
1Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Chapter 3
Specification

Models
Lothar Thiele
Discrete Event Systems
Winter 2004/2005

2Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Overview

some of the transparencies are based on
lectures by Peter Marwedel, Dortmund.

• StateCharts
• Motivation
• State hierarchy
• Representing computations
• Semantics
• Tools

• Petri nets
• Definition
• Token game
• Examples
• Extensions

3Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Motivation

• Deficits of finite automata for modeling:
• only one sequential process, no concurrency
• no hierarchical structuring capabilities

• Extension:
• StateCharts-Model von D. Harel [1987].
• StateCharts introduces hierarchy, concurrency and

computation.
• Model is used in many tools for the specification, analysis and

simulation of discrete event systems, e.g. Matlab-Stateflow,
UML, Rhapsody, Magnum.

• Complicated semantics: We will only cover some basic
mechanisms.

4Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Introducing hierarchy

superstate

substates

FSM will be in exactly one
of the substates of S if S is
active
(either in A or in B or ..)

5Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Definitions
• Current states of FSMs are also called active states.
• States which are not composed of other states are called basic

states.
• States containing other states are called super-states.
• For each basic state s, the super-states containing s are called

ancestor states.
• Super-states S are called OR-super-states, if exactly one of the

sub-states of S is active whenever S is active.

ancestor state of E

6Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Concurrency
Convenient ways of describing concurrency are required.
AND-super-states: FSM is in all (immediate) sub-states of a
super-state.

7Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Entering and leaving AND-super-states

incl.

8Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Tree representation of state sets
basic
state

OR-super-state AND-super-state

Y Z

X
A

A

C

D

B E F

I K L

M

G H

A
B E

C D F M

G H

I K L

A

X Y

B C
X

9Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Computation of state sets

• Computation of state sets by traversing the tree from
leaves to root:
• basic states: state set = state
• OR-super-states: state set = Cartesian product of children
• AND-super-states: state set = union of children

A
B E

C D F M

G H

I K L

10Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Representation of computations

• Besides states, arbitrary many other variables can be
defined. This way, not all states of the system are
modeled explicitly.

• These variables can be changed as a result of a state
transition (“action”). State transitions can be dependent
on these variables (“condition”).

condition

action unstructured
state space

variables

11Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

General form of edge labels

Event:
Events exist only until the next evaluation step of the model
Can be either internally or externally generated

Condition:
Refer to values of variables that keep their value until they are
reassigned.

State transition:
Transition is enabled if event exists and condition evaluates to

true
Reaction:

Can be assignments for variables (“action”) and/or creation of
events

event [condition] / reaction

12Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Events and actions
• “event” can be composed of several events:

• (e1 and e2) : event that corresponds to the simultaneous
occurrence of e1 and e2.

• (e1 or e2) : event that corresponds to the occurrence of either
e1 or e2 or both.

• (not e) : event that corresponds to the absence of event e.

• „action“ can also be composed:
• (a1; a2) : actions a1 und a2 are executed sequentially.

• All events, states and actions are globally visible.

13Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example

e:
a1:
a2:

c:

x y z
e/a1 [c]/a2

e:
a1:
a2:

c:

true
false

true
false

14Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

The StateCharts simulation phases

How are edge labels evaluated in one ‘simulation’ step?

Three phases:

1. Effect of changes on events and conditions is evaluated,

2. The set of transitions to be made in the current step and right
hand sides of assignments are computed,

3. Transitions become effective, variables obtain new values.

15Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example

In phase 2, variables a and b are assigned to temporary
variables.
In phase 3, these are assigned to a and b.
As a result, variables a and b are swapped.

16Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Steps
Execution of a model consists of a sequence of (status, step)
pairs.

Status= values of all variables + set of events + current time
Step = execution of the three phases

Status phase 2

phase 3

phase 1

17Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

More on semantics of StateCharts
• Unfortunately, there are several time-semantics of

StateCharts in use. This is one possibility:
• A step is executed in arbitrarily small time.
• Internal (generated) events exist only within the next step.
• External events can only be detected after a stable state

has been reached.

external events

steptransport of internal events

stable
state

stable
state

t
state
transitions

18Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Examples

state diagram:
stable state

19Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example
• Non-determinism

A C

B D

E G

F H

a

a a

a

A,B C,D
E,H

F,G

a

a

a
state diagram:

20Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example

F H

G I

d c/da d

C
A

B

D E

a/c

bb

a

state diagram (only
stable states are
represented):

B

G,H

F,H a or b

b

a and b
_

a or b

21Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Summary
• Advantages of hierarchical state machines:

• Simple transformation into efficient hardware and software
implementations.

