
 1

Spinglass: Secure and Scalable Communication Tools for Mission-Critical
Computing

Kenneth P. Birman, Robbert van Renesse, Werner Vogels
Dept. of Computer Science, Cornell University, Ithaca, New York

{ken,rvr,vogels}@cs.cornell.edu;
http://www.cs.cornell.edu/info/projects/spinglass/spinglass-main.htm

Abstract
Most existing communications technologies are either
not scalable at all, or scale only under carefully
controlled conditions. This threatens an emerging
generation of mission-critical but very large computing
systems, which will need communication support for
such purposes as system management and control, policy
administration, data dissemination, and to initiate
adaptation in demanding environments. Cornell
University’s Spinglass project has discovered that
“gossip-based” protocols can overcome scalability
problems, offering security and reliability even in the
most demanding settings. Gossip protocols emulate the
spread of an infection in a crowded population, and are
both reliable and stable under forms of stress that can
disable more traditional protocols. Our effort is
developing a new generation of gossip-based technology
for secure, reliable large-scale collaboration and soft
real-time communications – even over global networks.

1. Introduction

Distributed computing
1
 will be central to advances in

a broad range of critical applications, including
intelligence information systems, military command and
control, air traffic control, electric power grid
management, telecommunications, and a vast array of
web-based commercial and government applications.
Indeed, a massive rollout of such systems is already
underway. Yet while impressive capabilities have been
easy to develop and demonstrate in small-scale settings,
once deployed these systems often stumble badly.

Software that runs securely and reliably in small-scale
mockups may lose those properties as numbers of users,

1 This work was supported in part by DARPA/AFRL-
IFGA grant F30602-99-1-0532 in the DARPA-ITO FTN
program, managed by Doug Maughan. Additional
support was provided by Nasa JPL under the REE
program. Work on the Galaxy project is supported in part
by a grant from Jim Gray at Microsoft Research BARC.

the size of the network, and transaction processing rates
all increase. Whereas small networks are well-behaved,
any sufficiently large network behaves like the public
Internet, exhibiting disruptive overloads and routing
changes, periods of poor connectivity and throughput
instability. Failures rise in frequency simply because the
numbers of participating components are larger. A
scalable technology must ride out such forms of
infrastructure instability, imposing loads that are either
constant, or growing very slowly, as a function of system
size and network span.

Our studies reveal that very few existing technologies
have the necessary properties. Most, including the most
prevalent commercial software, exhibit scalability
problems when subjected to even modest stress. This
finding reveals an imminent (and growing) threat to the
full spectrum of emergent mission-critical computing
systems. If we can’t solve the scalability problem, and
develop a methodology yielding applications that remain
secure and robust even when failures occur – indeed,
even under attack, or during denial-of-service episodes –
then the very technologies that hold the greatest promise
for major advances will prove to be the Achilles Heel of
a future generation of mission-critical military and
public-sector enterprises.

The Spinglass project is working to overcome
scalability barriers, starting with an idea that was first
proposed in the context of replicated information
management systems. Several early systems in this
domain employed what were called “epidemic-style” or
“gossip” update algorithms, whereby sites periodically
compare their states and reconcile inconsistencies, using
a randomized mechanism for deciding when and with
whom each participant will gossip. Traditionally, such
systems used gossip protocols at low speeds. Our work
employs gossip at very high speeds, yielding a new
generation of protocols that have an unusual style of
probabilistic reliability guarantees – guarantees of
scalability, performance, stability of throughput even
under stress, and scalability of throughput even when a
significant rate of packet loss is occurring. These
properties hold even on Internet-like platforms.

 2

Gossip protocols lend themselves to theoretical
analysis, making it possible to predict their behavior with
high confidence. However, the focus of our work at
Cornell is mostly practical: we are using gossip, together
with other more traditional mechanisms, to develop new
generations of scalable communications software and
network management services for a wide variety of
settings.

