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Abstract—
In this paper we introduce a framework for analyzing

local properties of Internet connectivity. We compare BGP
and probed topology data, finding that currently probed
topology data yields much denser coverage of AS-level con-
nectivity. We describe data acquisition and construction of
several IP-level graphs derived from a collection of 220M
skitter traceroutes. We find that a graph consisting of IP
nodes and links contains 90.5% of its 629K nodes in the
acyclic subgraph. In particular, 55% of the IP nodes are in
trees. Full bidirectional connectivity is observed for a giant
component containing 8.3% of IP nodes.

We analyze the same structures (trees, acyclic part, core,
giant component) for other combinatorial models of In-
ternet (IP-level) topology, including arc graphs and place-
holder graphs. We also show that Weibull distrbution���������
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������
�������������! "�

approximates outdegree dis-
tribution with 10-15% relative accuracy in the region of
generic object sizes, spanning two to three orders of mag-
nitude up to the point where sizes become unique.

The extended version of this paper [BC01b] includes dy-
namic and functorial properties of Internet topology, in-
cluding properties of and diffusion on aggregated graphs,
invariance of a reachability function’s shape regardless of
node choice or aggregation level, analysis of topological re-
silience under wide range of scenarios. We also demon-
strate that the Weibull distribution provides a good fit to a
variety of local object sizes.

I. INTRODUCTION

As the Internet continues to grow, so does the diver-
sity of connectivity among nodes. The number of dif-
ferent paths among a given set of nodes depends upon
unknown but crucial interconnection points that are be-
yond control of individual users and end customers. We
seek insight into measures of infrastructural redundancy
and robustness through analysis of Internet topology at
the IP address granularity.

In this study we examine a large (220 million) col-
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lection of experimental ICMP forward path (traceroute)
probes, obtained over a month in late fall 2000. We ex-
plore Internet topology expressed as a directed graph of
IP address nodes and observed forward links between
them. Skitter [Skit98], our data collection tool, is run by
CAIDA on more than 20 monitors around the globe, col-
lecting forward path and round trip time to about 400,000
hosts, with two or more probes sent to each destination
each day.

Mapping macroscopic Internet topology is a daunting
task, and we recognize the presence of shortcomings in
our data and analysis. However, to our knowledge this
work represents the most complete and reliable account
of global Internet topology available thus far.

The differences between our data sources and those
previously analyzed are:
1. This forward IP path data was collected by CAIDA’s
skitter [Skit98], a lightweight ICMP traceroute [Jac89]
tool explicitly designed and extensively tested to gather
IP topology data. Other studies use mostly UDP tracer-
oute, whose packets are more often filtered by firewalls.
2. The data set is several times larger than in any
previously available study of Internet connectivity. It
includes responses from 655K nodes. The num-
ber of traceroutes, 220M, is three orders of mag-
nitude larger than in other published analyses [Pax-
son97,ZPS00,PG98,SSK98,SCHSA99,GT00].
3. The IP destination addresses probed are specifically
selected to stratify the IPv4 global address space via a
variety of methods described here and in [FCHM01].
4. Among globally routed network prefixes, over 50%
contain IP addresses that replied to probes. Previous In-
ternet mapping does not quantify global prefix coverage.
5. The data was collected over 28 days, providing more
of a ‘snapshot’ than collections that use a longer time
interval.

Our methods of data analysis differ from previous
work in the following aspects:
1. We use directed graphs, which more accurately reflect
observed Internet connectivity. Most previous studies
analysed symmetric graphs.1
%
Since routing is based on policy, the reverse link, even when fea-



2. We reduce the graph to the set of all nodes reaching
bidirectionally connected nodes (core) and restrict it to
its largest strongly connected component. This subgraph
is guaranteed to have minimally acceptable coverage.2

3. We use complementary cumulative distribution func-
tions (ccdf’s) rather than frequencies of object sizes,
which are more relevant to operational questions such as
probabilities of buffer overflow.
4. We compare goodness of fit between formulas and
data using a relative accuracy metric, which applies to
widely varying magnitudes of experimental values. Pre-
vious work used correlations or absolute error for cdf’s
(rather than ccdf’s) approximation, or avoided this ques-
tion entirely.

New concepts and results presented here include:

1. Selection of combinatorial models for Internet topol-
ogy on IP, router, prefix and AS level, and a variety of
IP-level graphs, including IP-only, arc and placeholder
graphs.
2. An algorithm for extracting the bidirectionally con-
nected part of the graph.
3. Structural analysis of observed IP graphs in acyclic
(downstream) and strongly connected (backbone) por-
tion.
4. Measures of node importance such as sizes of neigh-
borhoods, cones, and stub trees rooted at a node.
5. Demonstration that Weibull distributions provide a
good fit to a variety of local object sizes.

The algorithms and data collection techniques de-
scribed here are an integral part of the processing used
in CAIDA’s AS core map [HBCFKLM00]. The ex-
tended version of this paper [BC01b] includes dynamic
and functorial properties of Internet topology, including
properties of and diffusion on aggregated graphs, invari-
ance of reachability functions’ shape regardless of node
choice or aggregation level, analysis of topological re-
silience under wide range of scenarios. In that version we
also give more details on the superior connectivity cov-
erage given by CAIDA’s available forward probed topol-
ogy data [Skit98] over that of the best available BGP
topology data [Meyer01]. Finally, we provide greater
detail on Weibull fits to distributions of sizes of Inter-

sible as a physical connection, may not always carry response traffic.
�

The Internet’s transport protocol, TCP, requires bidirectional con-
nectivity. Traceroute probes also measure bidirectional connectivity
since they depend on reply packets. These packets, however, do not
carry information on the return path other than a TTL value, from
which one can make only limited inferences.

net topological objects: router interfaces, stub trees and
cones, neighborhoods of radius 2, IP addresses within a
prefix/AS, subprefix and sub-AS connected components.