• Efficient simulation.
• Basis for formal verification (usually via symbolic model

checking), if in reactions only events are generated.
• Disadvantages:

• Intricate for large systems, limited re-usability of models.
• No formal representation of operations on data.
• Large part of the system state is hidden in variables. This

limits possibilities for efficient implementation and formal
verification.

22Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example UML
• UML (unified modeling language) is used for the

specification of large software systems and embedded (real-
time) systems. The dynamics of a system are modeled using
StateCharts and ActivityCharts (similar to Petri Nets).

23Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

StateFlow

• Part of
Matlab-
Simulink

• Combines
discrete
event and
continuous
models

24Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Petri nets - Motivation

• In contrary to hierarchical state machines, state
transitions in Petri nets are asynchronous. The ordering
of transitions is partly uncoordinated; it is specified by a
partial order.

• Therefore, Petri nets can be used to model concurrent
distributed systems.

• There are many models of computation in use that are
variants or specializations of Petri nets, e.g.
• activity charts (UML)
• data flow graphs and marked graphs

• Finite state machines can be modeled in Petri nets.

25Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Net graph

26Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Net graph - example

• The net-graph is a bipartite graph.

27Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Petri net - definition

• The state of a Petri net is its marking M.
• M(s) denotes the marking of a place s. Usually, we say

that place S contains M(s) token. In other words, the
distribution of tokens on places defines the state of a Petri
net.

• The dynamics of a Petri net is defined by a ‘token game’.

28Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Token game of Petri nets

29Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example

initial token

producer consumerfinite length buffer

s1

s2

s3

s4

s5t1

t2 t3

• Initial state represented as state vector: M0 = (1,0,0,2,1)
• Activated transitions: t2
• After firing t2: M = (0,1,1,1,1) .

30Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example continued
s1

s2

s3

s4

s5t1

t2 t3

• Activated transitions: t1, t3 .
• Non-deterministically, one of them is chosen for firing,

e.g. t3. Then we obtain as new state M = (0,1,0,2,1).
• We can see the ‘properties’ of Petri nets: Asynchronous

firing of activated transitions, possibility to model
distributed systems.

31Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example continued

• If the number of token in the network is bounded, we can
determine a finite state transition graph.

(1,0,0,2,1)

(0,1,0,2,1)

t1

t2

(1,0,1,1,1)

(0,1,2,0,1)

t2
t3

(1,0,2,0,1)
t1 t3

t1

(0,1,1,1,1)

t3

32Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Modeling capabilities
• But we can also systems with unbounded state set!

producer consumerbuffer

s1

s2

s3
s5t1

t2 t3

• And we can model basic scenarios such as

conflict fork join/synchronization

33Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Common model extensions
• Associating weights W to edges:

• Transition t is enabled if there are at least W(s1,t) token in
s1.

• If transition t fires, then W(t,s2) token are added to place s2
and W(s1,t) token are removed from s1.

s1 s2
t s1 s2

t
2 3 32

• Adding time to transitions:
• Specification of discrete event systems with time!
• One possibility: A transition fires iff it was continuously

activated for a certain time period.

34Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Common model extensions

• Individual tokens:
• Tokens can ‘carry’ data.
• Transitions operate on data of input tokens and associate

data to output token.
• The activation of a transition can be dependent on data of

token in places of its pre-set.
a b

c error

6 2

[b≠0] / c := a:b [b=0] / error := ‘div0’

c error

a b

3

35Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

What can we do with Petri nets?
• We can model (timed, distributed) discrete event systems.
• We can simulate them using tools, e.g. MOSES.
• We can analyze their timing properties. Methods exist, if

the delays of token are constant or even determined by
stochastic processes.

• We can answer questions like:
• What is the maximum number of tokens in a specific place?
• Is the Petri net bounded (bounded number of tokens under

any firing sequence)?
• Does the Petri net eventually enter a state where no transition

is activated (deadlock) ?
• Several methods are available to answer these questions (not

part of this lecture).

36Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example MOSES

Component
hierarchy

Component
hierarchy

Petri netPetri net

Petri net
component

Petri net
component

