
TinyOSTinyOS

Jan S. Jan S. RellermeyerRellermeyer
jrellermeyer@student.ethz.chjrellermeyer@student.ethz.ch

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[22//88]]

OverviewOverview

•• MotivationMotivation
•• HardwareHardware
•• TinyOSTinyOS ArchitectureArchitecture
•• Component Based ProgrammingComponent Based Programming
•• nesCnesC
•• TinyOSTinyOS SchedulingScheduling
•• Tiny Active MessagingTiny Active Messaging
•• TinyOSTinyOS Multi Hop RoutingMulti Hop Routing
•• TinyDBTinyDB
•• ConclusionConclusion

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[33//88]]

Motivation: Sensor NetworksMotivation: Sensor Networks

•• Low cost, low power, small in size, communicate Low cost, low power, small in size, communicate
in short distancesin short distances

•• Large number of sensors, densely deployed Large number of sensors, densely deployed
inside of close to the phenomenoninside of close to the phenomenon

•• Position not predetermined, can be randomly Position not predetermined, can be randomly
distributeddistributed

•• SelfSelf--organising distributed adorganising distributed ad--hoc networks, hoc networks,
nodes might fail, move etc. nodes might fail, move etc.

•• Cooperative effort, instead of sending raw data, Cooperative effort, instead of sending raw data,
do some local computation and transmit only do some local computation and transmit only
required and partially processed datarequired and partially processed data

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[44//88]]

Sensor Networks (contd.)Sensor Networks (contd.)

•• Network characteristicsNetwork characteristics
–– Total number of nodes is unknown, might be very largeTotal number of nodes is unknown, might be very large
–– Topology is unknown, can change in timeTopology is unknown, can change in time
–– Densely deployed: point to point communication ?Densely deployed: point to point communication ?
–– Nodes are limited in power, computational capacities, Nodes are limited in power, computational capacities,

memory, radio rangememory, radio range
–– Maybe even no global IDMaybe even no global ID‘‘s due to large amount of s due to large amount of

overhead and large number of sensors (Smart Dust ?)overhead and large number of sensors (Smart Dust ?)

•• Sensing, processing and transmitting dataSensing, processing and transmitting data
•• Applications: Collecting data in environmentApplications: Collecting data in environment
•• Or can be used to simulate general Or can be used to simulate general MANETsMANETs

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[55//88]]

Hardware Hardware –– MicaMica MoteMote

•• Developed at University of Berkeley, CADeveloped at University of Berkeley, CA

•• CPU: CPU: AtmelAtmel AVR ATmega128L AVR ATmega128L µµcontroller controller
-- 128 128 kBkB flash ROM, 4 flash ROM, 4 kBkB RAM, 4 RAM, 4 kBkB EEPROMEEPROM
-- Running at 4 MHz, 3.0 VRunning at 4 MHz, 3.0 V
-- Power management: Power management: idleidle (CPU asleep), (CPU asleep), power downpower down

(only watchdog and interrupt for wakeup), (only watchdog and interrupt for wakeup), power savepower save
(power down plus timer)(power down plus timer)

-- Harvard style 16 bit address spaceHarvard style 16 bit address space
-- 8 bit RISC machine8 bit RISC machine
-- 32 832 8--bit registersbit registers
-- Highly orthogonal instruction setHighly orthogonal instruction set

Berkeley mica2dotBerkeley mica2dot

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[66//88]]

Hardware Hardware –– MicaMica MoteMote ((contdcontd.).)

