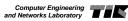
Chapter 3 Specification Models

Lothar Thiele Discrete Event Systems Winter 2004/2005



Overview

- StateCharts
 - Motivation
 - State hierarchy
 - · Representing computations
 - Semantics
 - Tools
- Petri nets
 - Definition
 - Token game
 - Examples
 - Extensions

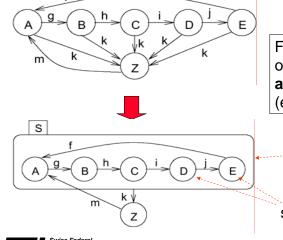
some of the transparencies are based on lectures by Peter Marwedel, Dortmund.

Swiss Federal Institute of Techn

Motivation

- Deficits of finite automata for modeling.
 - only one sequential process, no concurrency
 - · no hierarchical structuring capabilities
- Extension
 - StateCharts-Model von D. Harel [1987].
 - StateCharts introduces hierarchy, concurrency and computation.
 - Model is used in many tools for the specification, analysis and simulation of discrete event systems, e.g. Matlab-Stateflow, UML, Rhapsody, Magnum.
 - Complicated semantics: We will only cover some basic mechanisms.

Introducing hierarchy



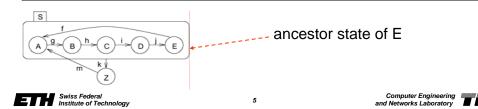
FSM will be in exactly one of the substates of S if S is active (either in A or in B or ..)

superstate

substates

Definitions

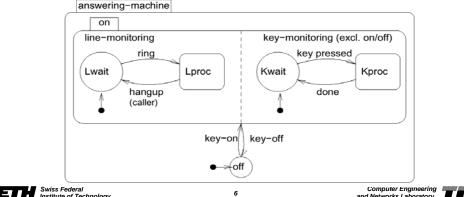
- Current states of FSMs are also called active states.
- States which are not composed of other states are called basic states.
- States containing other states are called *super-states*.
- For each basic state s, the super-states containing s are called ancestor states
- Super-states S are called *OR-super-states*, if exactly one of the sub-states of S is active whenever S is active.



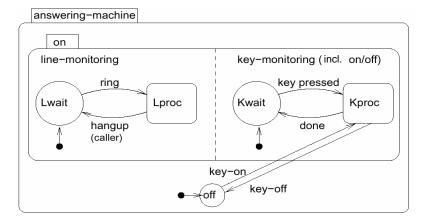
Concurrency

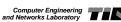
Convenient ways of describing concurrency are required.

AND-super-states: FSM is in all (immediate) sub-states of a super-state.

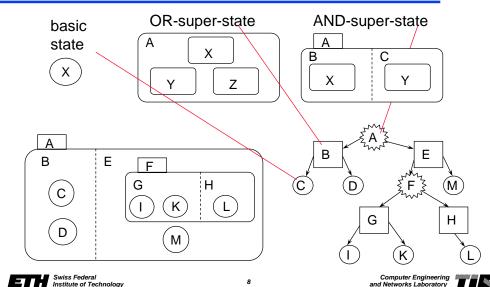


Entering and leaving AND-super-states





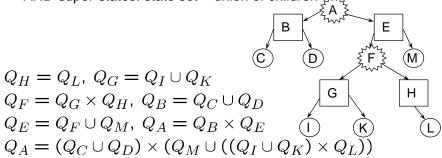
Tree representation of state sets



Computation of state sets

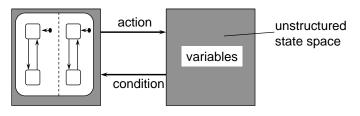
- Computation of state sets by traversing the tree from leaves to root:
 - basic states: state set = state
 - OR-super-states: state set = Cartesian product of children

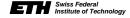
• AND-super-states: state set = union of children , , , ,



Representation of computations

- Besides states, arbitrary many other variables can be defined. This way, not all states of the system are modeled explicitly.
- These variables can be changed as a result of a state transition ("action"). State transitions can be dependent on these variables ("condition").





General form of edge labels

event [condition] / reaction

Event:

Events exist only until the next evaluation step of the model Can be either internally or externally generated

Condition:

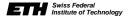
Refer to values of variables that keep their value until they are reassigned.

State transition.

Transition is enabled if event exists and condition evaluates to true

Reaction:

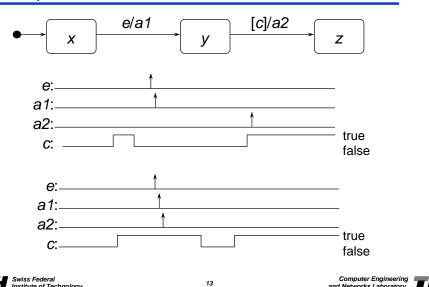
Can be assignments for variables ("action") and/or creation of events



Events and actions

- "event" can be composed of several events:
 - (e1 and e2): event that corresponds to the simultaneous occurrence of e1 and e2.
 - (e1 or e2): event that corresponds to the occurrence of either e1 or e2 or both.
 - (not e): event that corresponds to the absence of event e.
- "action" can also be composed:
 - (a1; a2): actions a1 und a2 are executed sequentially.
- All events, states and actions are globally visible.

