language defined by the regular operations.

Discrete Event Systems – R. Wattenhofer 1/79

REX NFA FA REX …

• We are one step away from showing that FA’s ≈ NFA’s ≈ REX’s;
i.e., all three representation are equivalent. We will be done
when we can complete the circle of transformations:

• In fact, FA’s are automatically NFA’s.

FA

NFA

REX

Discrete Event Systems – R. Wattenhofer 1/80

NFA REX is simple?!?

• Then FA REX even simpler!

• Please solve this simple example:

1

0

0

1

1

1
1

0

0
0

Discrete Event Systems – R. Wattenhofer 1/81

REX NFA FA REX …

• In converting NFA’s to REX’s we’ll introduce the most
generalized notion of an automaton, the so called
“Generalized NFA” or “GNFA”. In converting into REX’s,
we’ll first go through a GNFA:

FA

NFA

REX

GNFA

Discrete Event Systems – R. Wattenhofer 1/82

GNFA’s

• Definition: A generalized nondeterministic finite automaton
(GNFA) is a graph whose edges are labeled by regular
expressions,
– with a unique start state with in-degree 0, but arrows to

every other state
– and a unique accept state with out-degree 0, but arrows from

every other state (note that accept state ≠ start state)
– and an arrow from any state to any other state (including

self).

• A string u is said to label a path in a GNFA, if it is an element of
the language generated by the regular expression which is
gotten by concatenating all labels of edges traversed in the
path. The language accepted by a GNFA consists of all the
accepted strings of the GNFA.

Discrete Event Systems – R. Wattenhofer 1/83

GNFA Example

• This is a GNFA because edges are labeled by REX’s, start state
has no in-edges, and the unique accept state has no out-edges.

• Convince yourself that 000000100101100110 is accepted.

b

c

0∪ε

000

a

(0110∪1001)*

Discrete Event Systems – R. Wattenhofer 1/84

NFA REX conversion process

1. Construct a GNFA from the NFA.
A. If there are more than one arrows from one state to another,

unify them using “∪”
B. Create a unique start state with in-degree 0
C. Create a unique accept state of out-degree 0
D. [If there is no arrow from one state to another, insert one with

label Ø]

2. Loop: As long as the GNFA has strictly more than 2 states:
Rip out arbitrary interior state and modify edge labels.

3. The answer is the unique label r.

acceptstart
r

Discrete Event Systems – R. Wattenhofer 1/85

NFA REX: Ripping Out.

• Ripping out is done as follows. If you want to rip the middle
state v out (for all pairs of neighbors u,w)…

• … then you’ll need to recreate all the lost possibilities from u to
w. I.e., to the current REX label r4 of the edge (u,w) you should
add the concatenation of the (u,v) label r1 followed by the (v,v)-
loop label r2 repeated arbitrarily, followed by the (v,w) label r3..
The new (u,w) substitute would therefore be:

v wu
r3

r2

r1

r4

wu
r4 ∪ r1 (r2)*r3

Discrete Event Systems – R. Wattenhofer 1/86

FA REX: Example

Discrete Event Systems – R. Wattenhofer 1/87

FA REX: Exercise

Discrete Event Systems – R. Wattenhofer 1/88

Summary: FA ≈ NFA ≈ REX

• This completes the demonstration that the three methods of
describing regular languages:

1. Deterministic FA’s
2. NFA’s
3. Regular Expressions

• We have learnt that all these are equivalent.

Discrete Event Systems – R. Wattenhofer 1/89

Remark about Automaton Size

• Creating an automaton of small size is often advantageous.
– Allows for simpler/cheaper hardware, or better exam grades.
– Designing/Minimizing automata is therefore a funny sport. Example:

a

b

1

d

0,1

e

0,1

1

c

0,1

gf

0

0

0
1

1

0

Discrete Event Systems – R. Wattenhofer 1/90

Minimization

• Definition: An automaton is irreducible if
– it contains no useless states, and
– no two distinct states are equivalent.

