
1Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Discrete Event Systems
Verification of finite state automata

Computer Engineering and Networks Laboratory
Lothar Thiele

2Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Verification of Finite State Automata
Questions:
– Does the specification correctly describe the desired behavior?
– Do specification and implementation match?
– Can the system reach dangerous states?

Possible approaches:
– Simulation (validation): Success depends on right input

patterns; can at most show the existence of some errors but not
the absence.

– Formal Analysis (verification): Formal proof of correctness.

3Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Verification of Finite State Automata
Because of the finite number of states, verification is possible in
principle by enumeration.
Because of the finite size of memory, the correctness of processors,
software, communication systems, … could be shown.
But is this a feasible approach?

state transition
and output function

(e.g. Boolean network)

state
(e.g. registers)

bits # states
8 Bit
32 Bit
1 kBit
1 Mbit
1 GBit

256
4 109

10300

10300.000

10300.000.000

4Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Verification of Finite State Automata
In recent years, there was a break through here!
Symbolic Model Checking:
– Formulation of questions in terms of logic formulas (temporal

logic). In this lecture, we will NOT cover this because of lack of
time! Only a simple question will be tackled (reachability).

– Efficient representation of sets and relations using OBDDs
(ordered binary decision diagrams).

The methods are used in industry for proving the correctness of
digital circuits (control path, arithmetic units) and of safety critical
embedded systems (traffic control, airplane control, …).

5Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Principles
Comparison of specification and implementation:

Proof of properties:

referencereference

system under testsystem under test
data structure

system under testsystem under test

questionquestion
data structure

comparisoncomparison

(fixed point)
calculation

(fixed point)
calculation answeranswer

6Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Compare Specification and Implementation
Problem 1:
– Specification using a Boolean function.
– Implementation using a Boolean circuit.

– Method (convert circuit into function,
rewrite terms, normal forms …) ???

Problem 2:
– Specification of a state machine using transition function.
– Implementation using a Boolean circuit.
– Method (unknown state encoding, huge # execution paths) ???

321)(xxxy ⋅+=

+

+
+

1x
2x

3x
y

7Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Ordered Binary Decision Diagrams (OBDD)
OBDDs can be used to efficiently represent Boolean functions, sets,
(output and transition) relations.

Because of the unique representation of Boolean functions, they can
be used to proof equivalence.

Operations on Boolean functions can be done efficiently.

They can be used only if sets, relations, … are finite.

8Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Ordered Binary Decision Diagram (OBDD)
Concept:
– Data structure for the representation of

Boolean functions.
– Unique (if reduced by removing redundant

parts and if variable ordering is fixed).
– Based on decision tree.

Form:
– Decision nodes that are associated to variables
– Edges denote false (0, green) or true (1, red)
– Leaves denote function values

x2

0 1

x3

x1

0

x3

x2

1

x1

x1 ∨ x2 ∨ x3

x1 ∨ x2()∧ x3

9Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Decomposition
BDDs are based upon the Boole-Shannon-decomposition

– for each free variable, the function has two co-factors

result for x=0

result for x=1

10 == ⋅+⋅= xx fxfxf

0=xf

1=xf
x

f

x

1=xf0=xf

10Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Ordering of Variables
– Reduced BDDs are unique for a given fixed variable ordering.
– Therefore, ordered BDDs are used (OBDDs).
– The size of a BDD depends on the ordering (and can be

exponential)

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 ∧ b1()∨

a2 ∧ b2()∨

a3 ∧ b3()

11Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Calculations with BDDs
RESTRICT:

Operation: Delete edges corresponding to and
apply simplification rules.

APPLY: with a Boolean operator op

Operation: f and g are given as BDDs. Apply a recursive
algorithm on f and g based on

kxf =

kx =

gopf ><

)()(1100 ==== ><⋅+><⋅=>< xxxx gopfxgopfxgopf

12Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Calculations with BDDs
Boolean expressions are converted to BDDs step by step.

Circuits are converted to Boolean functions first (based on a
topological ordering of the gates).
Quantors are represented using APPLY and RESTRICT:

321)(xxxy ⊗→=
31

211

xyy
xxy

⊗=
→=

() () () () ()
() () () () ()10:

10:

10

10

ffxfxfxfx

ffxfxfxfx

xx

xx

⋅=⋅↔∀

+=+↔∃

==

==

() ()
() ()),:(:,:,

),:(:,:,

21212121

21212121
xxfxxxxfxx

xxfxxxxfxx
∀∀↔∀

∃∃↔∃

13Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Sets and Relations
Representation of a subset :
– Binary coding of elements
– A is represented by characteristic function

– Operations on sets:

– Example:

