<section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>
 What is Network Calculus? Problem: Queuing theory (Markov/Jackson assumptions) too optimistic. Online theory too pessimistic. Worst-case analysis (with bounded adversary) of queuing / flow systems arising in communication networks Abstraction of schedulers uses min, max as binary operators and integrals min-plus and max-plus algebra 	An example $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
Discrete Event Systems – R. Wattenhofer 7/3	Discrete Event Systems – R. Wattenhofer 7/4

Arrival and Service Curves

• Similarly to queuing thoery, Internet integrated services use the concepts of *arrival curve* and *service curves*

Discrete Event Systems – R. Wattenhofer

Discrete Event Systems - R. Wattenhofer

7/5

7/7

Arrival Curves can be assumed sub-additive

-0

• Theorem (without proof):

0-

- α can be replaced by a *sub-additive* function
- sub-additive means: $\alpha(s+t) \le \alpha(s) + \alpha(t)$
- concave \Rightarrow subadditive

Service Curve

- System S offers a service curve β to a flow iff for all *t* there exists some *s* such that

$$R^*(t) - R(s) \geq \beta(t-s)$$