•• Radio: Radio: ChipconChipcon CC 1000CC 1000
–– UHF transceiver (300 MHz UHF transceiver (300 MHz –– 1 GHz) 1 GHz)
–– FSK modulation, up to 76.8 FSK modulation, up to 76.8 kBaudkBaud
–– No buffering (!)No buffering (!)
–– Range: 100s of feetRange: 100s of feet

•• IO: IO:
–– Photo sensor + internal A/D converterPhoto sensor + internal A/D converter
–– 3 output 3 output LEDsLEDs
–– Different sensor boards via IDifferent sensor boards via I²²C BusC Bus

(up to 8 devices)(up to 8 devices)

•• UART serial port controller (via interface boardUART serial port controller (via interface board))

crossbowcrossbow micamica

mica2dot mica2dot
interfaceinterface boardboard

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[77//88]]

Hardware Hardware -- BTnodeBTnode

•• Developed at TIK (DDeveloped at TIK (D--ITET) and ITET) and
DSG (DDSG (D--INFK) ETH INFK) ETH ZZüürichrich

•• CPU: Also CPU: Also AtmelAtmel AVR ATmega128L AVR ATmega128L
–– 4 4 kBkB EEPROM, 64 EEPROM, 64 kBkB SRAM, 128 SRAM, 128 kBkB FlashFlash

•• Radio: Radio: ZeevoZeevo ZV4002 Bluetooth radio ZV4002 Bluetooth radio
–– Supports up to 4 independent Supports up to 4 independent piconetspiconets and 7 slavesand 7 slaves

•• Low power radio: Mica2 Mote compatible Low power radio: Mica2 Mote compatible ChipconChipcon
CC1000 CC1000

•• Can run with Can run with TinyOSTinyOS ((portationportation by University of by University of
KKøøpenhavnpenhavn) or) or BTnutBTnut system software (ETHZ)system software (ETHZ)

ETHZ ETHZ BTnodeBTnode

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[88//88]]

Hardware Hardware –– BTnodeBTnode (contd.)(contd.)

Build your own Build your own BTnodeBTnode ……

Or get one from Art of Technology, Zurich (~100 $)Or get one from Art of Technology, Zurich (~100 $)
GraphicGraphic byby TIK, ETHTIK, ETH

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[99//88]]

System constraintsSystem constraints

•• Power consumption:Power consumption:

•• Philosophy for OS: Philosophy for OS: ““sleep, wake up, do work, sleepsleep, wake up, do work, sleep””

11--33EEPROM (24LC256)EEPROM (24LC256)

110.50.52.42.4CoProCoPro (AT90LS2343)(AT90LS2343)

1.51.50.60.611TemperatureTemperature (AD7416)(AD7416)

----12 12 txtx, 4.5 , 4.5 rcvrcvRadio (RFM TR 1000)Radio (RFM TR 1000)

----0.30.3PhotocellPhotocell

----4.6 4.6 eacheachLEDLED

----1.51.5MCU MCU pinspins

112255MCU MCU corecore (AT90S8535)(AT90S8535)

InactiveInactive ((µµA)A)IdleIdle (mA)(mA)ActiveActive (mA)(mA)ComponentComponent

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1010//88]]

System constraints (contd.)System constraints (contd.)

•• Ordinary computing devices use a stackOrdinary computing devices use a stack--based based
threaded modelthreaded model
–– Each process / thread has itEach process / thread has it ’’s own text, data and stack s own text, data and stack
–– OS has scheduler to switch the context periodicallyOS has scheduler to switch the context periodically

•• Not enough resources to do this on motes:Not enough resources to do this on motes:
–– QNX context switch: 2400 cycles on x86QNX context switch: 2400 cycles on x86
–– pOSEKpOSEK context switch: > 40 context switch: > 40 µµs s

•• What we want is:What we want is:
–– Single stackSingle stack
–– Single execution contextSingle execution context
–– Handle physical parallelism (Handle physical parallelism (rfmrfm, sensors), sensors)

GraphicGraphic: J. Hill: J. Hill

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1111//88]]

TinyOSTinyOS architecturearchitecture

•• Small footprint: fits in 178 Bytes of memorySmall footprint: fits in 178 Bytes of memory
•• Event based instead of threaded architectureEvent based instead of threaded architecture