• By just following these two rules, you can arrive at an
“irreducible” FA. Generally, such a local minimum does not
have to be a global minimum.

• It can be shown however, that these minimization rules actually
produce the global minimum automaton.

• The idea is that two prefixes u,v are indistinguishable iff for all
suffixes x, ux ∈ L iff vx ∈ L. If u and v are distinguishable, they
cannot end up in the same state. Therefore the number of states
must be at least as many as the number of pairwise
distinguishable prefixes.

Discrete Event Systems – R. Wattenhofer 1/91

Three tough languages

1) L1 = {0n1n | n ≥ 0}

2) L2 = {w | w has an equal number of 0s and 1s}

3) L3 = {w | w has an equal number of occurrences of
01 and 10 as substrings}

• In order to fully understand regular languages, we also must
understand their limitations!

Discrete Event Systems – R. Wattenhofer 1/92

Pigeonhole principle

• Consider language L, which contains word w ∈ L.
• Consider an FA which accepts L, with n < |w| states.
• Then, when accepting w, the FA must visit at least one state twice.

• This is according to the pigeonhole (a.k.a. Dirichlet) principle:
– If m>n pigeons are put into n pigeonholes, there's a hole with

more than one pigeon.
– That’s a pretty fancy name for a boring observation...

Discrete Event Systems – R. Wattenhofer 1/93

Languages with unbounded strings

• Consequently, regular languages with unbounded strings can only
be recognized by FA (finite! bounded!) automata if these long
strings loop.

• The FA can enter the loop once, twice, …, and not at all.
• That is, language L contains all {xz, xyz, xy2z, xy3z, …}.

Discrete Event Systems – R. Wattenhofer 1/94

Pumping Lemma

• Theorem: Given a regular language L, there is a number p (called
the pumping number) such that any string in L of length ≥ p is
pumpable within its first p letters.

• In other words, for all u ∈ L with |u | ≥ p we can write:
– u = xyz (x is a prefix, z is a suffix)
– |y| ≥ 1 (mid-portion y is non-empty)
– |xy| ≤ p (pumping occurs in first p letters)
– xyiz ∈ L for all i ≥ 0 (can pump y-portion)

• If, on the other hand, there is no such p, then the language is not
regular.

Discrete Event Systems – R. Wattenhofer 1/95

Pumping Lemma Example

• Let L be the language {0n1n | n ≥ 0}

• Assume (for the sake of contradiction) that L is regular
• Let p be the pumping length. Let u be the string 0p1p.
• Let’s check string u against the pumping lemma:

• “In other words, for all u ∈ L with |u | ≥ p we can write:
– u = xyz (x is a prefix, z is a suffix)
– |y| ≥ 1 (mid-portion y is non-empty)
– |xy| ≤ p (pumping occurs in first p letters)
– xyiz ∈ L for all i ≥ 0 (can pump y-portion)”

Discrete Event Systems – R. Wattenhofer 1/96

Pumping Lemma Example Continued

• Case study:

• y = 0i, i > 0: The string y consists of 0s only.
– The string xyyz has more 0s than 1s, thus xyyz is not in the language L.

The violates the last condition.
• y = 1i, i > 0.

– Same.
• y consists of both 0s and 1s

– In this case the string xyyz may have the same number of 0s and 1s,
but they will be out of order. Hence xyyz is not in the language L, which
violates the last condition.

• Hence L violates the pumping lemma, and therefore L is not regular!

Discrete Event Systems – R. Wattenhofer 1/97

Let’s make the example a bit harder…

• Let L be the language {w | w has an equal number of 0s and 1s}

• Assume (for the sake of contradiction) that L is regular
• Let p be the pumping length. Let u be the string 0p1p.
• Let’s check string u against the pumping lemma:

• “In other words, for all u ∈ L with |u | ≥ p we can write:
– u = xyz (x is a prefix, z is a suffix)
– |y| ≥ 1 (mid-portion y is non-empty)
– |xy| ≤ p (pumping occurs in first p letters)
– xyiz ∈ L for all i ≥ 0 (can pump y-portion)”

Discrete Event Systems – R. Wattenhofer 1/98

Harder example continued

• This time we use |xy| · p: let’s use that y must consist of 0s only!
• Pump it there! Clearly again, if xyz ∈ L, then xz or xyyz are not in L.

