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1 Introduction

One of the major problems faced by Internet hosts is denial-
of-service (DoS) caused by IP packet floods. Hosts in the
Internet are unable to stop packets addressed to them. Once
a host’s network link becomes congested, IP routers respond
to the overload by dropping packets arbitrarily. This is con-
trary to the goals of the host, which could respond more
effectively to overload if it had control over which packets
were dropped. For example, a host may reject new connec-
tions rather than accept excess load. A host running multiple
services may give higher priority to some services than oth-
ers (service differentiation). Also, a host may provide lower
quality service rather than reject requests (service degrada-
tion).

The main thesis of this paper is that hosts – not the net-
work – should be given control to respond to packet floods
and overload. Ideally, hosts should have fine-grained con-
trol over how routers process the packets addressed to them.
For instance, hosts should be able to decide which packets
to receive, which packets are dropped, and which packets
are redirected. To illustrate this point, we show how hosts
can implement the following useful defenses against packet
flooding:

� Avoid receiving packets at arbitrary ports.
� Contain the traffic of an application (service) under a

flooding attack to protect the traffic of other applica-
tions.

� Protect the traffic of established connections.
� Throttle the rate at which new connections are opened.

We present two possible realizations of the above defenses.
One is based on the Internet Indirection Infrastructure [22],
and the other is an IP-based solution in which hosts insert
filters at the last hop IP router.

The rest of the paper is organized as follows. In Section 2,
we argue why hosts should be given fine-grained control

�
This research was sponsored by NSF under grant numbers Ca-

reer Award ANI-0133811, and ITR Award ANI-0085879. Views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of NSF, or the U.S. government.�

Daniel Adkins is supported by a fellowship from the Fannie
and John Hertz Foundation.

to respond to flooding attacks, and in the process specify
the problem and goals. In Section 3, we demonstrate how
hosts can defend themselves against flooding attacks using
the ability to control how routers process packets in the net-
work. We present two realizations of these responses in Sec-
tion 4. We present related work in Section 5 and conclude in
Section 6.

2 A case for host control

The term “denial-of-service” was originally coined by
Gligor [11] in the context of operating systems. It has
since been associated with many types of network at-
tacks. It refers to attacks that exploit protocol vulnerabili-
ties (e.g., SYN flooding [19]), attacks that exploit implemen-
tation vulnerabilities (e.g., Teardrop [7]), and packet flood-
ing (e.g., DDoS). Shields [20] gives a definition of network
denial-of-service which captures all of these different at-
tacks.

In this paper, we focus on IP flooding attacks. Other DoS
attacks can, in theory, be addressed at the hosts once the vul-
nerabilities are known. In contrast, hosts can do little against
IP flooding attacks. IP flooding attacks are possible because
hosts in the Internet have no control over which packets they
receive. This problem is not unique to IP. Any entity in an
open network with a public point of contact is vulnerable to
flooding attacks.

We specify our goals in addressing the IP flooding prob-
lem in terms of how the aggregate throughput of applica-
tions running on hosts varies with the incoming traffic rate.
Figure 1 shows how the application throughput1 varies with
the amount of incoming traffic for a typical Internet host. As
the incoming traffic increases, the application throughput in-
creases. However, as the incoming traffic exceeds the capac-
ity of the network link, packet loss will ultimately cause con-
gestion collapse of the TCP traffic. In contrast, the optimal
throughput curve would stay constant at the link capacity.

Our goal is to make the throughput curve as close to optimal
as possible. In this work, we do not focus on the mecha-
nisms that hosts use to detect an attack. Instead, we focus on
the mechanisms that hosts use to react once they determine
that they are overloaded or under attack. Our central idea is
to provide control to hosts over the packets they receive. Ide-

1The definition of throughput is application-specific. For exam-
ple, it could be the number of connections satisfied per second.
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Figure 1: Application throughput as a function of incoming
traffic rate for (a) typical Internet host and (b) optimal case.

ally, a host should be able to invoke responses that would
have been possible had its network link not been congested.