–– Propagates events in time it takes to copy 1.25 Bytes Propagates events in time it takes to copy 1.25 Bytes
–– Switches context in the time to copy 6 Bytes of Switches context in the time to copy 6 Bytes of MemMem..
–– Used to call a higher level from a lowerUsed to call a higher level from a lower

•• Component Based Component Based
•• Radio and Clock have interruptsRadio and Clock have interrupts
•• Concurrency with TasksConcurrency with Tasks

–– Tasks are intended to do arbitrary computation, Events Tasks are intended to do arbitrary computation, Events
and Commands do state transitionsand Commands do state transitions

–– Tasks are queued, on empty queue, CPU sleepsTasks are queued, on empty queue, CPU sleeps

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1212//88]]

Component Based ProgrammingComponent Based Programming

•• Paradigm: Separate API from Implementation Paradigm: Separate API from Implementation
and encapsulate large quantum of functionalityand encapsulate large quantum of functionality
–– Example: Example: OSGiOSGi –– Dynamic Bundle ArchitectureDynamic Bundle Architecture

•• General Approach: Use Interfaces at higher level, General Approach: Use Interfaces at higher level,
lower level is the implementationlower level is the implementation

•• TinyOSTinyOS: bidirectional interfaces: bidirectional interfaces
–– Commands are specified at higher level and Commands are specified at higher level and

implemented at lower levelimplemented at lower level
–– Events are specified at lower level and implemented at Events are specified at lower level and implemented at

higher levelhigher level
–– Events comparable to Events comparable to callbackcallback functionsfunctions

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1313//88]]

Commands and EventsCommands and Events

•• Example:Example:
startstart and and stopstop are commandsare commands
firedfired is a event invoked by Timeris a event invoked by Timer

The interface specifies:The interface specifies:
Timer must implement Timer must implement startstart and and
stopstop, Application must implement , Application must implement firedfired

•• Commands:Commands:
–– Non blocking requests made to lowerNon blocking requests made to lower--level component. level component.

Deposits parameters to its frame and conditionally schedule Deposits parameters to its frame and conditionally schedule
a task for executiona task for execution

•• Events:Events:
–– Event Handlers handle events from lowerEvent Handlers handle events from lower--level level

components. Event handlers can signal highercomponents. Event handlers can signal higher--level events, level events,
posts tasks or call lowerposts tasks or call lower--level commandslevel commands

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1414//88]]

nesCnesC

•• TinyOSTinyOS is based on is based on nesCnesC, a dialect of C, a dialect of C
–– Imperative, CImperative, C--like on low levellike on low level
–– More declarative at top levelMore declarative at top level
–– Very modularVery modular

•• Programs are build from components, that are Programs are build from components, that are
either modules or configurationseither modules or configurations

•• Modules implement interfaces with functions Modules implement interfaces with functions
(command and events)(command and events)

•• Configurations connect interfaces together Configurations connect interfaces together
(wiring)(wiring)

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1515//88]]

HelloWorldHelloWorld for motes: for motes: HelloM.ncHelloM.nc

module module HelloMHelloM {{
provides {provides {

interface interface StdControlStdControl;;
}}
uses {uses {

interface Timer;interface Timer;
interface interface LedsLeds;;

}}
}}

•• StdControlStdControl is the interface for all executables:is the interface for all executables:
–– Commands Commands result_tresult_t init(), init(), result_tresult_t start() and start() and result_tresult_t

stop()stop()
–– Semantic: init * (start | stop)*Semantic: init * (start | stop)*
–– init is normally used to power up hardwareinit is normally used to power up hardware

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1616//88]]

HelloM.ncHelloM.nc (2)(2)

implementation {implementation {

command command result_tresult_t StdControl.initStdControl.init() {() {
call call Leds.initLeds.init();();
return SUCCESS;return SUCCESS;