Spinglass treats security and authentication as
important considerations, and our software is designed to
coexist with modern firewalls and intrusion-detection
solutions. Although no distributed system can continue
to operate correctly if communication is completely
disabled, we will show that Spinglass protocols (notably
the Astrolabe subsystem) can often ride out attacks that
would cripple conventional acknowledgement based
reliability tools. This suggests that Astrolabe could be a
valuable adjunct to intrusion detection mechanisms,
many of which can be disabled by flooding the network
or using other denial-of-service mechanisms. Such
attacks do cause Astrolabe to degrade, as discussed in
Section 7, but it continues to report information and
hence remains useful. Moreover, the technology has no
servers or other single point-of-failure.

Our objective in this paper is to review the scalability
problem and to summarize our approach to solving it.
The need for brevity limits the technical detail here, but
other publications are available for the interested reader
who wishes to understand exactly how the technology
can be implemented, or to see additional experimental
results going beyond the ones reproduced here.
Availability of our software is discussed in Section 11.

2. Scalability

The scalability of distributed protocols and systems is
a major determinant of success in demanding systems.
For example, consider the recent field-test of the Navy’s
Cooperative Engagement Capability (CEC). During the
period Sept. 13-27, 2000, this system (which offers an
over-the-horizon cooperative targeting capability for
naval warships) was subjected to a very modest stress
test. The value of this system depends upon timely
identification of threats and rapid determinations
concerning the ship that should respond to each threat.
Threats may be incoming missiles moving at several
times the speed of sound, and correct behavior implies
deadlines of about a second for the communication
subsystem. The subsystem had been demonstrated
capable of meeting the requirements under laboratory
conditions with small numbers of participating
computing systems. Yet under load, when even small
numbers of ships were added to the system, the
underlying Data Distribution System (DDS) became
unstable, either failing outright or delivering data after

much more than the one-second threshold. (Defense
News, October 16, 2000). In effect, the CEC failed, and
did so under relatively benign conditions in which the
only variable that changed was the number of
participants and the rate of events being handled.

This paper focuses on scalability of distributed
protocols providing some form of guaranteed reliability.
Examples include the virtual synchrony protocols for
reliable group communication [1, 4, 5, 16], scalable
reliable multicast [7], and reliable multicast transport
protocol [20]. In this section we’ll try to show that the
usual architecture for supporting reliability exposes
mechanisms of this sort to serious scalability problems.

Traditionally, one discusses reliability by posing a
problem in a setting exposed to some class of faults.
Fault-tolerant protocols solving the problem can then be
compared. The protocols cited above provide a multicast
capability tolerant of message loss and endpoint failures,
and discussions of their behavior would typically look at
throughput and latency under normal conditions,
message complexity, background overheads, and the
degree to which failures disrupt these properties.

Oddly, even careful performance analyses generally
focus on two extreme cases: performance of the protocol
under ideal conditions, when nothing goes wrong, and
the disruptive impact of a failure. This paper adopts a
different perspective; investigating reliable protocols
under the influence of what might be called mundane
transient problems, such as network or processor
scheduling delays and brief periods of packet loss. One
would expect that reliable protocols would ride out such
events, but we find that this is rarely the case,
particularly if we look at the impact of a disruptive event
as a function of scale (system and network size). On the
contrary, reliable protocols degrade dramatically under
this type of mundane stress, a phenomenon attributable
to low-probability events that become both more likely
and more costly as the scale of the system grows.

Here, we limit ourselves to a summary of our findings
with respect to the growth rate of disruptive overheads
for a number of widely used multicast protocols.
Elsewhere [2], we present a more detailed analysis of the
same scenarios, modeled after the work of Gray et al.
[8], where a similar conclusion is reached with respect to
database scalability. It is clear that scalability represents
a widespread problem affecting a broad range of
technologies and systems.