Example



The StateCharts simulation phases

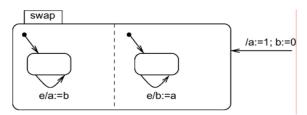
How are edge labels evaluated in one 'simulation' step?

Three phases:

- 1. Effect of changes on events and conditions is evaluated,
- 2. The set of transitions to be made in the current step and right hand sides of assignments are computed,
- 3. Transitions become effective, variables obtain new values.

Computer Engineering and Networks Laboratory

Example



In phase 2, variables a and b are assigned to temporary variables.

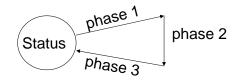
In phase 3, these are assigned to a and b.

As a result, variables a and b are swapped.

Steps

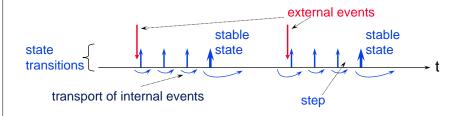
Execution of a model consists of a sequence of (status, step) pairs.

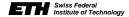
Status= values of all variables + set of events + current time **Step** = execution of the three phases



More on semantics of StateCharts

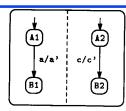
- · Unfortunately, there are several time-semantics of StateCharts in use. This is one possibility:
 - A step is executed in arbitrarily small time.
 - Internal (generated) events exist only within the next step.
 - External events can only be detected after a stable state has been reached.

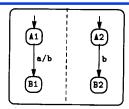




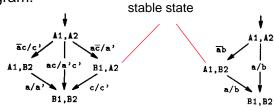
Computer Engineering and Networks Laboratory

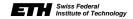
Examples





state diagram:

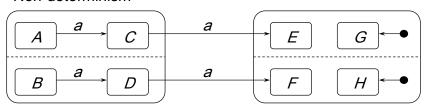




Computer Engineering

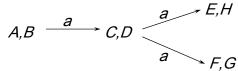
Example

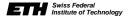
Non-determinism



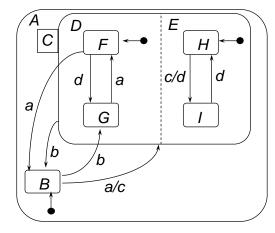
17

state diagram:

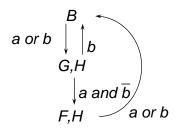




Example

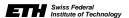


state diagram (only stable states are represented):



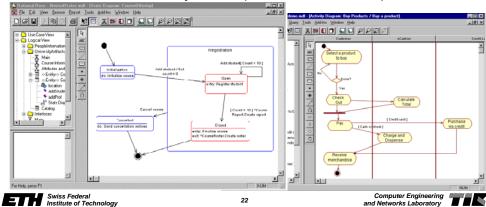
Summary

- Advantages of hierarchical state machines:
 - · Simple transformation into efficient hardware and software implementations.
 - · Efficient simulation.
 - · Basis for formal verification (usually via symbolic model checking), if in reactions only events are generated.
- Disadvantages:
 - Intricate for large systems, limited re-usability of models.
 - No formal representation of operations on data.
 - · Large part of the system state is hidden in variables. This limits possibilities for efficient implementation and formal verification.



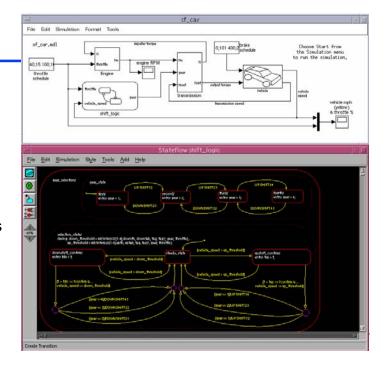
Example UML

• UML (unified modeling language) is used for the specification of large software systems and embedded (realtime) systems. The dynamics of a system are modeled using StateCharts and ActivityCharts (similar to Petri Nets).



StateFlow

- Part of Matlab-Simulink
- Combines discrete event and continuous models



Petri nets - Motivation

- In contrary to hierarchical state machines, state transitions in *Petri nets* are *asynchronous*. The ordering of transitions is partly uncoordinated; it is specified by a partial order.
- Therefore, Petri nets can be used to model *concurrent* distributed systems.
- There are many models of computation in use that are variants or specializations of Petri nets, e.g.
 - · activity charts (UML)
 - · data flow graphs and marked graphs
- Finite state machines can be modeled in Petri nets.

