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Motivation

• Greedy algorithm are widely used in almost every 
kind of problem

• They are quite often the simplest way to solve a 
problem

• Until now there have been very few tries to 
analyse them as a class of algorithm

• The definition itself is quite unprecise



What is greed?



Oliver Stone’s Wall Street (1987)

The point is, ladies and gentleman, 
is that greed - for lack of a better 

word - is good!

Greed is right!

Greed works!



“The point is you can’t be too greedy”
Donald J.Trump



Greed    /gri:d/
noun [U]

a very strong wish to continually get more of 
something, especially food or money

(%om Cambridge Advance Learner’s Dictionary)



The term “greedy algorithm” 
is didactical, elegant and 

intuitively understandable, 
unluckily it lacks the 

precision needed for a 
mathematical analysis.



The priority model



Fixed priority algorithm
Determine an allowable ordering of the set of 
possible input items (without knowing the actual 
input set     of items)

While     is not empty

               index of input Item            that comes 
first in the ordering

Make an irrevocable decision concerning           
and remove it from

S

S

S

next := I ∈ S

Inext



Adaptive priority algorithm

While     is not empty
   Determine a total ordering of all possible input 

items (without knowing the input items in    
   not yet considered)
   
                  index of input Item            that comes 
first in the ordering

   
   Make an irrevocable decision concerning           

and remove it from

S

S

next := I ∈ S

Inext

S



Fixed priority algorithm:
Order the vertices by the number of neighbours.
Add the vertices to the DS until the graph is 
dominated.

Adaptive priority algorithm

The next vertex will be the one with most not yet
covered neighbours.
Vertices are added to the DS until the graph is 
dominated.

Examples - The Dominating Set Problem



Examples - The Dominating Set Problem



Fixed priority algorithm

Examples - The Dominating Set Problem



Fixed priority algorithm

Examples - The Dominating Set Problem



Fixed priority algorithm

Examples - The Dominating Set Problem



Adaptive priority algorithm

Examples - The Dominating Set Problem



A general lower bound technique

Interaction between two entities Solver and Adversary, Solver 
tries to solve the problem applying the algorithm, Adversary 
tries to give Solver the worst possible instance of the 
problem.

Adversary must be able to provide a solution whose cost/
output is used to compute the approximation ratio of 
Solver’s solution.

This is analogous to the competitive analysis of online 
algorithms.



Approximation ratio

An algorithm is said to have an approximation ratio of    if
 the expected cost      of the solution is within a factor of 
of the cost       of an optimal solution, i.e. if

ρ

C ρ

C
∗

C

C∗
≤ ρ

holds for every instance of the problem.



Given a directed Graph                   and two nodes
find a directed tree of edges, rooted at    and with   as a leaf.   
The objective is to minimize the combined weight of the
edges on the path from    to   .

Shortest Path

s, t ∈ V

s

s

t

G(V, E)
t



Theorem 

No fixed priority algorithm can solve the shortest
path problem with any approximation ratio ρ

Proof idea: 
a

y=1
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!!

!

s

v=1
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u=k
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w=k
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t

b

z=1

&&########

k ≥ 2ρ

y ≺ z



1. If Solver rejects y then Adversary remove z and builds the 
following instance:

a

y=1

!!
!

!
!

!
!

!
!

!

s

u=k
""

x=1

##
!

!
!

!
!

!
!

! t

b

Solver can no longer find a solution whereas Adversary
propose S={u,y} and wins.



2. If Solver accepts y then Adversary builds the following 
instance:

a

y=1

!!!
!!

!!
!!

!

s

u=k
""

x=1

##!
!!

!!
!!

! t

b

z=1

$$""""""""

Adversary propose S={x,z} with cost 2, Solver can’t propose 
{x,z,y} because it wouldn’t be a directed tree rooted at s, hence 
its solution must contain u and therefore it will cost at least 
k+1.

approximation ratio = k + 1

2
>

k

2
= ρ

QED



As Dijkstra’s Algorithm can solve the Shortest 
Path Problem exactly and it belongs to the class 
of ADAPTIVE priority algorithms, we can 
conclude that the classes of algorithms FIXED 
and ADAPTIVE are not equivalent.



