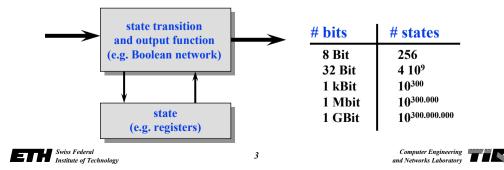


1

Computer Engineering and Networks Laboratory

Verification of Finite State Automata

- Because of the finite number of states, verification is possible in principle by enumeration.
- Because of the finite size of memory, the correctness of processors, software, communication systems, ... could be shown.
- **But is this a feasible approach?**



Verification of Finite State Automata

Verification of Finite State Automata

- □ In recent years, there was a *break through* here!
- □ Symbolic Model Checking:

Swiss Federal Institute of Technology

- Formulation of questions in terms of logic formulas (temporal logic). *In this lecture, we will NOT cover this because of lack of time! Only a simple question will be tackled (reachability).*

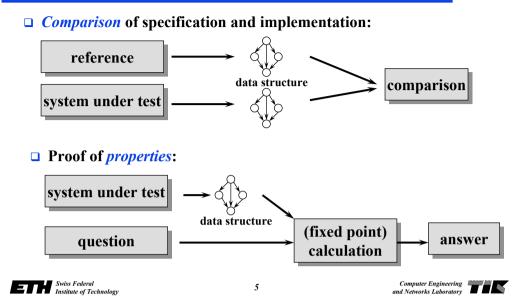
2

- Efficient representation of sets and relations using OBDDs (ordered binary decision diagrams).
- □ The methods are *used in industry* for proving the correctness of digital circuits (control path, arithmetic units) and of safety critical embedded systems (traffic control, airplane control, ...).

Computer Engineering

and Networks Laboratory

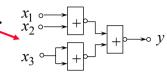
Principles



Compare Specification and Implementation

□ Problem 1:

- Specification using a Boolean function.
- Implementation using a Boolean circuit.



х₃

 (x_2)

 $v = (x_1 + x_2) \cdot x_2$

- Method (convert circuit into function, rewrite terms, normal forms ...) ???

□ **Problem 2**:

- Specification of a state machine using transition function.
- Implementation using a Boolean circuit.
- Method (unknown state encoding, huge # execution paths) ???

6

Ordered Binary Decision Diagrams (OBDD)

- OBDDs can be used to *efficiently represent* Boolean functions, sets, (output and transition) relations.
- □ Because of the *unique representation* of Boolean functions, they can be used to proof equivalence.
- *Operations* on Boolean functions can be done efficiently.
- □ They can be used only if sets, relations, ... are *finite*.

Ordered Binary Decision Diagram (OBDD)

□ Concept:

- Data structure for the representation of **Boolean functions.**

 $x_1 \lor x_2 \lor x_3$

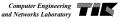
 $(x_1 \lor x_2) \land x_3$

- Unique (if reduced by removing redundant parts and if variable ordering is fixed).
- Based on decision tree.

□ Form:

- Decision nodes that are associated to variables
- Edges denote false (0, green) or true (1, red)
- Leaves denote function values

7



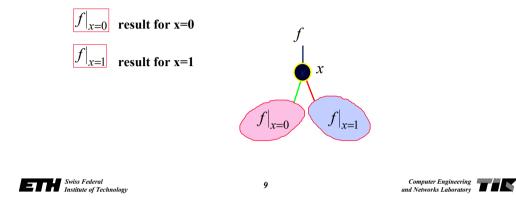
8

Decomposition

BDDs are based upon the **Boole-Shannon-decomposition**

 $\overline{f = x \cdot f}_{x=0} + x \cdot f|_{x=1}$

- for each free variable, the function has two co-factors



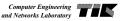
Calculations with BDDs

RESTRICT: $f|_{x=k}$

- **Operation: Delete edges corresponding to** $x = \overline{k}$ **and apply simplification rules.**
- **\square** *APPLY***:** f < op > g with a Boolean operator op