A natural question is why not implement more sophisticated
drop policies at routers instead. We believe that such an ap-
proach, while useful, is too restrictive. Hosts inherently have
more information about the type and the importance of the
traffic they receive than the network does. This places hosts
in the best position to respond to IP flooding attacks. Con-
sider a host that runs two services � and � , and assume that
the traffic to service � surges abruptly causing congestion on
the incoming link. The best possible response to this event
may depend on knowledge available only to the host. If ser-
vice � has higher priority than � , and if the host believes
that the surge is because of a flash crowd (e.g., � is a web
server that has just announced a new popular product), the
host may decide to stop the traffic of the less important ser-
vice � . In contrast, if � is the more important service and if
the host believes that the surge is due to a DDoS attack, the
host may choose to stop the traffic of � . Because the traf-
fic in the two cases appears to be the same to the network,
it would be impossible for the network to have an optimal
response to the congestion without input from the host.

3 Responses to packet flooding

In this section, we present some responses to packet floods
which hosts can use to improve their application throughput.
In particular, the hosts specify the action to be performed on
different classes of packets, where each class is determined
by information in the packet header. How a class is defined
by an application depends on the implementation of these re-
sponses. For example, a class could be defined as the set of
SYN packets that arrive on a particular port. While our gen-
eral philosophy is to provide arbitrary control, in this section
we seek to illustrate how useful properties can be achieved
by simple responses.

A. Avoid receiving packets at arbitrary ports

Internet hosts can receive unsolicited packets at ports where
no service runs. Though these packets are dropped by the
kernel, they consume network bandwidth and may affect
other services. Thus, a host should receive packets only at
ports on which it is listening or as part of an established
connection. This response prevents arbitrary scanning of net-
works and also illegitimate packets sent to random ports.

B. Contain the traffic of individual applications

With the ability to decide which packets are dropped, hosts
can contain the traffic of individual applications that might
be under a flooding attack, thus protecting the other appli-
cations that run on the same host.2 Let us consider the ex-
ample of a host with two applications expecting requests,
a web server and a transaction server. If either application
is attacked, both are affected because they share a common
network link. When incoming traffic exceeds the link capac-
ity, the host should be able to decide which packets to drop
depending on which service has higher priority. In our ex-
ample, the host should be able to keep the transaction server
running while possibly stopping the traffic to the web server.

C. Protect the traffic of established connections

To maximize the application throughput, hosts need to pro-
tect the traffic of established connections against arbitrary
traffic. This makes it more difficult for an attacker to per-
form IP flooding attacks because it is harder to establish a
connection and sustain the traffic on that connection rather
than send arbitrary packets. This is because establishing a
connection requires the attacker to handle data and signaling
packets (e.g., ACK, SYN ACK packets) from the victim.

D. Throttle rate of connection setup

While the previous defense protects the established connec-
tions, it is still difficult for legitimate clients to open new
connections in the presence of DoS attacks. To alleviate this
problem, a host under attack should be able to reduce the
fraction of connection attempts made by the attacker. One
way to achieve this goal is to make it harder for a client to
open a new connection by using cryptographic puzzles [17]
or captchas [23]. While this approach will throttle the rate of
connection setup of all clients, it will a have a much greater
effect on the attacker than on legitimate clients. This is be-
cause a legitimate client opens, in general, far fewer connec-
tions than an attacking host does.

2We are not referring to bandwidth sharing between conformant
flows which systems such as Congestion Manager [5] achieve.
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Figure 2: (a) Flooding attack via victim’s public triggers. (b)
Dilute the attack by dropping two of the four public triggers.

4 Two realizations

In this section, we first demonstrate how the defenses de-
scribed in the previous section can be realized using the In-
ternet Indirection Infrastructure ( ��� [22]). Using the ideas
that embody this solution, we then propose a mechanism that
does not require an indirection layer. It only requires that
ISPs allow hosts to add filters at their last hop router.

4.1 ��� -based approach

The first solution is based on ��� , an indirection layer that
gives hosts control over which packets they receive by using
a rendezvous primitive. The use of ��� provides a method of
identifying hosts without using IP. Our choice of ��� for the
indirection layer was influenced by our familiarity with it.
For ease of exposition, we use the notation in [22]. We only
need to know a subset of the capabilities of ��� , which we
summarize here.

1. Sources send packets to a logical identifier and receivers
express interest in packets by inserting a trigger into the
network.

2. Packets are of the form �	��
��
�������� and triggers are of the
form ����
�����
�
���� , where ��
�
�� is either an identifier or an
IP address. Given a packet ����
���
�������� , ��� will search for
a trigger ����
�����
�
���� and forward 
������ to ��
�
�� .

