

Overview

- Motivation / Introduction
- Preliminary concepts
- Min-Plus linear system theory
- The composition theorem
- Sections 1.2, 1.3, 1.4.1
- Section 3.1
- Section 1.4.2
in Book "Network Calculus" by Le Boudec and Thiran

What is Network Calculus?

- Problem:
- Queuing theory (Markov/Jackson assumptions) too optimistic.
- Online theory too pessimistic.
- Worst-case analysis (with bounded adversary) of queuing / flow systems arising in communication networks
- Abstraction of schedulers
- uses min, max as binary operators and integrals
- min-plus and max-plus algebra

An example

-

- assume $R(t)$ = sum of arrived traffic in $[0, t]$ is known
- required buffer for a bit rate c is

$$
\sup _{s \leq t}\{R(t)-R(s)-c(t-s)\}
$$

Arrival and Service Curves

- Similarly to queuing thoery, Internet integrated services use the concepts of arrival curve and service curves

Arrival Curves

$\circ-$

- Arrival curve α : $\quad R(t)-R(s) \leq \alpha(t-s)$

Examples:

- leaky bucket $\alpha(u)=r u+b$
- reasonable arrival curve in the Internet
$\alpha(u)=\min (p u+M, r u+b)$

Arrival Curves can be assumed sub-additive

-
- Theorem (without proof):
α can be replaced by a sub-additive function
- sub-additive means: $\alpha(s+t) \leq \alpha(s)+\alpha(t)$
- concave \Rightarrow subadditive

Service Curve

- System S offers a service curve β to a flow iff for all t there exists some s such that

$$
R^{*}(t)-R(s) \geq \beta(t-s)
$$

Theorem: The constant rate server has service curve $\beta(\mathrm{t})=\mathrm{ct}$

Proof: take s = beginning of busy period. Then,

$$
\begin{aligned}
& R^{*}(t)-R^{*}(\mathrm{~s})=c(t-\mathrm{s}) \\
& R^{*}(t)-R(\mathrm{~s})=c \quad(t-\mathrm{s})
\end{aligned}
$$

The guaranteed-delay node has service curve δ_{T}

Function δ_{T}

Discrete Event Systems - R. Wattenhofer

A reasonable model for an Internet router

0

- rate-latency service curve

Tight Bounds on delay and backlog
If flow has arrival curve α and node offers service curve β then

- backlog $\leq \sup (\alpha(\mathrm{s})-\beta(\mathrm{s}))$
- delay $\leq \mathrm{h}(\alpha, \beta)$

For reasonable arrival and service curves

- delay bound: $b / R+T$
- backlog bound: $b+r T$

Another linear system theory: Min-Plus

- Standard algebra:

$$
\begin{gathered}
\mathrm{R},+, \times \\
\mathrm{a} \times(\mathrm{b}+\mathrm{c})=(\mathrm{a} \times \mathrm{b})+(\mathrm{a} \times \mathrm{c})
\end{gathered}
$$

- Min-Plus algebra:

$$
\begin{gathered}
\mathrm{R}, \min ,+ \\
\mathrm{a}+(\mathrm{b} \wedge \mathrm{c})=(\mathrm{a}+\mathrm{b}) \wedge(\mathrm{a}+\mathrm{c})
\end{gathered}
$$

Min-plus convolution

- Standard convolution:

$$
(f * g)(t)=\int f(t-u) g(u) d u
$$

- Min-plus convolution

$$
f \otimes g(t)=\inf _{u}\{f(t-u)+g(u)\}
$$

Examples of Min-Plus convolution

- $f \otimes \delta_{\mathrm{T}}(t)=f(t-T)$
- convex piecewise linear curves, put segments end to end with increasing slope

Arrival and Service Curves vs. Min-Plus

\circ

- We can express arrival and service curves with min-plus
- Arrival Curve property means

$$
R \leq R \otimes \alpha
$$

- Service Curve guarantee means

$$
R^{\star} \geq R \otimes \beta
$$

The composition theorem

- Theorem: the concatenation of two network elements offering service curves β_{i} and β_{2} respectively, offers the service curve $\beta_{1} \otimes \beta_{2}$

Example: Tandem of Routers

Pay Bursts Only Once

$$
D_{1}+D_{2} \leq\left(2 b+R T_{1}\right) / R+T_{1}+T_{2}
$$

D

$$
D \leq b / R+T_{1}+T_{2}
$$

end to end delay bound is less