But the picture is not entirely bleak. After presenting
these arguments, we shift attention to a new class of
protocols based on an idea from NNTP (network-news
transport protocol), the gossip-based algorithm used to
propagate “news” in the Internet, and Clearinghouse, the
directory replication technology developed at Xerox Parc

 3

Figure 1: Sustainable throughput (multicasts/sec)
drops as group size increases [3]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250
group size: 32
group size: 64
group size: 96

Percentage of time sleeping

in the 1980’s. These turn out to be scalable under the
same style of analysis that predicts poor scalability for
their non-gossip counterparts.

3. Scalability and Reliability

Reliable multicast comes in many flavors. This
Section of the paper focuses on two well-known points
within the spectrum, asking about their scalability
properties. First, we look at the virtual synchrony model
[1], which offers rather strong fault-tolerance and
consistency guarantees to the user. These include
automated tracking of group membership, reporting of
membership changes to the members, fault-tolerant
multicast, and various ordering properties.
Communication systems using this approach include the
Amoeba reliable multicast, Ensemble, i-Bus, Isis, Horus,
Phoenix, Relacs, Rampart, Transis, Totem, etc. This
paper focuses on the behavior of the Horus system, but
reaches conclusions that would also apply to other
members of this class.

Next, we discuss multicast protocols in which
reliability is “receiver driven” – group membership is not
tracked explicitly, and the sender is consequently
unaware of the set of processes that will receive each
message. Receivers are responsible for joining
themselves to the group and must actively solicit
retransmissions of data that they miss. Well known
examples of multicast protocols using this approach
include the reliable group multicast of the V system,
RMTP (reliable multicast transport protocol), SRM
(scalable reliable multicast), TIB (Teknekron
Information Bus), etc. SRM has been described in the
greatest detail and a simulation was available to us, so
we focus on it. However, we believe our conclusions
would apply to any of the protocols in this class.

Throughput Instability

Consider Figure 1, which illustrates a problem
familiar to users of virtually synchronous multicast. The
graph shows the throughput that can be sustained by
various sizes of process groups (32, 64 and 96 members),
measuring the achievable rate from a sender eager to
send as many messages as possible to a randomly
selected, healthy receiver. We graph the effect of a
“perturbation” on the throughput of the group, using an
optimized implementation that set throughput records
among protocols in this class. A single group member
was selected, and forced to sleep for randomly selected
100ms intervals, with the probability shown on the x-
axis. Each throughput value was calculated at an
unperturbed process, using 80 successive throughput
samples, gathered during a 500ms period. The message
size was 7KBytes. The data was collected on a cluster-
style parallel processor, but similar results can be
obtained for LANs, as reported in [17, 3].

Focusing on the 32-member case, we see that the
group can sustain a throughput of 200 messages per
second in the case where no members are perturbed. As
the perturbed member experiences growing disruption,
throughput to the whole group is eventually impacted.
The problem arises because the virtual synchrony
reliability model forces the sender to buffer messages
until all members in the group acknowledge receipt. As
the perturbed member becomes less responsive, flow
control in the sender begins to limit its transmission
bandwidth (our experiment employed a fixed amount of
buffering space at the sender).

With this in mind, an application designer might
consider adjusting the buffering parameters of the system
to increase sender-side buffer capacities, and designing
the application to communicate asynchronously in the
hope that the underlying communication system might
soak up delays much as TCP’s sliding window conceals
temporary rate mismatches between sender and receiver.

Unfortunately, such a strategy is unlikely to succeed.
Notice that for any fixed degree of perturbation,
performance drops as a function of group size, and that
the knee of the curve shifts left as we scale up: with 64
members, performance degrades even with one member
sleeping as little as 10% of the time, and with 96
members, the impact is dramatic. The perturbation
introduced by our experiment2 is not such an unlikely

2 As an aside, we should note that similar results are
obtained when multiple processes are subjected to
perturbation, and when the network is disrupted by
injecting packet delays or losses. The throughput graphs
differ but the trend is unchanged.