3. If a host wants to stop receiving packets from a particu-
lar trigger, it can simply remove that trigger.

4. Client-server communication: Servers that expect con-
nections from arbitrary clients must have triggers whose
identifiers are well-known. These triggers are called
public triggers Once a client contacts a server through
its public trigger, they exchange a pair of identifiers
which they use for the remainder of the communication.
Triggers corresponding to these identifiers are referred
to as private triggers.

We now discuss in detail how hosts can use ��� to achieve the
desired defenses.

Avoid receiving packets at arbitrary ports. Clients in ���
can hide their IP addresses and publish the identifiers of only
their public triggers. We assume here that it is very hard for
the attacker to find the IP address by other means.

Contain the traffic of individual applications. The traffic
of different applications can be distinguished from one an-
other by the triggers used for communication. For example,
each application could have a different public trigger, or each
client contacting a server could do so with a different private
trigger. To contain the traffic of an application, we could as-
sociate a drop probability with each trigger. If an application
is attacked or becomes overloaded, we could raise the drop
probability of its triggers to reduce its traffic. If necessary,
we could disconnect the application entirely by setting the
drop probability to zero or by removing its triggers.

Even though ��� does not associate drop probabilities with
triggers, we can emulate the effect with multiple triggers
(Figure 2). A server has a total of � public triggers, and each
client is expected to randomly choose one of these triggers
when it attempts to connect. The server, however, at any time
maintains only a subset � of the triggers, thus effecting a
drop rate of ����� . The set of triggers that the server main-
tains is changed rapidly over time so that the attacker does
not have time to find out which triggers are active and re-
spond accordingly. This would imply that a fraction �����
of the traffic (both attacker and legitimate) corresponding to
that particular server is dropped. Note that it is not neces-
sary that a client know the active triggers. If a client fails to
connect it can simply retry with another trigger. The client
will eventually connect after approximately � ��� tries. For
further details, we refer the interested reader to our technical
report [1].

Protect the traffic of established connections. In ��� , a
client can send packets to a host only using the host’s public
triggers or the private triggers corresponding to the client’s
connections. The host can protect the traffic of its established
connections by dropping some of the packets destined to the
public triggers. Using the notation in the above example, a
host while maintaining � of its � public triggers can choose
an appropriate value of � such that the traffic of its estab-
lished connections is not affected.

Throttle rate of connection setup. Consider a server ! that
is under a flooding attack. ! can use indirection to redirect
traffic to a powerful third party server � , called a gatekeeper,
which shields the server ! from the attack (Figure 3). The
gatekeeper gives cryptographic puzzles to the client which
have to be solved in order to contact the server. This will
considerably slow down attacking hosts that attempts to open
a large number of connections. In contrast, the impact this
has on a typical client which opens very few connections
will be small.

To implement this defense, server ! stores a private trigger
�#"$�%!&� where " is known only to the gatekeeper � . In turn, �
inserts a public trigger �#' � �(� and advertises ' as being the
public ID of server ! . When a client ) wants to contact ! , )
sends a message to ID ' . This message is in turn delivered to

� (step 1 in Figure 3). Upon receiving this message, � sends

3



Server (S)Client (C) t S

x A

Gate-keeper (A)

1 C id

3

2

Figure 3: Slowing down a DoS attack on public triggers.
When a client ) wants to contact a server ! , it must first
solve a puzzle before the gatekeeper � will forward its
packet to ! .

a cryptographic puzzle back to client ) via the private trigger
����
�� ) � that was inserted by the client ) (step 2 in Figure 3).
Client ) then solves the puzzle and sends the answer back
to ID ' . Upon receiving this message, � verifies that ) has
solved the puzzle and forwards the packet to ID " (step 2 in
Figure 3). Finally, the packet is delivered to server ! which
allocates a private trigger for client ) as before.

To avoid replay attacks, � will respond to each message with
a unique puzzle. Once it sends the puzzle, � stores it and
waits for a reply. On receiving the reply (i.e., the solution
to the puzzle), � removes the puzzle. Of course, if � does
not receive a reply within a specific period of time, � will
remove the puzzle from its list.

We also note that these schemes would be adopted by servers
only when under attack. Hence, under normal operation,
clients will not have the burden of either solving crypto-
graphic puzzles or trying multiple times to reach a server.