EA ⊆
Ee∈)(eσ

))((aAa A σψ↔∈

))(())((
))(())((

))(())((

ccBAc
ccBAc

ccBAc

BA

BA

BA

σψσψ
σψσψ

σψσψ

⋅↔−∈
+↔∪∈
⋅↔∩∈

{ }'10','01'10 =↔⊗= AxxAψ

A

σ2 = (0,0,0)

E

σ1 = (0,1,0)

() 01 =σψ A
() 12 =σψ A

14Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Sets and Relations
Representation of a relation :
– Binary coding of elements
– R is represented by

Example finite state automaton:

BAR ×⊆
)(),(ba σσ BbAa ∈∈ ,

))(),((baRr R σσψ↔∈

⇔
1),,(

1)',,(

=

=

yxu

xxu

g

f

ψ
ψu y

x x‘f

g

15Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Equivalence of Boolean Circuits
Comparison between specification and implementation or between
two implementations.
Method:
– Represent the two systems as OBDDs by applying the APPLY

operator repetitively.
– Compare structure of OBDDs.

Example:
321)(xxxy ⋅+=

+

+
+

1x
2x

3x
y

x 2

0 1

x 3

x 1

x 2

0 1

x 3

x 1 comparison

16Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Reachable States
Problem: Is a state reachable ?
Solution:
– Represent state sets and transition relations as OBDDs.
– Transform sets of states.
– Iterative transition until a stable set of states is obtained.

Xx ∈

0x

1x
2x

3x

0x

1x
2x

3x

0x

1x
2x

3x

0x

1x
2x

3x

{ }00 xX = { }101 xXX ∪= { }2112 , xxXX ∪= { }2123 , xxXX ∪=

17Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Reachable States
Core transformation:
– Determine the set of all direct successor states of a given state

set X using transition relation f:

– Calculation:

{ })',()(mit:'),Im(' xxxxxfXX fX ψψ ∧∃==

))',(:()'(

)',()()',(

' xxhxx

xxxxxh

X

fX

∃=

⋅=

ψ
ψψ

X X‘
f

)(xXψ)'(' xXψ)',(xxfψ

calculation using OBDDs

18Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Reachable States
Fixed point calculation:
– Starting from a set of initial states, determine the set of states

that can be reached in one or several steps:

– Because of the finite set of states, a fixed point exists and is
reached in finite time.

– Test whether a state is reachable using resulting BDD.

{ }
iiiii XXfXXX

xX
=∪=

=

++ 11

00

until),Im(

))',()(:()'()'(1 xxxxxx fXXX iii ψψψψ ⋅∃+=
+

19Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Equivalence of Finite State Automata
A method based on reachability is described:

– Calculate the reachable states of the combined automaton.
– Compare the outputs for equality.

11, gf

22 , gf

u

1u

2u

)(111 xgy =

)(222 xgy =

211 yyy ==↔===

20Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Equivalence of Finite State Automata
Calculate the common transition function:

Determine the set of reachable states (as before):

Determine the set of reachable output values:

Automata are different if the following term is true:

))',,()',,(:()',',,(22112121 21 xxuxxuuxxxx fff ψψψ ⋅∃=

),(21 xxXψ

)),(),(),(:,(),(2211212121 21 yxyxxxxxyy ggXY ψψψψ ⋅⋅∃=

)(),(:, 212121 yyyyyy Y ≠⋅∃ ψ

21Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Verification of Finite State Automata
Check time properties of a finite state automaton, for example:
1. Can a reset state reached from every reachable state?
2. Is every request followed by an acknowledgement, eventually?
3. Are the outputs equal for all reachable states ?

Usually, these questions are formulated by an expression in some
temporal logic, for example CTL (computation tree logic).
Operators and quantors:
– X: in the next step; F: eventually; G: every times
– A: for all paths; E: for at least one path
We will not explore this further … .

22Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Concluding Remarks
Possible extensions:
– Proof of properties in absolute time using the concept of clocks.
– Verification of systems with a potentially unlimited number of

states.
– Combination of discrete event systems and systems with

continuous state (hybrid systems).

Public domain software available, e.g. SMV:
– General input language for system specification.
– Accepts CTL formulas.
– Produces counter examples.

23Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Counter Verification with SMV
MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

SPEC AF bit2.carry_out
-- "For all execution paths, the value of bit2.carry_out will eventually be false." This will be true.

SPEC AG !bit2.carry_out
-- "For all execution paths, the value of bit2.carry_out will be false every times."
-- This will be false and a counter example will be produced.

MODULE counter_cell(carry_in)
VAR

value : boolean;
ASSIGN

init(value) := 0;
next(value) := (value + carry_in) mod 2;

DEFINE
carry_out := value & carry_in;