}}

command command result_tresult_t StdControl.startStdControl.start() {() {
return call return call Timer.start(TIMER_ONE_SHOTTimer.start(TIMER_ONE_SHOT, 1000);, 1000);

}}

command command result_tresult_t StdControl.stopStdControl.stop() {() {
return call return call Timer.stopTimer.stop();();

}}

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1717//88]]

HelloM.ncHelloM.nc (3)(3)

event event result_tresult_t Timer.firedTimer.fired() {() {
call call Leds.redOnLeds.redOn();();
call call Leds.greenOnLeds.greenOn();();
call call Leds.yellowOnLeds.yellowOn();();
return SUCCESS;return SUCCESS;

}}

} // implementation} // implementation

•• Interfaces implemented, now the wiring Interfaces implemented, now the wiring ……

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1818//88]]

Hello.ncHello.nc

configuration Hello {configuration Hello {
}}
implementation {implementation {

components Main, components Main, HelloMHelloM, , SingleTimerSingleTimer, , LedsCLedsC;;

Main.StdControlMain.StdControl --> > HelloM.StdControlHelloM.StdControl;;
Main.StdControlMain.StdControl ––> > SingleTimerSingleTimer;;
HelloM.TimerHelloM.Timer --> > SingleTimer.TimerSingleTimer.Timer;;
HelloM.LedsHelloM.Leds --> > LedsCLedsC;;

}}

•• Interfaces are connected, Interfaces are connected, HelloMHelloM provides provides
StdControlStdControl and uses Timer and and uses Timer and LedsLeds. .
connect connect HelloMHelloM to Main and to Main and SingleTimerSingleTimer and and LedsCLedsC

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[1919//88]]

Hello.ncHello.nc (2)(2)

•• The picture:The picture:

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2020//88]]

Component Based Programming revisitedComponent Based Programming revisited

•• Is Is SingleTimerSingleTimer software or hardware and software or hardware and LedsCLedsC ??
–– Does not matter, components can be moved from Does not matter, components can be moved from

software to hardware to increase speed without software to hardware to increase speed without
changing the applications. changing the applications.

–– Think of network routing algorithms in hardware, Think of network routing algorithms in hardware,
significant speedupsignificant speedup

•• Only interfaces are known, implementations can Only interfaces are known, implementations can
changechange

•• Kind of Kind of ““design by contractdesign by contract””

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2121//88]]

TinyOSTinyOS

•• TinyOSTinyOS is a runtime environment for is a runtime environment for nesCnesC
running on mote hardwarerunning on mote hardware
–– Performs some resource managementPerforms some resource management
–– Selected components are linked into the program at Selected components are linked into the program at

compile timecompile time

•• TinyOSTinyOS provides components for:provides components for:
-- AD conversionAD conversion -- Random numbersRandom numbers
-- CryptographyCryptography -- RoutingRouting
-- File SystemFile System -- Serial CommunicationSerial Communication
-- LED controlLED control -- TimersTimers
-- Memory allocationMemory allocation -- Watchdog Watchdog
-- Data loggingData logging -- Sensor Board InputSensor Board Input

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2222//88]]

TinyOSTinyOS SchedulingScheduling

•• FIFO Scheduler with queue length 7FIFO Scheduler with queue length 7
•• Two level scheduler: events (higher priority) and Two level scheduler: events (higher priority) and

tasks (lower priority)tasks (lower priority)
•• Tasks are atomic with respect to other tasksTasks are atomic with respect to other tasks
•• RunRun--toto--completion semantic allows to have single completion semantic allows to have single

stack for currently running processstack for currently running process
•• Tasks simulate concurrency, they are Tasks simulate concurrency, they are

asynchronous with respect to eventsasynchronous with respect to events
•• Commands and events are not supported to use Commands and events are not supported to use

a lot of time, tasks are used to do computationsa lot of time, tasks are used to do computations
•• Tasks must never block or spinTasks must never block or spin--waitwait

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2323//88]]

TinyOSTinyOS Scheduling (contd.)Scheduling (contd.)