A. Roadmap of the paper.

Section II describes previous related work.
Section IV describes our methodology for extracting

the core of an IP graph. Section V compares measures of
structural richness for the center and periphery of sev-
eral modifications of IP graphs. We find that despite
presence of holes left by non-responses and bogus ad-
dresses, and possible discrepancy between responding,
receiving and forwarding interfaces, IP-only graphs are
conceptually simpler, allow more coherent and transpar-
ent results, less topology distortions and less computa-
tional overhead, than those which involve bypass arcs or
added pseudo-nodes, or router interfaces identification.
Fortunately, many results obtained for one type of graph
hold qualitatively for other types. Section IX presents
conclusions and describes our future plans for topology
analysis.

II. PREVIOUS WORK.

Analysis of Internet connectivity was pioneered by
Paxson in his PhD thesis [Paxson97] and follow-up study
[ZPS00]. Paxson acquired data over several months via
traceroutes among academic hosts. A smaller collection
of data on Internet connectivity was gathered in 1995 by
Pansiot and Grad [PG98].

Siamwalla et al. [SSK98] present heuristics found use-
ful for discovery of Internet topology, including SNMP
queries, DNS zone transfers and broadcast pings. They
correctly concluded that topology obtained by tracer-
outes from one source may be too sparsely sampled
to be legitimately representative and that many sources
are necessary to observe cross-links. Savage et al.
[SCHSA99] collected and analyzed data among dozens
of traceroute servers in the Detour project. These two
studies focused on analyzing the stability and optimal-
ity of paths. Each of these studies dealt with less than
290,000 traceroutes.

Bill Cheswick and Hal Burch began a large-scale In-
ternet mapping project in 1997, and made available on
their website data of traceroutes to about 100K selected
destinations [CB00], including six best paths to each
destination over approximately one year. Cheswick and
Burch also developed a novel algorithm for IP address
level graph layout [BCh99,PM01]. One limitation of this



data set is its lack of coverage of a globally diverse set of
networks. Their single source (Lucent) renders a connec-
tivity coverage bias toward their transit provider. In the
April 2000 data set, the number of destinations, 103K,
and BGP prefixes (over 55% of 80K), were significant,
but destinations that actually responded comprised 28%
of recent probes (22% when probed from our network).
The destinations were not chosen based on routability.

Govindan and Tangmunarunkit [GT00] developed
Mercator, an Internet topology discovery tool to build
a router-level Internet map by intelligent probing from
a single workstation. One strength of its design is its
few a priori assumptions about Internet topology. They
offer several valuable caveats of Internet topology ac-
quisition. However, Mercator is considerably slower at
processing probes than skitter and uses source routing to
discover cross-links not captured by standard traceroute.
This practice tends to generate more user and ISP com-
plaints3 and is less practical for large-scale longitudinal
studies.

Radoslavov e.a. [RTYGSE00] compares canonical
graph models such as a grid or a tree, with the Merca-
tor, AS and Mbone graphs and with topology generators.
They focus on the impact of topological properties on
the performance of various flavors of multicast protocols.
They make many meaningful observations in spite of the
relatively scarce data coverage.

Broder et al. [BKMRRSTW00] reported the most
extensive experimental study of a large Internet-based
graph (200 million nodes, 1.5 billion links) using web
connectivity (URLs as nodes and html links between
them). Some of their results are applicable to IP level
connectivity. Indeed, several sets of connectivity data,
with different node and link types, collection intervals,
sizes and coverage have similar properties, although such
similarity may be a consequence of their incompleteness.

When this work was in its final stage, we learned about
several recent papers dealing with Internet structure and
topology, [TGJSW01] [CJW01] [TGS01] [PSFFG01].
We hope to be able to review the work presented there
in a future publication.

III. BGP TOPOLOGY DATA ANALYSIS

Several studies on Internet connectivity have used AS
(autonomous system) data extracted from BGP rout-
ing tables [NLANR97,Meyer01,PCH01]. Compared to

�

Internet providers often flag source routing as a security threat.

traceroute path data, BGP tables are easier to parse,
process and comprehend. It is understandable that re-
searchers who do not collect their own data try to study
Internet topology using BGP AS connectivity.

BGP data is useful for determining correspon-
dence between IP addresses, prefixes and ASes
[HBCFKLM00], and in analyzing different routing poli-
cies in the Internet [BC01a]. However, BGP connectivity
does not qualify redundancy of different parts of the net-
work. BGP tables only show the selected (best) routes,
rather than all possible routes stored in the router. Nor
does the BGP table show public and private exchange
points within the infrastructure, or short-term AS path
variation and AS load balancing. BGP data may also not
be directly comparable to traversed path data due to the
presence of transit-only ASes, i.e. ASes who do not an-
nounce global reachability of their networks but show up
in forward AS paths. In addition to engineering factors,
BGP behavior reflects contractual business relationships
among Internet service providers, specifying which com-
panies agree to exchange traffic. It does not guarantee
that this traffic will actually traverse listed administrative
domains.

As such, using BGP data to obtain a topology map
incurs significant distortion of network connectivity. In
building graphs of topology core, graphs obtained by
parsing even many dozen backbone BGP tables are ex-
tremely sparse. They represent some downstream (back-
bone to customers) connectivity, but no lateral connec-
tivity. For example, extracting the largest component of
bidirectionally connected nodes from RouteViews data
[Meyer01] yields less than 3% of all nodes, even when
contributing routers number in dozens, carry full back-
bone tables, and are geographically and infrastructurally
diverse. In contrast, for topology data gathered from ac-
tive probing from many sites, the largest bidirectionally
connected component comprises 8% of IP-level nodes
and 35% of AS-level nodes. (See Section V.) BGP data
thus represents a relatively meager projection of Internet
connectivity. It is thus imprudent to infer Internet proper-
ties from BGP data alone. In particular, Internet vulner-
ability, e.g., resilience to attacks, cannot be reasonably
inferred from BGP data.