 4

event in a real system: random scheduling or paging
delays could easily cause a process to sleep for 100ms at
a time, and such behavior could also arise if the network
became loaded. Indeed, some small amount of
perturbation would be common on any platform shared
with other applications, especially if some machines lack
adequate main memory, have poor cache hit rates, or
employ a slow network link. Our graph suggests that a
strategy focused on sender-side buffering would
apparently need buffering space at least linear in the
group size.

Micropartitions

Faced with this sort of problem, a system designer
who needs to reliably sustain a steady data rate might
consider setting failure detection thresholds of the system
more and more aggressively as a function of scale. The
idea would be to knock out the slow receiver, thereby
allowing the group as a whole to sustain higher
performance. To a reader unfamiliar with virtually
reliable multicast, the need to make failure detection
more aggressive as a function of system size may not
seem like a particularly serious concern. However, such
a step is precisely the last thing one wants to do in a
scalable reliable group multicast system. The problem is
that in these systems, membership changes carry
significant costs. Each time a process is dropped from a
group the group needs to run a protocol (synchronized
with respect to the multicast stream) adjusting
membership, and reporting the change to the members.

The problem gets worse if the failure detector is
parameterized so aggressively that some of the dropped
processes will need to rejoin. Erroneous failure
decisions involve a particularly costly “leave/rejoin”
event. We will term this a micropartitioning of the
group, because a non-crashed member effectively
becomes partitioned away from the group and later the
partition (of size one) must remerge. In effect, by setting
failure detection parameters more and more aggressively
while scaling the system up, we approach a state in
which the group may continuously experience
micropartitions, a phenomenon akin to thrashing.

One could argue that with larger perturbation values
and less aggressive settings of failure detection
parameters, the system is just behaving according to its
design. But if we make the detection mechanism
extremely aggressive so that a process will be dropped
for even very minor perturbations, one enters a domain
in which a typical healthy process has a significant
probability of being dropped anyhow, because of random
phenomena not controllable by the designer.

Costs associated with micropartitions rise in
frequency with the square of the size of the group. This

is because the frequency of mistakes is at least linear3 in
the size of the group, and the cost of a membership
change is also linear in the group size: a quadratic effect.

The phenomenon just described is familiar to the
designers of large reliable distributed systems. For
example, the developers of the Swiss Exchange trading
system (an all-electronic stock exchange, based on the
Isis Toolkit) comment that they were forced to set failure
detection very aggressively, but that this in turn limited
the number of machines handled by each “hub” in their
architecture [17].

Convoys

The obvious response to the scalability problem just
presented is to structure large virtually synchronous
systems hierarchically, as a tree of process groups.
Unfortunately, this option is also limited by disruptive
random events, albeit in a different way.

Consider a small group of processes within which
some process is sending data at a steady rate, and focus
on the delivery rate to a healthy receiver. For any of a
number of reasons, the rate is likely to be somewhat
bursty unless data is artificially delayed. For example,
messages can be lost or discarded, or may arrive out of
order; normally, a reliable multicast system will be
forced to delay the subsequent messages until the

3 Abstractly, the likelihood of erroneous failure
detections grows as O(n2), since any member might mis-
diagnose a failure of any other member, but in practice
mistaken detections are not quite so frequent.

Figure 2: Message “convoys” often arise when
groups are cascaded in a hierarchical manner

 5

missing ones are retransmitted. The sender may be
forced to use flow control. Messages may pass through a
router, which will typically impose its own dynamics on
the data stream. This is illustrated in Figure 2, where
data enters a hierarchical group at a steady rate
(illustrated by the evenly spaced black boxes), but layer
by layer, becomes increasingly bursty.