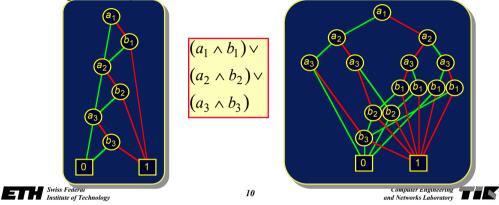
Operation: f and g are given as **BDDs.** Apply a recursive algorithm on f and g based on

$$f < op > g = \overline{x} \cdot (f|_{x=0} < op > g|_{x=0}) + x \cdot (f|_{x=1} < op > g|_{x=1})$$



Ordering of Variables

- Reduced BDDs are *unique* for a given fixed variable ordering.
- Therefore, *ordered BDDs* are used (OBDDs).
- The size of a BDD depends on the ordering (and can be exponential)



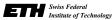
Calculations with BDDs

□ *Boolean expressions* are converted to BDDs step by step.

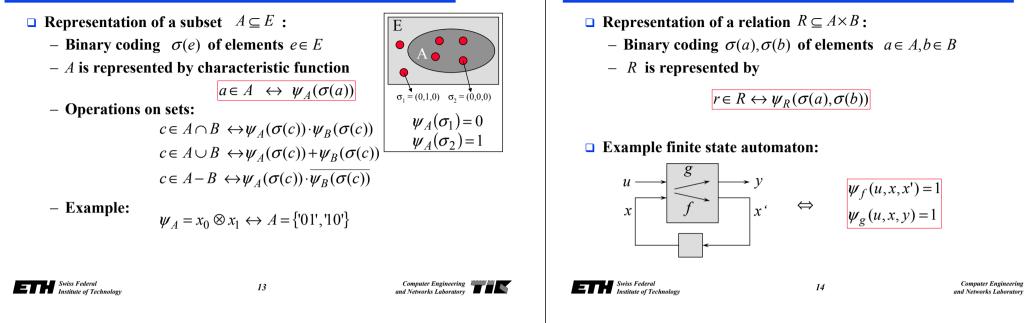
$$y = (x_1 \to x_2) \otimes x_3 \qquad \qquad y_1 = x_1 \to x_2$$
$$y = y_1 \otimes x_3$$

- □ *Circuits* are converted to Boolean functions first (based on a topological ordering of the gates).
- □ *Quantors* are represented using APPLY and RESTRICT:

 $\exists x \colon f(x) \quad \leftrightarrow \quad f(x)|_{x=0} + f(x)|_{x=1} = f(0) + f(1)$ $\forall x : f(x) \quad \leftrightarrow \quad f(x)|_{x=0} \cdot f(x)|_{x=1} = f(0) \cdot f(1)$ $\exists x_1, x_2 : f(x_1, x_2) \leftrightarrow \exists x_1 : (\exists x_2 : f(x_1, x_2))$ $\forall x_1, x_2 : f(x_1, x_2) \leftrightarrow \forall x_1 : (\forall x_2 : f(x_1, x_2))$

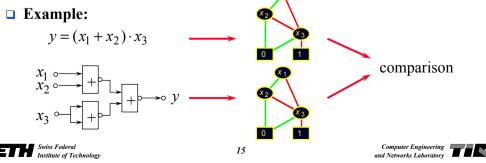


Sets and Relations



Equivalence of Boolean Circuits

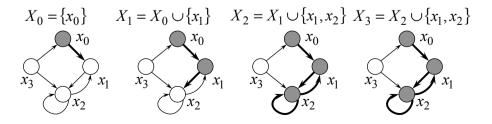
- *Comparison* between specification and implementation or between two implementations.
- □ *Method*:
 - Represent the two systems as OBDDs by applying the APPLY operator repetitively.
 - Compare structure of OBDDs.