IV. EXTRACTING THE INTERNET’S CORE

In [BC01c] we introduced background notions from
graph theory that assist analysis of traceroute-based con-
nectivity data. We will assume the reader is familiar with



that description and use the terminology from that paper.
To extract the cyclic part from the IP graph, we define

an iterative algorithm called stripping.
DEFINITION. A graph obtained by removing all nodes

of outdegree 0 and edges of all terminal 2-loops is called
the transit (level 1) subgraph of the original graph.

A transit level n subgraph is defined recursively as the
transit subgraph of the level ����� subgraph, i.e. level
����� subgraph with all nodes of outdegree 0 and edges
of all terminal 2-loops removed.

PROPOSITION. A node is in transit level � subgraph
if there is a path of length � starting (outbound) at that
node. Transit level of a node equals the maximum length
of such a path.

Since a graph is finite, it has only finitely many transit
levels. We call the intersection of all finite transit level
subgraphs the (combinatorial) core of the graph. It is
essentially the part of the graph containing all cycles and
their interconnections, except some 2-loops.

In the example below, the node H has level 0. It will
be stripped first. The node G and the edges of 2-loop C
� D will be removed next, leaving D disconnected from
the rest of the graph. At the next step, the node C will be
stripped. The nodes A, B, E, F belong to the core. Any
node that can reach them (not shown) also belongs to the
core.

A �

E

	

F
 � G �

B
�

� C �
 D
�

H

A node that belongs to a combinatorial core must have
a minimum cycle of size 3. A node that is not in the core
can reach only cycles of size 2. Node in the core are
cyclic; nodes not in the core are acyclic. The example
above has cyclic nodes A, E, B, F and acyclic nodes C,
G, D, H.

The subgraph that contains all acyclic nodes, all edges
inbound or outbound on these nodes and all nodes that
belong to these edges, has no cycles other than 2-loops.
This graph will be called the acyclic subgraph of the
graph. Note that the core and the acyclic part intersect
node-wise, but not edge-wise. In the diagram above,
nodes B and F belong to the core and to the acyclic sub-
graph.

The core of the graph consists of connected compo-
nents of various sizes, starting from 1. In our analyses
of Internet cores (IP, prefix, AS graphs and their varia-
tions) one component, the giant component, is signifi-

cantly (200 times) larger than all other components.
Stripping of trees and of chains from the graph, as

a means of finding its core, was previously used for
BGP AS graphs in [Fa99] and for Mercator data in
[RTYGSE00].

A. Connected components

2-loops. Removing 2-loops together with the acyclic
part allows for filtering of connectivity noise caused by
multipath packet propagation when packets follow paths
of various lengths between the source and responding
node.

A �
�

E �

B � C � D
�

F

In the example above, a traceroute from A returns D at
hop 3 and F at hops 2 and 4, which makes D � F appear
as a 2-loop in the graph, when the route rapidly alternates
between two paths.

Multipath routing is easier to observe when the num-
ber of hops is large. Disposing of terminal 2-loops to-
gether with the acyclic part of the graph potentially can
reduce connectivity inflation at the edge of the network
which is due to multipath propagation in the backbone
and/or at the edge. It causes only limited pruning in the
backbone, where nodes are contained in longer cycles.4

Giant component. The Internet evolved by combining
smaller networks using the IP protocol into one giant net-
work. All graphs reflecting its structure possess a giant
connected component [BKMRRSTW00]. However, this
component may not cover the whole graph.

One experimental weakness in the data acquisition
setup where a few monitors collect paths to many (four to
five orders of magnitude more) destinations is that it cap-
tures mostly one-way connectivity, from sources to des-
tinations, and from backbone to downstream customers.
Lateral connectivity is much harder to observe. (Some
[GT00] use source routing to attempt to capture lateral
connections.) This constraint reduces the bidirectionally
connected part of the graph to a smaller portion: 1/10
of all nodes for forward IP graph, and about 1/5 for the
�
Strongly connected components can be obtained algorithmically

by raising connectivity matrix of the graph to powers in Boolean
arithmetic until saturation occurs. Our implementation finds con-
nected components, shortest path distributions, reachability functions
etc. for a graph of 60K nodes on a high end workstation using 1.05G
of RAM in 32 minutes of wall clock time.



forward AS graph. For the BGP AS graph, the bidirec-
tionally connected component is about 1/30 the size of
the original graph.

Bidirectional connectivity is present even in single-
monitor graphs, as a side effect of policy-conformant
paths not being selected on the basis of minimum hop
count. Using several monitors has the advantage of
traversing the backbone in various directions, which in-
creases the sampled bidirectional connectivity, and pro-
vides an arguably more legitimate representation of the
Internet ‘core’.

B. Cones and stub trees.

We will now introduce several measures that quan-
tify node’s importance in the overall connectivity of the
graph.

Cones. Recall that the merged traceroute graph con-
tains large portions where only downstream connectiv-
ity can be observed. These parts usually contain only 2-
loops, some of which can represent TTL noise caused by
multipath propagation (see above). Being nearly acyclic,
the subgraph composed of these parts is close to a partial
order.

DEFINITION. A cone of a node
�

consists of all nodes
reachable from

�
via the acyclic subgraph.

The root
�

need not itself be acyclic. In fact, cones are
most useful for comparison of giant component nodes.

A cone consists of those nodes that one or more tracer-
oute paths find downstream from the cone’s root node,
and for which an upstream connection has not been ob-
served. A root node is viewed as important when the
cone is large, since many downstream nodes can be
reached through it. Unlike the nodes in a tree, these
downstream nodes can possibly be reached through sev-
eral cones. Cone sizes can thus overestimate node’s im-
portance. To reduce this bias, we will study stub trees in
conjunction with cones.

DEFINITION. We will call a subgraph a stub tree if it
is connected to the rest of the graph only through its root.