This phenomenon is familiar to the database and
packet routing communities, which refer to it as a
“convoy.” Kalantar, studying the implications of such
burstiness in hierarchical process groups, finds that each
new level of group amplifies the burstiness of its data
input source [12]. He notes that the problem is
particularly severe when the upper levels of the hierarchy
maintain a multicast ordering property, such as totally
ordered message delivery. The problem is that when
messages arrive out of order, the ordering requirement
forces delays but also results in the delivery of a burst of
ordered messages when the gap has been filled; the next
layer thus sees a bursty input that can trigger flow
control mechanisms (even if the original flow would not
have required flow control). The problem is particularly
severe if the top-level group sends multicasts at a high
data rate, since the gaps between bursts represent dead
time and effectively reduce the available bandwidth,
while the bursts themselves are likely to exceed the
available bandwidth.

Kalantar suggests a few remedies. Hierarchical
systems might be designed to enforce weak ordering
properties near the sender, reintroducing stronger
guarantees close to the receiver. However, this design
point has never been explored in practice, in part because
ordering and reliability are hard to separate. A second
option involves delaying messages on receipt (layer by
layer, or end-to-end) to absorb the expected degree of
rate variations. But this would demand a huge amount of
buffering. Kalantar concludes that as traditionally
implemented, hierarchically-structured process groups
will be complex to manage and may perform poorly.

Request and Retransmission Storms

One might speculate that the problems seen above are
specific to the virtual synchrony reliability model.
However, a related scalability phenomenon has been
observed by several researchers studying the SRM
protocol, a “scalable reliable multicast” protocol that
uses a receiver-driven recovery mechanism.

Virtual synchrony is very stringent model, providing
guarantees strong enough to support replicated data
wherein any copy is as good as any other. In contrast,
SRM employs a best-effort model, in which the onus
falls on the receiving process to join itself to the
transmission group (an IP multicast group within the

Internet), to begin collecting data, and to request
retransmissions of missing data. SRM is based on a
model called application-level framing, which basically
extends the end-to-end model into the multicast domain.
The idea is that the IP multicast layer is oblivious to the
protocol using it, hence the SRM request and
retransmission mechanisms reside in the application (in a
library). One consequence is that although the protocol
uses IP multicast to send messages, retransmission
requests and retransmissions, the IP multicast layer is
oblivious to the manner in which it is being used. The
only control available to the protocol itself is in the value
used for the IPMC time-to-live (TTL) field, which limits
the number of hops taken before a packet is dropped.

IP multicast is an unreliable protocol; hence, a
multicast packet might be dropped by a router (or the
sender’s operating system), failing to reach large
numbers of receivers. To avoid subjecting the full set of
participants to a storm of requests and retransmissions,
SRM uses a timer-based delay scheme reminiscent of
exponential backoff. Group members delay requests (for
missing data) for a randomly selected period of time,
calculated to make it likely that if a subtree of the IP
multicast group drops a message, only one request will
be issued and the data will be retransmitted only once.
The protocol also uses the TTL values in a manner
intended to restrict retransmissions to the region within
which the data loss occurred.

The general belief is that because protocols like SRM
have (relatively) weak reliability goals, they should scale
much better than virtual synchrony, which has a very
stringent reliability goal. Unfortunately, several recent
studies have shown that the SRM tactics are not as
effective as might be hoped, particularly in very large
networks (hundreds or thousands of members) subject to
low levels of random packet loss or link failures. At
least three simulation studies have demonstrated that
under these conditions, a large percentage of the packets
sent trigger multiple requests, each one of which, in turn,
triggers multiple multicast retransmissions. Basically, it
isn’t hard to drive SRM overheads through the roof.

The data shown in Figure 3 reflects this problem and
is reprinted from [3]; similar findings have been reported
by [13, 14]. NS-2 (which includes a simulation of SRM,
including its adaptive mechanisms) was used to graph
the rate of requests for retransmissions and repairs
(retransmissions) for groups of various sizes. We
constructed a simple 4-level tree topology, injecting 100
210-byte messages/second, and setting parameters as
recommended by SRM’s developers. We set a system-
wide message loss probability at 0.1% on each link, and
measured overhead at typical processes. (With other
topologies and noise rates we get similar graphs).