•• Tasks can be Tasks can be preemptedpreempted by eventsby events
•• Hardware interrupt supported lowest level eventsHardware interrupt supported lowest level events

–– Keyword Keyword asyncasync used if command or event can be called by used if command or event can be called by
hardware handlerhardware handler

Task example:Task example: post post processDataprocessData();();
task void task void processDataprocessData() {() {
int16_t i, sum=0;int16_t i, sum=0;
atomic {atomic {

for (i=0; i < size; i++)for (i=0; i < size; i++)
sum += (sum += (rdata[irdata[i] >> 7);] >> 7);

}}
display(sumdisplay(sum >> log2size);>> log2size);

} }

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2424//88]]

ActiveMessagingActiveMessaging

•• Abstraction used for messageAbstraction used for message--based based
communication in parallel and distributed systemscommunication in parallel and distributed systems

•• Assumes that every node runs the same codeAssumes that every node runs the same code
•• A message consists of the name of a handler A message consists of the name of a handler

called on arrival and data payload as argumentcalled on arrival and data payload as argument
•• A typical Handler should perform the followingA typical Handler should perform the following

–– Extract the message from the networkExtract the message from the network
–– Do some local computationDo some local computation
–– Send response if necessarySend response if necessary

•• Handlers are called on packet reception events Handlers are called on packet reception events
and not as tasks, so they should execute quicklyand not as tasks, so they should execute quickly

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2525//88]]

Active Messaging (contd.)Active Messaging (contd.)

•• No need for busyNo need for busy--waiting / receiver buffering waiting / receiver buffering
–– Stop and wait semantic not affordableStop and wait semantic not affordable
–– Less memory consumptionLess memory consumption
–– Pipeline AnalogyPipeline Analogy

•• Event centric nature perfectly fits into Event centric nature perfectly fits into TinyOSTinyOS
•• Constraints:Constraints:

–– Active Messaging can only handle one Message at a timeActive Messaging can only handle one Message at a time
–– Cannot receive while transmitting (halfCannot receive while transmitting (half--duplex)duplex)

•• Three primitives in Tiny Active Messaging:Three primitives in Tiny Active Messaging:
–– Best effort message transmissionBest effort message transmission
–– Addressing Addressing --> Address checking> Address checking
–– Dispatch Dispatch --> Handler invocation> Handler invocation

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2626//88]]

Active Messaging (contd.)Active Messaging (contd.)

•• Modularity: Application chooses between types / Modularity: Application chooses between types /
levels of error correction / detectionlevels of error correction / detection

•• Application can have additional componentsApplication can have additional components
–– Flow controlFlow control
–– EncryptionEncryption
–– Packet fragmentationPacket fragmentation

• Sequence of events
– Radio bits received by node – RFM
– Radio bits converted to bytes – RadioBytes
– Bytes to packets – RadioPacket
– Packets to Messages – Active Messages

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2727//88]]

TinyOSTinyOS ProtocolProtocol StackStack

GraphicGraphic: J. Hill: J. Hill

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2828//88]]

TinyOSTinyOS MultiHopMultiHop RoutingRouting

•• Packet format:Packet format:
–– H0 set to 0H0 set to 0
–– 4 hop communication4 hop communication

•• At each hop routing handlerAt each hop routing handler
–– Decrements hop countDecrements hop count
–– Rotates next hop, pushes own address to endRotates next hop, pushes own address to end

•• Route discovery via 2 hop broadcasting followed Route discovery via 2 hop broadcasting followed
by self addressby self address
–– Returned message contains address of neighboursReturned message contains address of neighbours

•• Topology discovered by shortest path from every Topology discovered by shortest path from every
node to base stationnode to base station
–– Base station broadcasts identity from time to timeBase station broadcasts identity from time to time

GraphicGraphic: J. Hill: J. Hill

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[2929//88]]

TOSSIM Simulator and TOSSIM Simulator and TinyWizTinyWiz

GraphicGraphic: G. : G. WongWong

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[3030//88]]

TinyDBTinyDB

•• RDBMSRDBMS--likelike interfaceinterface to to sensorsensor nodesnodes
•• Treat sensors as Treat sensors as ““virtual tablevirtual table””

GraphicGraphic: : Arvind Easwaran

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[3131//88]]

TinyDBTinyDB ((contdcontd.).)