Trees and cones are useful measures for representing
the structure of the acyclic subgraph. This subgraph con-
tains trees and denser part with some node indegrees
greater than 1 and with some 2-loops. Below we pro-
vide statistics for the major variations of the Internet IP
graphs.

C. Subprefix and sub-AS connected components.

For network engineering purposes and protocol design
it is important to know the diameter of a network in IP
hops. Traceroute data may not always provide a reason-
able answer since the the longest path through the net-
work may not be followed by any actual traceroute in
available set.

It is possible to simply approximate a network diam-
eter with the maximum of the lengths of shortest paths
consisting of links observed in several traceroutes. How-
ever, this estimate may be inaccurate. The coverage of
the network by traceroutes may be incomplete, which
will result in longer paths and size overestimation. Con-
versely, shortest paths can also underestimate the lengths
of the policy-conformant paths and IGP-based network
diameter. Nonetheless, this metric is the closest approx-
imation to diameter that we can reasonably make.

To capture a greater extent of network connectivity, we
will define two nodes in a prefix as connected at distance
2 if they are both reachable in one hop from a responding
and valid IP node outside the network (common entry
point), or they reach an outside node in one hop (com-
mon exit point.) We will allow arcs (bypasses of non-
responding and bogus IP nodes) together with direct IP
links. For simplicity, each arc hop will be counted as one
IP hop.

DEFINITION. A subset of nodes which belong to one
network is a subnetwork (subprefix or sub-AS) connected
component, if it is weakly connected (connected by links
followed in either direction) by IP arcs within the net-
work, and by common entry and exit points.5

Use of arcs, symmetric links, and common entry/exit
points for subnetwork components avoids connectivity
underestimation, e.g. a case when a stub network is
served by a border router with an interface numbered out
of a different address block. Otherwise such a network
would appear as having no connections between its IP
nodes. In the extended version [BC01c], we include de-
tails of our data sources, idiosyncracies of the resulting
observations, and how the data is affected by accumu-
lating measurements over time. We omit this discussion
here in the interest of brevity.

V. STRUCTURE OF IP GRAPHS

Resolution of ambiguities. Close to one-third of
�
Connected components based on intra-AS IP links were indepen-

dently and implicitly used in [TGSE01].



probed paths contain non-responses. Other traces con-
tain private or invalid addresses. The paths can either be
treated as broken (discontinuous) at these nodes or we
can try to recover connectivity information from them.

To preserve as much connectivity information as pos-
sible, one method is to add arcs which bypass hops where
the reply is missing or unacceptable. Arcs connect valid
replying IPs and skip undefined nodes. To preserve the
metric, we need to account for arc lengths (which mea-
sure how many hops are covered by an arc). For graphs
of IP-level size this is computationally expensive. Alter-
natively, we can introduce a placeholder for each non-
unique node, as follows.

DEFINITION. Let
�

and
�

be two responding valid IP
addresses in a traceroute path, and let entries in between,�������������	�

be non-responses or bogus addresses. Place-
holder for

��

is given the name

�
- � - ��
 -
 -

�
, where � and


 are integers with ����
�� � � � � Placeholder nodes are
connected according to their position in the path.

Placeholder graphs preserve both connectivity and hop
metric. However, they have a much larger number of
nodes than IP (IP-only or arc) graphs. Another problem,
which they share with arc graphs, is that they overes-
timate local connectivity (node degrees), since they par-
tially implement transitive closure of IP path from source
to destination.

To clean up those graphs, we can use only placeholder
chains whose connectivity is not duplicated by shorter
or equally long IP paths. We will call this variation the
shortcut placeholder graph. We will provide a numeric
comparison for all three types of graphs later in this sec-
tion.6

Router graphs. If the goal of Internet topology discov-
ery is to build a router level map [GT00], then interfaces
need to be identified with routers. A published tech-
nique [PG98,GT00] is implemented in CAIDA’s iffinder
[Keys00], which sends UDP packet to unused port and
registers the replying source address, which is one of
IP addresses of the interface on which a packet is sent
[RFC1812]. The relation between address pairs makes
up an IP alias graph, whose weakly connected compo-
nents (connected components of its symmetrization) are
viewed as routers.

Figure 1 presents iffinder data of 16-17 Feb. 2001
�
The graphs analyzed here contain no addresses in 0-2, 224-255

(multicast and reserved), 10 or 192.168 (private) range. They contain
1538 addresses in 172.16-31 (private) range, which are present in
9938 links. Out of these, 67 addresses are in the giant component.
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obtained by querying from CAIDA network 638K in-
terfaces found in CAIDA’s topology data of Nov-Dec.
2000. An interface was not queried after one alias was
obtained. That is why the alias graph has only outdegrees
0 or 1. It therefore consists of inbound trees, which can
be rooted on loops, and the loops have no edges point-
ing outside. 75712 IP nodes connected by 46716 alias
links contain 29521 weakly connected components. Fig-
ure 1 shows the distribution of their size, i.e. the num-
ber of interfaces on a router. It is closely followed by
Weibull distribution � ����������� ����� �"! � !#!%$&!%$%')(�* +)(),%' � We
discuss Weibull approximations in Section VIII.

Among connected interface components, 484 have a
2-loop, 33 a 3-loop and 8 a 4-loop. There are 111 in-
bound trees rooted on 2-loops, and 17 trees rooted on 3-
and 4-loops. Except for 525 loops and attached trees,
29K components are non-attached trees, with an over-
whelming majority (22K) being just standalone pairs.
All trees have height between 1 and 6 alias pairs. This
characteristic is not what common sense reading of
[RFC1812] suggests.
Cp.sz 2 3 4 5 6 7 8 9 10 11-34
#cpt. 21902 4122 1584 778 410 260 148 95 52 160

We checked one 4-loop by traceroute and found four
IP addresses in Europe which indeed refer to each other
in a round robin fashion. The IP addresses have 24 bits in
common; they may address the same physical interface.