 6

The intuition is that the basic SRM mechanisms are
ultimately probabilistic. As a network becomes large,
the frequency of low probability events grows at least
linearly with the size of the network. For example, as a
network scales, there will be processes further and
further apart that may each (independently) experience a
packet loss. By symmetry, these have some probability
of independently and simultaneously requesting a
retransmission, and even with SRM’s “scalable session
messages,” variability in network latency may be such
that neither request inhibits the other. Each process that
receives such a request and has a copy of the multicast in
its buffers has some probability of resending it. Again,
although there is an inhibitory mechanism, with some
probability more than one process may do so. Thus, as
the network is scaled and the global frequency of these
low probability events rises, one begins to observe
growing numbers of requests for each multicast packet.
Depending on the network topology, each request may
result in multiple retransmissions of the actual data.
Although the latter problem is not evident in the simple
tree used to construct Figure 3, with a “star” topology
and the same experimental setup, SRM sends roughly
three to five repairs for each request. All but the first are
“duplicates.” Thus, the aggregate overhead rises with
group size, and the effect can be considerably worse than
linear.

Notice that although SRM has reliability goals very
remote from those of virtual synchrony, once again we
encounter a mechanism with costs linear in system size
and frequency growing, perhaps linearly, in system size.
The costs are those associated with sending and
receiving superfluous multicasts, and the frequency is
basically a function of the aggregated path-lengths over

which multicast messages will travel. Thus, not only is
the linear growth in overhead seen in Figure 3
unsurprising, one might have speculated that it should be
worse than linear. (In fact, it is possible to design
experimental scenarios that provoke quadratic overhead
growth, although we have not done so here).

At the start of this section, we observed that the
throughput degradation experienced for the virtual
synchrony protocols is not unique to that reliability
model. In the case of SRM, the problems just described
contribute to growth in background load seen in Figure 3
and to unstable throughput much like that graphed in
Figure 1, and can overload routers to such a degree that
the system-wide packet loss rate will rise sharply.
Should this occur, a performance collapse is likely.

Other approaches

The issues just described are also seen in other
reliability mechanisms. Elsewhere, we have extended
this analysis to consider other “scalable” protocols, such
as RMTP (a well known protocol that was recently
standardized by the IETF). The same issue arises in
publish-subscribe message bus protocols such as the one
in TIB (probably the most successful multicast-like
product line), and in other large-scale multicast
architectures. Even forward error correction (FEC), a
proactive mechanism whereby the sender introduces
redundancy into the data stream so that the receiver can
reconstruct lost data, degrades as a function of scale,
because of the increasing likelihood that an overloaded
network will drop multiple packets, overwhelming the
error correction mechanism. To bound the sender’s load
in applications where lost data must be resent, it becomes

Figure 3: As the size of the group increases, a low level of background noise (0.1% in this case) can trigger
high rates of requests (left) and retransmissions (right) for the SRM protocols. Most of these are duplicates.
Notice that the data rate is being held constant; only the size of the group is increased in these experiments.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
SRM protocols with system wide constant noise, tree topology

group size

requests
per sec SRM

adaptive SRM

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
SRM protocols with system wide constant noise, tree topology

group size

repairs
per sec SRM

adaptive SRM

 7

necessary to increase the degree of redundancy in a
manner proportional to the number of receivers.

So striking is this problem, and so widespread, that
one might wonder how distributed computing could
possibly be such a success, given the pattern of poor
scalability just cited. In fact, these problems arise mostly
in technologies that provide reliability guarantees, and
few of these have ever been deployed on a really large
scale, except in tightly controlled settings.