Net graph

A net graph is a tupel N = (S, T, F) with $S \cap$ $T = \emptyset$. The elements $s \in S$ and $t \in T$ are denoted as places and transitions, respectively. and define the nodes of the net. The relation $F \subseteq (S \times T) \cup (T \times S)$ defines the edges of the net.

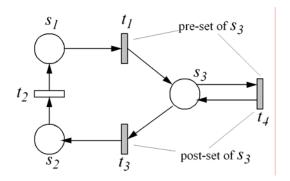
The pre-set and post-set of a place or transition x are defined as

•
$$x = \{y \in S \cup T : (y, x) \in F\}$$

 x • = $\{y \in S \cup T : (x, y) \in F\}$

Net graph - example

The net-graph is a bipartite graph.



Swiss Federal Institute of Tech

Petri net - definition

A tupel (S, T, F, M, M_0) denotes a Petri net. Then (S, T, F) is a net-graph, the marking M is a function $M: S \longrightarrow \mathbf{Z}_{\geq 0}$ and M_0 denotes the initial marking.

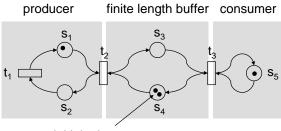
- The state of a Petri net is its marking M.
- M(s) denotes the marking of a place s. Usually, we say that place S contains M(s) token. In other words, the distribution of tokens on places defines the state of a Petri net.
- The dynamics of a Petri net is defined by a 'token game'.

Token game of Petri nets

A marking M activates a transition $t \in T$ iff M(s) > 1 for all $s \in \bullet t$. If a transition t is activated by M, then a state transition to the marking M' happens eventually. The associated state transition function with M'=f(M,t) is

$$M'(s) = \begin{cases} M(s) - 1 & \text{if } s \in \bullet t \setminus t \bullet \\ M(s) + 1 & \text{if } s \in t \bullet \setminus \bullet t \\ M(s) & \text{otherwise} \end{cases}$$

Example

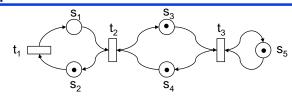


initial token

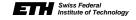
- Initial state represented as state vector: $M_0 = (1,0,0,2,1)$
- Activated transitions: t₂
- After *firing* t_2 : M = (0, 1, 1, 1, 1).

Computer Engineering

Example continued



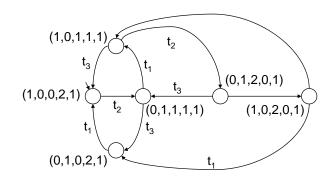
- Activated transitions: t_1 , t_3 .
- · Non-deterministically, one of them is chosen for firing, e.g. t_3 . Then we obtain as new state M = (0, 1, 0, 2, 1).
- We can see the 'properties' of Petri nets: Asynchronous firing of activated transitions, possibility to model distributed systems.



Computer Engineering

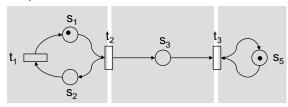
Example continued

• If the number of token in the network is bounded, we can determine a finite state transition graph.

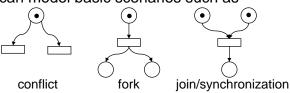


Modeling capabilities

• But we can also systems with unbounded state set! producer buffer consumer



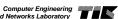
· And we can model basic scenarios such as



Common model extensions

- Associating weights W to edges:
 - Transition t is enabled if there are at least $W(s_1,t)$ token in s_1 .
 - If transition t fires, then $W(t,s_2)$ token are added to place s_2 and $W(s_1,t)$ token are removed from s_1 .

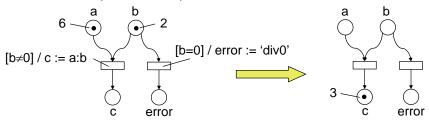
- Adding time to transitions:
 - Specification of discrete event systems with time!
 - One possibility: A transition fires iff it was continuously activated for a certain time period.

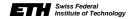


Common model extensions

Individual tokens

- · Tokens can 'carry' data.
- Transitions operate on data of input tokens and associate data to output token.
- The activation of a transition can be dependent on data of token in places of its pre-set.

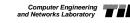




Computer Engineering and Networks Laboratory

What can we do with Petri nets?

- We can *model* (timed, distributed) discrete event systems.
- We can *simulate* them using tools, e.g. MOSES.
- We can analyze their timing properties. Methods exist, if the delays of token are constant or even determined by stochastic processes.
- We can answer questions like:
 - What is the maximum number of tokens in a specific place?
 - Is the Petri net bounded (bounded number of tokens under any firing sequence)?
 - Does the Petri net eventually enter a state where no transition is activated (deadlock) ?
 - Several methods are available to answer these questions (not part of this lecture).



Example MOSES