Alias resolution has two limitations. It may be impos-
sible to find all identifications, and it is hard to quantify
how many are found. We did not use iffinder results for
merging traced path data,7 since aggregation using in-
-
This problem is discussed in [CJW01] which analyzes twice as

many alias pairs as here.



complete equivalence introduces more ambiguities than
it resolves. The identification is also separated by two
months from the measurement interval, further compro-
mising the integrity of the merged graph.8 Note also that
interfaces are individual devices, with their own individ-
ual processors, memory, buses, and failure modes. It is
reasonable to view them as nodes with their own connec-
tions.

An interface address returned by traceroute with a
TTL expired message may be different from the interface
entered or exited by a packet on its forward path toward
the destination. This difference occurs when routing is
locally asymmetric on an IP level, i.e. the outbound inter-
face address differs from the receiving interface address.
Discrepancy in IP addresses can introduce ambiguity in
traceroute data, especially if the returned address is in a
CIDR block that does not belong to the operator of the
router [CJW01]. We do not currently have reliable data
quantifying the extent of this ambiguity. It is possible
that it is of the same order of magnitude as that caused
by the use of private and unrouted addresses in the back-
bone.

Stripping. We obtain the graphs by parsing traced
paths. In that parsing, non-responses, bogus and pri-
vate addresses are treated in accordance with the graph
type. Unidirectional (downstream-only) connectivity
represented by the acyclic subgraph is filtered out at the
next stage by recursive removal of nodes and 2-loops
with outdegree 0.

As we strip increasing transit levels from the graph,
the number of nodes removed from the acyclic subgraph
shrinks in a quasi-exponential way (like a regular fanout,
e.g. a tree with

�
branches at every node). The corre-

sponding average rate is a global characteristic associ-
ated with data set and graph type rather than of individual
nodes or transit levels.

Two types of IP graphs have qualitatively different
fanouts. Pure IP (IP-only), arc and router graphs have
a fanout factor close to 2, like that of a complete binary
tree. For the IP graph, the average decrease in the num-
ber of nodes in the graph between levels 0 and level 10 is
2.046; between 0 and 14, 1.975. Placeholder graphs have
smaller average fanout (1.43, for nodes removed between
level 1, and level 31), close to the square root of IP graph
fanout. Their core height is also about twice that of IP
�
Network prefixes currently change at a rate of 3-6% per month

[BC01a]. Individual IP addresses become unreachable at a rate of
1-2% per month [Fomenkov00].
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graphs. The validity of approximation by an exponential
function is confirmed by the fact that ccdf’s for removed
nodes follow an exponential with about the same decay
rate, in agreement with calculus, ������	��

����� � �	��
 � ��� �

A. Structural statistics for IP graphs

Four candidate graphs for Internet representation on
IP level are: IP-only (pure IP); IP arcs; placeholder; and
shortcut placeholder graph. The tables below compare
these graphs for the 28 days of data in Nov-Dec. 2000.

Graph type IP-only IP arcs Placehd
nodes 629647 654945 2431590
links 1230572 1929445 4093701
links/nodes 1.95 2.95 1.68
outdeg.0 nodes 330752 341790 340259

max.tree height 9 9 21
tree nodes (no roots) 348354 252411 221866
perc. tree nodes 55.3% 38.5% 9.1%
non-tree nodes 281293 402534 2209724
non-tree links 886265 1677035 3871836
2-loops removed 2486 2226 2316
core height 21 21 ��� !
core nodes 60008 73688 847346
Perc. core nodes 9.53% 11.25% 34.8%
core links 354250 710999 1629824
links/nodes 5.9 9.65 1.92
outdeg 1 core nodes 21931 24025 788351
outdeg ��� core nodes 38077 49663 58995
indeg 1 core nodes 10338 7848 772851
max in-core outdeg 569 767 850
outdeg.geo.mean 2.82 3.48 1.14
geo.mean, outdeg ��� 5.12 6.35 6.23



Placeholder graphs have a large number of nodes, es-
pecially those with out- and indegree 1, caused by their
construction which avoids accounting for arc lengths.
The number of branching (outdeg � � ) nodes in their
core is comparable to that of IP and arc graphs (59K).
Algorithms that account for variable arc lengths could
probably perform well on these graphs.

We have also collected a 7-day placeholder graph for
a week before the software upgrade. This graph has
1336707 nodes, 2115274 links, tree height 19 and core
height 36.

The shortcut placeholder graph for 28 days of data
contains 1.78M nodes and 3.07M links. Its level 17 tran-
sit subgraph has 615K nodes and 1.26M links, of which
563K belong to outdegree 0 nodes. The number of nodes
with outdegrees 2 or more in this subgraph is 51869, and
the largest outdegree is 772.

Core metrics. IP-only graph vs. IP arcs graph.
IP-only IP arcs

core diameter 32 31
g.c. nodes 52505 67939
g.c. IP links 324933 682235
links/nodes 6.19 10.04
g.c. placehd.nodes 613783 704088

The number of outdegree 1 nodes in the IP-only giant
component is 18456; of indegree 1, 10293. The maxi-
mum outdegree is 563; indegree, 690. The large number
of nodes of indegree and outdegree 1 in the core suggests
that it contains many subgraphs that are inbound (fan-in)
and outbound (fanout) trees. These trees inside the giant
component may represent traffic aggregators (concentra-
tors) and deaggregators in the backbone. This question
needs further analysis. Removing edges with outdegree
1 reduces the giant component to 29890 nodes (57%);
thus, 4159 nodes (8%) in original g.c. connect back to it
only through the nodes of outdeg.1. The reachability of
g.c. drops to to 48564 nodes, i.e. by 7.5%.