Given a directed Graph                  in which every vertex
            has an associated positive weight          find a vertex
cover (a subset of V whose nodes touch every edge of the 
graph) of minimum weight.

The weight of a vertex cover       is defined as:

Weighted Vertex Cover

v ∈ V w(v)

V
′

w(V ′) :=
∑

v∈V ′

w(v)

G(V, E)



It has been shown that is not possible to approximate the 
weighted vertex cover with an approximation ratio better 
than

10
√

5 − 21 = 1.3606

Unless P=NP

The best known (non priority) algorithm approximates 
the weighted vertex cover with an approximation ratio of

2 − θ(
1

√
log n

)



There are quite simple adaptive priority algorithm which 
solves the weighted vertex cover problem with an 
approximation ratio of 2.

There’s for instance Clarkson’s Algorithm that at any 
iteration picks the node with the minimum weight on 
number of not yet covered edges ratio.



Theorem 

No adaptive priority algorithm can achieve an
approximation ratio better than 2 for the Weighted
Vertex Cover Problem.



Proof idea: 

Kn,n bipartite graph

Nodes can have a weigh)
of either     or1 n

2



One of the following events will eventually occur

1. the solver accepts a node
with weight n

2

2. the solver accepts            
nodes of weight
from either sides 
of the bipartite graph

n − 1

1

3. the solver rejects a node



case 1 the solver accepts a node v
with weight n
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Adversary set all the node 
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Solver’s solution contains v
and therefore cost at least n
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ρ < n2/n = nIf                           Adversary
wins, with            this is always
the case

ρ < 2

Adversary proposes a solution
that costs n

case 1 the solver accepts a node v
with weight n
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case 2 the solver accepts            nodes of weight
from either sides of the bipartite graph

1

1
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1 Adversary sets the last node
on “Solver’s” side to       and 
all the other nodes to 
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n − 1 1case 2 the solver accepts            nodes of weight
from either sides of the bipartite graph



Solver’s solution either contains 
the “heavy” node or all the nodes
on the other side, hence it will
cost at least 2n − 1
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Solver’s solution either contains 
the “heavy” node or all the nodes
on the other side, hence it will
cost at least 2n − 1

Adversary’s solution costs n

If
Adversary wins

ρ <
2n − 1

n
= 2 − o(1)
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case 3 the solver rejects a node v (of any weight)



Adversary set all the unseen node 
on the opposite side of v to     
and the remaining node to 

case 3 the solver rejects a node v (of any weight)
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case 3 the solver rejects a node v (of any weight)
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case 3 the solver rejects a node v (of any weight)
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At least 2 nodes are set to n
2

2n
2

Adversary’s solution contains v
and costs at most n2

+ n − 1

Adversary wins iff ρ <
2n2

n2 + n − 1
= 2 − o(1)

QED

n
2

1

Adversary set all the unseen node 
on the opposite side of v to     
and the remaining node to 

Solver’s solution doesn’t contain
*, hence it cost at least 



so far so good!



Acceptances-first algorithm
• Special kind of adaptive priority algorithm

• The decision is an accept/reject decision

• After the first rejection the algorithm can no 
longer accept any other item



Memoryless
• Special kind of adaptive priority algorithm

• The decision is an accept/reject decision

• Rejections have no influx on the further decision 
(i.e. rejections are seen as no-ops)



Memoryless algorithm can be 
simulated by  acceptances-firs) 
algorithms



Node vs. edge model
• In the node model the Graph is represented by 

lists of adjacent vertices.

• In the edge model the Graph is represented by 
lists of adjacent edges.

• The two models should be equivalent as they 
represent the same thing

• unfortunately most results in the two papers 
require the problem to be formulated in a 
specified form



Conclusions
• This approach leads to results that hold for whole 

classes of algorithms including yet to be designed 
algorithms

• The distinction between edge model and node 
model is inelegant

• Not all the result are really significant

• The model is promising but still in the alpha 
version



dulcis in fundo
courtesy by our friend at MSN.COM



Say you want to go from 
Haugesund to Trondheim

Approximatively 600 km 



It doesn’t matter if you’re 
looking for the shortest way...

or maybe for the fastest...

the point is....

WHERE DO YOU WANT TO GO TODAY?