•• Continuous Data StreamContinuous Data Stream
SELECT SELECT nodeidnodeid, light, temp FROM sensors SAMPLE INTERVAL 2s , light, temp FROM sensors SAMPLE INTERVAL 2s
FOR 60 s;FOR 60 s;

•• Sorting and symmetric join over stream not Sorting and symmetric join over stream not
allowed (blocking) unless window specified:allowed (blocking) unless window specified:
CREATE STORAGE POINT recentlight SIZE 8 AS (SELECT nodeid,
light FROM sensors SAMPLE INTERVAL 10s)
Joins allowed between storage points on same node and between
storage point and sensors

•• Local triggers allowedLocal triggers allowed
ON EVENT bird-detect (loc) SELECT AVG(light), AVG(temp),
event.loc FROM sensors AS s WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[3232//88]]

ConclusionsConclusions

•• TinyOSTinyOS is designed for very small resourcesis designed for very small resources
–– Event driven architecture to provide fast transmission of Event driven architecture to provide fast transmission of

sensor datasensor data
–– Some aspects of the architecture (like static resource Some aspects of the architecture (like static resource

allocation) are results of the severe resource constraints allocation) are results of the severe resource constraints
and will have to be improved in future. and will have to be improved in future.

–– Radio Transmission is the major bottleneck, so improve Radio Transmission is the major bottleneck, so improve
routing routing

•• HardwareHardware
–– Collect data, do some local computation, transmitCollect data, do some local computation, transmit
–– No open standard for sensor interface but maybe soon, No open standard for sensor interface but maybe soon,

as Intel is pushing sensor network technologyas Intel is pushing sensor network technology
–– Environmental problems: Battery power, but also solar Environmental problems: Battery power, but also solar

power needs accumulatorspower needs accumulators

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[3333//88]]

ReferencesReferences

•• A. A. EaswaranEaswaran: : TinyOSTinyOS
•• M. Franklin, W. M. Franklin, W. HongHong: ETH Z: ETH Züürich rich DistributedDistributed Systems Systems

Summer School: Summer School: DataData StreamsStreams and Sensor and Sensor NetworksNetworks
•• J. Hill: A Software J. Hill: A Software ArchitectureArchitecture SupportingSupporting NetworkedNetworked

SensorsSensors
• J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister:

A System Architecture for Networked Sensors, U.C.
Berkeley

•• J. Hill, R. J. Hill, R. SzewczykSzewczyk, A. Woo, S. , A. Woo, S. HollarHollar, D. Culler, K. , D. Culler, K. PisterPister: :
System System ArchitectureArchitecture DirectionsDirections forfor NetworkedNetworked Sensors, U.C. Sensors, U.C.
BerkeleyBerkeley

•• V. V. RaghunathanRaghunathan: : TinyOSTinyOS
•• G. G. WongWong: : MotesMotes, , nesCnesC and and TinyOSTinyOS
•• www.tinyos.netwww.tinyos.net: : TinyOSTinyOS TutorialTutorial

[[TinyOS TinyOS -- Distributed Systems Seminar WS 04/05 Distributed Systems Seminar WS 04/05 -- Jan S. RellermeyerJan S. Rellermeyer]] [[3434//88]]

TinyOSTinyOS

ThatThat‘‘ss it.it.

ThankThank youyou forfor youryour attentionattention
and and pleaseplease askask youryour questionsquestions..