Routed-only IP graph. If we remove all unrouted
(non-advertised in BGP) nodes, the IP-only graph re-
duces to a routed-only IP graph with 620184 nodes and
1203385 links. Its core has height 21 transit levels and
contains 57998 nodes and 341290 links, with 21334
nodes of outdegree 0 and geometric mean of outdegrees
2.82 (for outdegrees of 2 or more, 5.12.) The diameter of
the core is 32; the average shortest path length 6.74 and
the giant component has 50175 nodes. Qualitatively it is
identical to the graph with unrouted IP nodes; quantita-
tive differences are under 5%.
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Symmetry of links. Most graph theory is developed for
symmetric graphs. As already discussed, one cannot as-
sume symmetry in traceroute data. The router must send
ICMP messages (e.g., ‘TTL expired’, in traceroute) with
the “IP source address...one of the addresses associated
with the physical interface over which an ICMP message
is transmitted [or] the router-id used instead.” [RFC1812,
4.3.2.4].9 Getting different interface IP addresses from
the same router is possible, when return routes differ for
different monitors. In particular, traceroutes that pass
two adjacent routers in different order are likely to en-
counter not two pairs of interfaces matching each other
in reverse order, but four interfaces with four different IP
addresses.

In the IP-only graph with 629K nodes, 22276 nodes
have at least one symmetric link. The number of links
for which the reverse link is also in the graph is 49858
(8%). The maximum size of the subgraph connected by
all these links is 6710; the number of connected compo-
nents is 5855. The concentration of symmetric links is
slightly higher in the giant component, in which 14482
nodes have symmetric links and 37902, or 11.7% of links
(18951 pairs of links) are symmetric. Symmetric con-
nectivity is an order of magnitude less than directional
connectivity of the IP graph.

Figure 3 shows the distribution of these symmetri-
cally connected components, whose frequencies can be
approximated by power functions � � � � � +�* � and ccdf by
� � � � � ,�* � � The matching powers (3.5 vs. 2.5) is in agree-
ment with calculus, � �� � � � �

�
� � � � � � ��� which sug-

�

[GT00] say that they checked and confirmed this property for
equipment from two major router vendors.
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gests that the fit is not an illusion. In the following
sections we will show that many local object sizes fit
well with the Weibull distributions. The symmetric con-
nected (sub)components reflect global connectivity of IP
graph, i.e. they are nonlocal objects, so we do not ex-
pect Weibull to apply. Note also that the approximation
for the arc core’s connected components sizes (discussed
next) has about the same power.

Core component sizes. The size distribution for con-
nected components of the arc core (Figure 4) is close
to the power function � � � � � +�* � for component sizes be-
tween 3 and 10 nodes.

We observe that count of 2-loops stripped from the
core (and missing almost completely from the distribu-
tion) comes close to the count predicted by this formula.
It differs from one reported in [BKMRRSTW00] for
the Web’s weakly and strongly connected components,
in that it falls off more rapidly (has larger exponent).
CAIDA’s monitors mutually probe one another, which
makes the IP graph as a whole weakly connected. Two
mid-size strongly connected components (208 and 148
nodes) come from the networks of a Japanese electron-
ics firm (two /24s) and a New Hampshire ISP (one /24)
in which every host can forward packets to at least one
other host.

VI. TOPOLOGICAL RESILIENCE.

Resilience of the graphs to removal of nodes has
been the subject of a number of recent studies [AJB00],
[CEAH00] [CNSW00] [PSFFG01]. We tested proper-
ties of the giant component (combinatorial backbone) of
the IP-only graph with respect to removal of nodes with
largest outdegrees, or those with smallest average dis-
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tance to the rest of the graph.10

In our experiment, outbound edges of nodes are de-
activated in order of decreasing outdegree. Forwarding
via these nodes becomes impossible, although they may
themselves still remain reachable.

It turns out (Figure 5, bottom curve) that the IP giant
component size decays smoothly, almost linearly relative
to the number of deactivated nodes. It takes a lot of node
removal to destroy it completely. For instance, when
the top 10000 out of 52505 (about 19%) nodes in the
network have forwarding disabled, we are able to reach
40310 (77%) nodes and still have a giant component of
size 9020 (17.2% of total) nodes. To our knowledge, this
property of the IP topology graph does not match any
theoretical analysis. It completely disappears only when
%��

The results presented here are preliminary. We will integrate
more complete analysis before the workshop.
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25% of nodes have their forwarding deactivated. On the
other hand, reachability of nodes by the giant component
has a concave slope with accelerating decrease of con-
nectivity.

Width measures of the giant component, such as di-
ameter and average distance (Fig. 6) increase as nodes
are deactivated, and have a characteristic jump where
the giant component finally breaks down. This behav-
ior is qualitatively similar to that described in [AJB00]
for models of scale-free networks. However, unlike
[AJB00], the curves appear to be highly asymmetric
around a critical point.

Removal of nodes in the order of average distance to
the rest of the giant component (middle curve) has sig-
nificantly smaller impact than removal by outdegree.

Decay of the forward AS graph when nodes are re-
moved in order of total degree (indegree � outdegree)
(Figure 7), on the other hand, is qualitatively similar
to predictions of percolation theory [CNSM00]; the au-
thors of [CNSM00] assume a power function as the out-
degree distribution. The powers that they use for sim-
ulation and numeric evaluation of formulas, are close
to those presented in studies of outdegree of web URL
graphs [BKMRRSTW00] and BGP AS graphs [Fa99]. It
starts steep (with large derivative and concavity) and then
changes to linear decrease when the most well-connectes
nodes are removed. The end of the decay has a drop on
the forward AS curve that does not match [CNSM00]
predictions.

VII. DISTRIBUTIONS AND APPROXIMATIONS

Networking infrastructure operates under constant re-
source pressure, in particular with respect to bandwidth
and computational resources in routing and switching
equipment. For example, continued prefix table growth
[Hou01] [BC01a], threatens to upset a delicate balance
between equipment investment and operating margins,
both in terms of router memory and the computational
power required for timely route selection and table main-
tenance.