• We could have used this technique already with the last example.
Then we wouldn’t need all this case study stuff.

• There’s another alternative proof for this example:
– 0*1* is regular.
– ∩ is a regular operation.
– If L regular, then L ∩ 0*1* is also regular.
– However, L ∩ 0*1* is the language we studied in the previous example

(0n1n). A contradiction.

Discrete Event Systems – R. Wattenhofer 1/99

Now you try…

• Is L1 = {ww | w ∈ (0∪1)* } regular?

• Is L2 = {1n | n being a prime number} regular?

	Chapter 1 AUTOMATA and LANGUAGES
	Overview
	The Coke Vending Machine
	Vending Machine Java Code
	Why this was overkill
	Vending Machine “Logics”
	Why was this simpler than Java Code?
	Alphabets and Strings
	Alphabets and Strings
	Finite Automaton Example
	Formal Definition of a Finite Automaton
	Accept States
	Language
	Designing Finite Automata
	Designing Finite Automata: Examples
	Definition of Regular Language
	Finite Languages
	Languages of Cardinality 1
	Languages of Cardinality 1
	Arbitrary Finite Number of Finite Strings
	Infinite Cardinality
	Regular Operations
	Regular Operations – Summarizing Table
	Regular operations: Union
	Regular operations: Concatenation
	Regular operations: Kleene-*
	Regular operations: Kleene-+
	Closure of Regular Languages
	Union Example
	Union Example
	Union Example: L1 and L2
	Union Example: L1L2
	Cartesian Product Construction
	Cartesian Product Construction. d-function.
	Formal Definition
	Other constructions: Intersector
	Other constructions: Difference
	Other constructions: Symmetric difference
	Complement
	Complement Example
	Boolean-Closure Summary
	Back to Nondeterministic FA
	Weird Idea
	Discussion of weird idea
	Introduction to Nondeterministic Finite Automata
	NFA: What’s different from a [D]FA?
	More NFA Examples
	NFA: Formal Definition.
	Formal Definition of an NFA: Dynamic
	Example
	Answers
	NFA’s vs. Regular Operations
	NFA: Union
	Union Example
	NFA: Concatenation
	Concatenation Example
	NFA’s: Kleene-+.
	Kleene-+ Example
	NFA’s: Kleene-*
	Closure of NFA under Regular Operations
	Regular Expressions (REX)
	Regular Expressions (REX)
	Regular Expressions: Table of Operations including UNIX
	Regular Expressions: Simplifications
	Regular Expressions: Example
	Regular Expressions: Examples
	Regular Expressions: A different view…
	REX  NFA
	REX  NFA
	REX  NFA exercise: Find NFA for (ab [a)*
	REX  NFA: Example
	REX  NFA  FA ?!?
	NFA’s have 3 types of non-determinism
	Determinizing NFA’s: Example
	One-Slide-Recipe to Derandomize
	Remarks
	Automata Simplification
	REX  NFA  FA
	REX  NFA  FA  REX …
	NFA  REX is simple?!?
	REX  NFA  FA  REX …
	GNFA’s
	GNFA Example
	NFA  REX conversion process
	NFA  REX: Ripping Out.
	FA  REX: Example
	FA  REX: Exercise
	Summary: FA ¼ NFA ¼ REX
	Remark about Automaton Size
	Minimization
	Three tough languages
	Pigeonhole principle
	Languages with unbounded strings
	Pumping Lemma
	Pumping Lemma Example
	Pumping Lemma Example Continued
	Let’s make the example a bit harder…
	Harder example continued
	Now you try…