In this section, we have shown how hosts can protect them-
selves by controlling which packets they receive. However,
this is only half the solution. It is a challenge to design an
indirection layer which is itself robust to DoS attacks, i.e.,
one should not be able to use the indirection primitives that
the infrastructure exports to attack either the infrastructure
or the hosts. A solution to address this challenge is presented
in [1].

4.2 IP-based approach

In this section, we present how the indirection-based filter-
ing techniques can be extended to the Internet with minimal
changes to edge routers directly connected to the end-hosts.
The practical viability of these techniques and whether ISPs
would be willing to install them are discussed at the end of
this section.

We make the following assumptions: (i) The edge ISP is bet-
ter provisioned than the host so that it may sustain attack
traffic, (ii) The ISP is willing to install filters on the host’s
behalf, (iii) ISP filters must be modified to enable the port
that the server runs on to allow incoming traffic, (iv) Un-

modified clients would be able to connect to the servers in
the normal case, but may need to do special work (like extra
computation of cryptographic puzzles) when the server they
contact is experiencing a flooding attack.

The basic idea of the solution is to provide a configurable
white list of allowed ports at the edge-router directly con-
nected to the hosts. Configuration settings include which
ports to open, the rate at which bandwidth needs to be shared
across different ports, etc. Also, to allow unmodified applica-
tions to use the mechanisms, the edge-routers perform min-
imal NAT-like functionality to setup white lists of connec-
tions that are legitimately setup using the public ports where
services are run at the hosts.

Edge-routers that are directly connected to hosts need to
maintain per-flow state on behalf of the hosts, i.e., if

�
is the

edge-router through which all packets destined for ! must
pass, then

�
maintains per-flow state for ! . We now explain

the mechanisms in the context of the responses that it allows
for hosts.

Avoid receiving packets at arbitrary ports. ! instructs
�

to allow traffic on certain public ports only. This functional-
ity is similar to port forwarding that many NAT-based fire-
walls allow. Once a client ) establishes a connection to !
(by using a port that is white listed by ! in

�
),

�
will main-

tain state to allow ) ’s packets through to ! .
�

can do this
transparently in the same manner as a NAT does. When the
connection is terminated,

�
removes the associated state. !

also has the power to stop malicious clients by terminating
their connections.

Contain the traffic of individual applications. ! can spec-
ify how exactly to split the bandwidth among its various ap-
plications. This functionality is similar to traffic shaping that
many routers already implement.

Protect the traffic of established connections. ! can ask
�

to reserve a fraction of ! ’s bandwidth for established con-
nections. Under congestion,

�
will shape traffic according to

the rules that ! has specified.
�

will limit the rate of pack-
ets to ! ’s public ports in order to ensure that ! ’s ongoing
connections will receive their reserved bandwidth.

Throttle rate of connection setup. For redirecting traffic to
gatekeepers, one can use DNS (like Akamai does) to send the
traffic to the gatekeeper. In fact, the edge routers, if modified
further, can themselves act as gatekeepers.

4.3 ��� -based approach vs. IP-based approach

Generality. The indirection primitive that ��� exports pro-
vides a clean mechanism for hosts to exercise control. Fur-
thermore, the indirection primitive gives an elegant way of
redirecting traffic seamlessly to a third party which would
require DNS hacks for implementing in IP. In contrast, in
the IP-based solution, the use of IP addresses combined with
port numbers to identify services running on a host is not
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general enough. In particular, the filters are not pushed arbi-
trarily into the network. 3

Deployability. The indirection-based approach assumes the
existence of an infrastructure such as ��� . As we show in an
earlier paper [22], such an infrastructure would greatly sim-
plify deployment of a wide range of IP services, as well as
enable the deployment of the flooding attack prevention tech-
niques we outline in this paper.

The IP-based solution, on the other hand, requires changing
the edge router of the ISP that provides service to the host.
It also assumes that the ISP is willing to cooperate with the
hosts by allowing them to install filters into the ISP network.
This technique is, however, incrementally deployable in the
Internet. Whether ISPs would allow this is a separate issue
which we do not address in this paper.

5 Related work
The proposed solutions to prevent DoS attacks can be
roughly divided into two classes: IP-level and overlay-based.