Limited buffer size and other resource constraints are
a commonplace in networking and computing. We can
quantify the cost of resource optimization by the number
of objects lost (e.g. denied service) due to size cutoff at� � ������� ��� , where

�
is object size. The fraction of

objects lost is expressed by the complementary cumula-
tive distribution function (ccdf), 	 ��� ' ��
 ��� � ��� �
11

A potential problem with ccdf is that the values of
experimental ccdf have different statistical significance
(since they are sums of varying number of data samples),
and they are not independent. For ccdf studied here the
latter is not much of a concern: the tails are small enough
so that they do not change ccdf’s order of magnitude for� at the lower end of the scale.

Standard sample estimators (median, mean, mode,
variance) lose their meaning for skew distributions as-
sociated with most Internet object sizes. Their goal is to
compare data to a delta function, centered at certain rep-
resentative point and spread around this point in a limited
and relatively symmetric way. Internet data, however,
often has most frequent values at the lower end of size
spectrum, and its spread up from that size does not have
any intuitive meaning either.

It may be better to approximate data with formulae
that can accurately estimate probabilities of objects with
widely varying sizes, especially large sizes, as these
cause buffer overflows, server meltdowns and other un-
desirable phenomena. These probabilities can be quite
small.12

Approximating the tail of the ccdf in uniform (Cheby-
shev) metric, e.g., as implied by the Kolmogorov-
Smirnov test, can be misleading, since any fixed accu-
% %

We will often use � #�
���� $ in place of the ccdf since it shows
the data range at both ends of the plot: the total number of objects
and largest object size.% �

One exception: IP packets of 1500 bytes (largest size) comprise
about 21% of observed packets [BCN00] [CAIDA01].



racy expressed as an absolute error will eventually be-
come overwhelmingly coarse compared to the probabil-
ity of tail events. We avoid this difficulty by using the
relative error,

� ����� � ��� ��� � � ��� ' � �	�

where � is function value and � its approximation.
Small values of relative error across sufficiently long

ranges guarantee good approximation for both frequent
and rare events. We use the relative error when compar-
ing approximations for object size distributions. Mini-
mizing relative error is equivalent to approximating the
logarithm of the distribution in the uniform (absolute ac-
curacy) metric.13 When the relative error is small (10%
or less), these quantities are also numerically close, since
in that case � ��

����� ��� ��� ' 
 ��

����� ��� ' � ����� � ��' 
 �

To specify a meaningful threshold for relative error,
recall that memory upgrades are usually done in incre-
ments of 50% or more (e.g. from 256M to 384M.) A
rule of thumb for the approximation error is then 20%,
since 1.2/0.8 = 1.5, so upper and lower ends of the inter-
val differ by not more than 50%. We will view approx-
imation as good if its relative accuracy is under 20% in
the interval of arguments where approximation applies.

Similarity of the data to distributions is often shown
using log-log plots. For the region of large arguments
(the right side of graph), the proposed approximations
may not apply. This region can escape attention when
viewed on log plots, even when it covers up to 70% of the
argument’s range. Hence, we need to specify not only the
relative error, but also the region in which approximation
is acceptable.

VIII. WEIBULL APPROXIMATIONS

In [BC01c] we showed that many different mea-
sures of Internet object’s inherent strength or complexity
can be approximated by a Weibull distribution [Ext00]
[Gr92] � ��� � ��� � � ����� � ����� � � ' � '
The Weibull distribution is well known in reliability the-
ory and other applied sciences. [FS97] [LS98] [Ext00]
[Gr92] [JK75] [BKN00]. However it has not been used
to approximate Internet object size distributions, except
for traffic analysis [Nor95] [BH00].
% �

The relative error metric (both as a ratio and as a logarithm) was
introduced by Chebyshev [Che1889].
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Figures 8 and 9 show statistics of outdegrees (outgoing
edge counts). Non-responding intermediate nodes are
given temporary unique names, so the number of nodes
and links is larger than actually observed. The approxi-
mation we present is of medium quality (14% on half of
the range.) It holds with different parameters for all other
types of IP-derived graphs.

We start by observing that 
 � ������� � ��� ��� � � � �� � �	��� � Over 90% of the vertices have outdegree 0 (these
make up 14%) or 1. The initial (left-hand side) portion of
the outdegree data in Figure 8, except for prominent out-
degrees 1 and 0 (artifacts of the placeholder graph con-
struction, though degree 0 is not plotted on the log axes),
is visually similar to a power function. The distribution
for the whole (level 0) graph looks close to � � �

� * � � . The
distribution for the transit level 5 subgraph (nodes with
outbound paths of 5 or more hops) appears to be close to
� � �

� * � �
Unlike the frequency plot, the ccdf for the whole graph
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appear to be close to � ������� ����� � � ' (�* +),"' � with � � ! � ���
and

� � ! � $%�&$ � 14 rather than a power function. Knowing
this, it is easy to observe that the outdegree frequency
plot starts to bend down around � � $&! . This is one of
the reasons why the ccdf has a shorter tail than that of a
power function.

Figures 10 and 11 show quantile plots (linear and log
scales, respectively) of the Weibull approximation to data
against quantiles of the data’s ccdf. Every data point
(outdegree value) is assigned two coordinates: � , the
Weibull distribution value at that argument; and � , the
value of the ccdf of outdegree frequencies in the graph.

The quantile plot of Figure 10 shows that the outde-
gree distribution deviates from Weibull for the first few
points, after which they become visually indistinguish-
able. The log plot emphasizes the tail of the distribution,
where the data oscillates around Weibull approximation,
% �

Weibull applies only to the degrees over 1, thus ������� whereas����� in textbook formula [Ext00].

in accordance with Chebyshev’s theory.
To determine adequacy of fit, we searched over a uni-

form grid with � �
	 � �
	 � � (9261) values of Weibull
parameters. The best fit occurs at values where fac-
tor � � ! � � ��� � scale

� � ! � $#$ � and shape parameter
� � ! � � ��� , i.e. ! � � ��� ����� � ��� � �"! � $#$%' (�* +

� � ). This fit min-
imizes logarithmic error, i.e. the logarithm of the ratio
between the approximation and the data. Approximat-
ing data “by hand” was therefore reasonably close to the
optimum fit.

