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Overview

• Motivation / Introduction
• Preliminary concepts
• Min-Plus linear system theory
• The composition theorem

• Sections 1.2, 1.3, 1.4.1
• Section 3.1
• Section 1.4.2

in Book “Network Calculus” by 
Le Boudec and Thiran 
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What is Network Calculus?

• Problem:
– Queuing theory (Markov/Jackson assumptions) too optimistic.
– Online theory too pessimistic.

• Worst-case analysis (with bounded adversary) of queuing / flow 
systems arising in communication networks

• Abstraction of schedulers

• uses min, max as binary operators and integrals
– min-plus and max-plus algebra
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An example

• assume R(t) = sum of arrived traffic in [0, t] is known
• required buffer for a bit rate c  is

sup s ≤ t {R(t) - R(s) - c (t-s)}

CBR trunk

bit rate c

XR(t)
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• Similarly to queuing thoery, Internet integrated services use the
concepts of arrival curve and service curves

Arrival and Service Curves
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• Arrival curve α: R(t) -R(s) ≤ α(t-s)

Examples:
• leaky bucket α(u) = ru+b

• reasonable arrival curve in the Internet
α(u) = min (pu + M, ru + b)

time

bits

b

M

slope r

slope p

Arrival Curves
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• Theorem (without proof):

α can be replaced by a sub-additive function

• sub-additive means: α(s+t) ≤ α(s) + α(t)

• concave ⇒ subadditive

Arrival Curves can be assumed sub-additive
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Service Curve

• System S offers a service curve β to a flow iff for all t there exists
some s such that

ts

R*(t)

R(s)

R

R*
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Proof: take s = beginning of busy period. Then,

R*(t) – R*(s) = c  (t-s)
R*(t) – R(s)   = c  (t-s)

buffer

s           t

Theorem: The constant rate server has service curve β(t)=ct
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seconds

≤ T

R
R*

0     T

δT (t)

Function δT

t

The guaranteed-delay node has service curve δT
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• rate-latency service curve

T

bits

R

seconds

A reasonable model for an Internet router
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Tight Bounds on delay and backlog

If flow has arrival curve α and node offers service curve β then
• backlog ≤ sup (α(s) -β(s))
• delay ≤ h(α, β)

α

β

h(α, β)

backlog
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For reasonable arrival and service curves

• delay bound:b/R + T
• backlog bound: b + rT

T

h(α, β)

x

b

r

R
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• Standard algebra: R, +, ×
a × (b + c) = (a × b) + (a × c)

• Min-Plus algebra: R, min, +
a + (b ∧ c) = (a + b) ∧ (a + c)

Another linear system theory: Min-Plus
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Min-plus convolution

• Standard convolution:

• Min-plus convolution
f ⊗ g (t) = infu { f(t-u) + g(u) }

∫ −=∗ duugutftgf )()())((

t

f(t)

g(t)

(f ⊗ g)(t)
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r1

r2

s1

s2

u1

⊗ =

t1

Examples of Min-Plus convolution

• f ⊗ δT (t) = f (t-T)

• convex piecewise linear curves, put segments end to end with
increasing slope

s1

u1

r1

u1 + t1

r2
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• We can express arrival and service curves with min-plus

• Arrival Curve property means

R ≤ R ⊗ α

• Service Curve guarantee means

R* ≥ R ⊗ β

Arrival and Service Curves vs. Min-Plus
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The composition theorem

• Theorem: the concatenation of two network elements offering service 
curves βi and β2 respectively, offers the service curve β1 ⊗ β2

β1 ⊗ β2

β2β1
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R1 R2

T2

⊗ =

T1

Example: Tandem of Routers

R1

T2 T1+T2
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Pay Bursts Only Once

β2

D1 D2

α β1

D

α β1⊗ β2

D ≤ b /R + T1 + T2

end to end delay bound is less

D ≤ b /R + T1 + T2

end to end delay bound is less

D1 +D2 ≤ (2b + RT1)/ R + T1 + T2D1 +D2 ≤ (2b + RT1)/ R + T1 + T2