IP-level techniques are based upon traceback [6, 8, 18, 21]
and pushback [16], both of which require router support. The
goal of IP traceback is to detect the source of DoS attacks
even when the attacker spoofs source addresses. It is com-
plementary to our work as it provides an additional level of
support for filtering illegitimate packets at the IP layer. With
the pushback technique, routers identify the offending traffic
aggregate and then push filters to upstream routers to limit
the aggregate near its origin. In contrast to our mechanisms,
pushback operates at a coarse level and treats all packets of
the aggregate identically. Another IP-level approach is Path
Identification (Pi), where routers mark packets that enables
the victim to detect spoofed source addresses and to filter out
malicious traffic [25].

Jamjoom and Shin [13] noted that during flash crowds, tradi-
tional drop policies hurt TCP throughput. Their solution, per-
sistent dropping, uses filters in IP routers to isolate TCP SYN
packets from TCP packets of ongoing connections. Their so-
lution is effective against flash crowds, but not against DDoS
where the traffic is not necessarily TCP.

Anderson et al. [3] prevent packet flooding by requiring
clients to get tokens before contacting a server. The use of to-
kens allows for a coarse-grained bandwidth reservation pol-
icy. In contrast, we advocate for giving hosts far more control
over the policy. For example, in our solution a host can easily
differentiate between the traffic of established connections
and the traffic of new connections, or between the traffic of
two applications running at the same host.

Secure Overlay Services (SOS) [15] was the first solution
to explore the idea of using overlay networks for proac-

3Indeed, in the Internet white lists have to be pushed completely
into the network to be effective, whereas black lists can be pushed
only where required.

tively defending against DoS attacks. SOS protects hosts
from flooding attacks by (i) installing filters at the ISP pro-
viding connectivity to the host and (ii) using an overlay net-
work to authenticate the users. Mayday [2] generalizes this
architecture and analyzes the implications of choosing dif-
ferent filtering techniques and overlay routing mechanisms.
However, these solutions assume that the set of authorized
users is known in advance, and that the set changes infre-
quently so that updating the authentication rules in the over-
lay nodes occurs rarely. Their solutions would not extend to
a general IP setting (e.g., for a web server) where it is not
always meaningful to speak of authorized users.

The first use of cryptographic puzzles is due to Merkle [17],
who used puzzles for the first instantiation of a public key
protocol. Dwork et al. propose puzzles to discourage spam-
mers from sending junk email [10]. Juels et al. used puzzles
to prevent SYN flooding [14]. Aura et al. [4] and Dean and
Stubblefield [9] and Wang and Reiter [24] propose puzzles to
defend against DoS on the initial authentication. Gligor [12]
analyzes the waiting time guarantees that different puzzle
and client challenge techniques provide.

6 Conclusion
In the current Internet, hosts are practically defenseless
against IP flooding attacks, as a sufficient amount of mali-
cious traffic exhausts the last-hop link capacity and renders
the link unusable. The reason flooding attacks can occur is
that a host is unable to control which packets it receives.

We find that end-hosts are in the best position to detect and
react to DoS attacks. Thus, we present two proposals that
allow hosts to take control of its incoming traffic. One mech-
anism relies on an indirection infrastructure that provides a
general and architecturally clean solution. Our second solu-
tion, which is incrementally deployable in the Internet, relies
on host and ISP collaboration, where the host can control
fine-grained network filters on the last hop router.

Our solutions have the immediate benefit that victims of DoS
attacks can start defending themselves. Another benefit is
that hosts without server functionalities cannot be attacked
by arbitrary attackers any more, as a host would enable pack-
ets only those connections that it has established. This would
rule out many flavors of worms that attack hosts which are
not servers. Only servers that can be contacted by arbitrary
hosts need a rendezvous mechanism. Our solutions constrain
attackers to attack through that narrow interface, thus pro-
tecting the ongoing connections.

However, there are still some questions that remain open.
While we advocate full control over packets, neither of the
two realizations we propose achieve it. They approximate
that notion by classifying packets based upon information in
headers such as port numbers or IDs. The natural question
that arises is how much control is necessary for hosts and at
what cost will this control come. Another point is that our
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methods help hosts cope with packet floods directed at them,
but do not protect the network itself. Ultimately, we need
to identify the source of DDoS attacks and stop them at the
entry points in the network.

We hope that our insights will influence the design of future
networks to be robust to DoS attacks.
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