Comparing the empirical data with the approximation
shows that Weibull’s relative error in

� � �
� � ��� is under
14%. This interval contains 466 outdegree values out
of possible 489. Weibull does not approximate, however,
the last 20 values which belong to

� � �"! � ��� ��� � . (The 20%
cutoff is exceeded at 1009.) It covers only half of the to-
tal data range on linear scale. On the other hand, for data
between 7 and 300 (half the range on log scale) with 293
outdegree values, relative error is under 7.5%. Compared
to data, Weibull starts at 4 with underestimation, changes
sign at 113, then again at 534, after which oscillations
become more frequent. The largest deviations from data
are observed at 1 (40%) and second from the end value
1427 (176%). 15

Note that each object size greater than 690 (of which
there are 31) occurs only once in the distribution. In this
and many other examples. Weibull applies for generic
sizes, and loses accuracy for the sizes with unique object
counts.

Finding a power function as close to the data as
Weibull is impossible for the following reasons. If three
arguments � ��� � , � � + have function values � � �� , � � + � then the minimum of approximation error by a
linear function

�����

�� �

��� �
�� �
� , � + 


� 
 � � � 
 � � 


over all � � � equals
�
, 
 � , � ��� � ��� � � � %� � � � %

��� , � � � ')' 
 i.e. half
the vertical distance between � , and the line connecting��� � � � � ' with ��� + � � + ' . Taking ccdf values at 4, 100 and
839 (ends and mid-point of 14% accuracy interval) we
find that the best approximation of these three points by a
straight line in log coordinates cannot have relative error
less than 120%, about 9 times more than Weibull.

The best approximation we found is � � ����� �"! � � ��' �
� * � � �

Note that � �
� $#$ is closer to the power with which in-

dividual frequencies are decreasing, � �
� �&$ � than to the% �

For the last value, ccdf=0 and the relative error is undefined.



1 10 100 1000
Cone size for a core IP, nodes.  (Cone=0 for 21933 nodes)

1

10

100

1000

10000

1e+05

#
co

n
e

s

N*ccdf
frequency
42e3 exp(−x/28)^0.5)

Cone sizes for IP core nodes
Nov−Dec 2000. 60008 nodes in the core. 

Fig. 12.

power � ! � �&$ for the integral of � �
� * � � � This mismatch is

fairly common for distributions generally believed to be
close to power functions.

Relative error of 120% means that the power function
can be up to 2.2 times larger or smaller than the experi-
mental ccdf for outdegrees. The magnitude of difference
depends, of course, upon data type. For some kinds of In-
ternet data, e.g. prefix counts in policy atoms [BC01a],
the two functions can be much closer.

Figure 12 shows IP-only graph’s core nodes’ cone size
distribution, i.e. number of nodes in the cone excluding
root. There are 853 sizes, of which 46 are larger than
1271. The largest cone size is 3125 nodes. Our hand-
picked Weibull approximation for cone sizes between 1
and 1271 nodes has relative error 15%. It is visually al-
most undistinguishable from the data in that range, Using
computer search, we found that that in [1,1271] formula
� � �
��!#+ ������� ����� � � � � � ' (�* � ' has relative error 11%.

The extended version of this report provides details on
how we found Weibull to be a good fit for stub tree sizes,
sub-prefix and sub-AS connected component sizes and
number of components in prefix or AS [BC01b].

IX. CONCLUSIONS

We presented a structural description of Internet topol-
ogy as represented by IP-level graphs obtained from
220M paths traced toward destinations covering over
50% of globally routable BGP prefixes [Meyer01]. Most
IP nodes are found in downstream (backbone to end user)
portion of the paths, which results in most of the graph
(90%) being in an acyclic subgraph, and 55% of all
nodes belonging to stub trees. The part of the graph
with full bidirectional connectivity (giant strongly con-
nected component), which includes the global ‘IP core

backbone’, contains 8% of nodes.
We estimated how much connectivity information is

lost due to non-responses and bogus addresses, and
found that skipping gaps can add up to 30% nodes to the
giant component. To correctly analyze the metric struc-
ture of these arc graphs it is necessary to account for
links spanning more than one hop (splitting them results
in explosion of nodes observed in placeholder graphs.)
We did not pursue this approach since it overestimates
the local connectivity of many nodes in the graph, and
yet the change in the giant component size is small com-
pared to the increase in the complexity of algorithms and
computational overhead.

We presented a number of examples that confirmed
that Weibull approximation fits several different Internet
topology object size distribution, in particular those that
are non-unique (assumed by more than one object). In
the range of applicability, the relative error can be im-
pressively small. Approaching ccdf with relative errors
of 10% and even 7% in the central range of the dis-
tribution is common. For a plot spanning three to five
decades on both axes this level of error produces a curve
that is visually indistinguishable from the empirical data
in the range where approximation applies. The Weibull
approximation sometimes breaks down at the lower end
of the size spectrum, often due to the exceedingly large
number of small objects, typical for current state of the
industry and network engineering design. The extent of
this breakdown is different for different types of data. It
is less pronounced for ccdf of the form 
 ��� � � � �

The Weibull approximation generally appears to apply
to local size measures (e.g., immediately adjacent con-
nectivity), for parameters intrinsically controlled by an
object and not dependent upon the global environment.
Several open research questions remain as to whether
there is a general cause or many unrelated reasons for
the Weibull approximation to hold, and whether good ap-
proximation is an exclusive property of this formula. In
future work we will analyze other ways of approximating
Internet data, including three- and four-parametric fami-
lies of functions which generalize power functions.
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