Reachable States

Sets and Relations

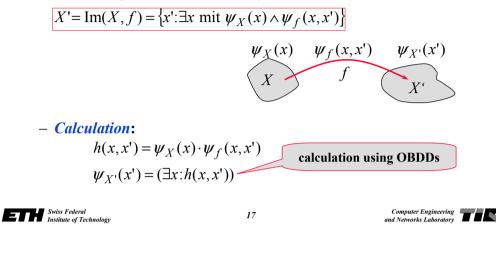
- *Problem*: Is a state $x \in X$ reachable ?
- □ Solution:
 - Represent state sets and transition relations as OBDDs.
 - Transform sets of states.
 - Iterative transition until a stable set of states is obtained.



Reachable States

□ Core transformation:

 Determine the set of all direct successor states of a given state set X using transition relation f:



Reachable States

- □ Fixed point calculation:
 - Starting from a set of initial states, determine the set of states that can be reached in one or several steps:

$$X_{0} = \{x_{0}\}$$

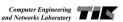
$$X_{i+1} = X_{i} \cup \operatorname{Im}(X_{i}, f) \quad \text{until } X_{i+1} = X_{i}$$

$$\psi_{X_{i+1}}(x') = \psi_{X_{i}}(x') + (\exists x : \psi_{X_{i}}(x) \cdot \psi_{f}(x, x'))$$

- Because of the finite set of states, a fixed point exists and is reached in finite time.
- Test whether a state is reachable using resulting BDD.

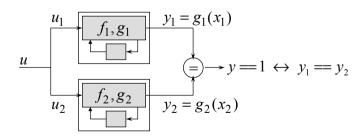
```
Swiss Federal
Institute of Technology
```

18



Equivalence of Finite State Automata

□ A method *based on reachability* is described:



- Calculate the reachable states of the combined automaton.
- Compare the outputs for equality.

Equivalence of Finite State Automata

Calculate the common transition function:

 $\psi_f(x_1, x_2, x_1', x_2') = (\exists u : \psi_{f_1}(u, x_1, x_1') \cdot \psi_{f_2}(u, x_2, x_2'))$

Determine the set of reachable states (as before):

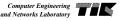
$\psi_X(x_1,x_2)$

Determine the set of reachable output values:

 $\psi_Y(y_1, y_2) = (\exists x_1, x_2 : \psi_X(x_1, x_2) \cdot \psi_{g_1}(x_1, y_1) \cdot \psi_{g_2}(x_2, y_2))$

• Automata are different if the following term is true:

 $\exists y_1, y_2 \colon \psi_Y(y_1, y_2) \cdot (y_1 \neq y_2)$



Verification of Finite State Automata

- *Check time properties* of a finite state automaton, for example:
 - 1. Can a *reset* state reached from every reachable state?
 - 2. Is every *request* followed by an *acknowledgement*, eventually?
 - 3. Are the *outputs equal* for all reachable states ?
- □ Usually, these questions are formulated by an expression in some *temporal logic*, for example CTL (computation tree logic).
- Operators and quantors:
 - X: in the next step; F: eventually; G: every times
 - A: for all paths; E: for at least one path

We will not explore this further

ETH	Swiss Federal Institute of Technology
	Institute of Technology

21

Computer Engineering and Networks Laboratory

Concluding Remarks

- □ Possible extensions:
 - Proof of properties in absolute time using the concept of clocks.
 - Verification of systems with a potentially unlimited number of states.
 - Combination of discrete event systems and systems with continuous state (hybrid systems).
- **D** Public domain software available, e.g. *SMV*:
 - General input language for system specification.
 - Accepts CTL formulas.
 - Produces counter examples.

22

Computer Engineering and Networks Laboratory

Example: Counter Verification with SMV

MODULE main VAR bit0 : counter cell(1); bit1 : counter cell(bit0.carry out); bit2 : counter cell(bit1.carry out); SPEC AF bit2.carry out -- "For all execution paths, the value of bit2.carry out will eventually be false." This will be true. SPEC AG !bit2.carry out -- "For all execution paths, the value of bit2.carry out will be false every times." -- This will be false and a counter example will be produced. MODULE counter cell(carry in) VAR value : boolean; ASSIGN init(value) := 0; next(value) := (value + carry in) mod 2; DEFINE carry out := value & carry in;