A reasonable speculation is that we are unaware of the
limited scalability of these kinds of technologies, and the
systems built over them, because for all the discussion,
relatively few really large-scale systems have been built
so far. This will soon change, but at the time of this
writing, the really large-scale systems tend to be things
like the Internet, and the various web-services hosted
upon it. Clearly, the Internet itself scales reasonably
well, provided that one doesn’t care about brief episodic
disruptions. Web servers are a great success, as long as
occasional inability to access a server isn’t a concern.
Indeed, the striking pattern is not that nothing scales, but
rather that large-scale systems are prone to disruption.
To the extent that we introduce mechanisms that try to
overcome this disruption, and especially when we do so
at a low level, we arrive at solutions that scale poorly. In
this sense, the technologies just reviewed scale poorly
precisely because they attempt to operate reliably: a
diabolic tradeoff indeed! Fortunately, some of the very
oldest work in distributed computing points to a way out.

4. Epidemic Protocols

Not all protocols suffer the behavior seen in these
reliable mechanisms. Up to now, we’ve focused on
multicast protocols. Within this class of mechanisms,
Bimodal Multicast, a protocol reported in [3], scales
quite well and easily rides out the same phenomena that
cause problems with these other approaches to reliability
and scalability.

Bimodal multicast is a gossip-based protocol that
closely resembles the old NNTP protocol (employed by
network news servers), but running at much higher
speeds. The protocol has two sub-protocols. One of
them is an unreliable data distribution protocol similar to
IP multicast, and in fact IP multicast can be used for this
purpose if it is available. (Because IP multicast is often
disabled in wide-area networks, Bimodal Multicast more
often runs over a very lightweight unicast-based tree
management and multicasting mechanism of our own
design, using IP multicast if the feature is available but
without depending upon it). Upon arrival, a message
enters the receiver’s message buffer. Messages are
delivered to the application layer in FIFO order, and are

garbage collected out of the message buffer after some
period of time.

The second sub-protocol is used to repair gaps in the
message delivery record, and operates as follows. Each
process in the system maintains a list containing some
random subset of the full system membership4. At some
agreed rate (but not synchronized across the system)
each participant selects one of the processes in its
membership list at random and sends it a digest of its
current message buffer contents. This digest would
normally just list messages available in the buffer:
“messages 5-11 and 13 from sender s, …” for example.
Upon receipt of a gossip message, a process compares
the list of messages in the digest with its own message
buffer contents. Depending upon the configuration of
the protocol, a process may pull missing messages from
the sender of the gossip by sending a retransmission
solicitation, or may push messages to the sender by
sending unsolicited retransmissions of messages
apparently missing from that process.

This simplified description omits a number of
important optimizations to the protocol. In practice, we
use gossip not just for multicast reliability, but also to
track system membership [19, 9]. We sometimes use
unreliable multicast with a regional TTL value instead of
unicast, notably in situations where it is likely that
multiple processes are missing copies of the message. A
weighting scheme is employed to balance loads on links:
gossip is done primarily to nearby processes over low-
latency links and rarely to remote processes, over costly
links that may share individual routers [22]. The
protocol switches between gossip pull and gossip push,
using the former for “young” messages and the latter for
“old” ones. Finally, we don’t actually buffer every
message at every process; a hashing scheme is used to
spread the buffering load around the system, with the
effect that the average message is buffered at enough
processes to guarantee reliability, but the average
buffering load on a participant decreases with increasing
system size.

Bimodal Multicast has a number of beneficial
properties. The protocol imposes constant loads on
participants: during each gossip round, a process sends a
single message, receives (with high probability) a single
message, and may be asked to retransmit at most a
bounded amount of data. Given a small amount of

4 In practice, we bias this list to favor nearby processes –
those accessible over low-latency links. We also need to
tunnel through firewalls, and hence communication to
genuinely remote processes is handled in a slightly
different manner. However, these details go beyond the
scope of the current paper.

 8

information about network topologies, loads on
communication links can also be kept constant,
irrespective of the system size. The mechanisms
supporting the protocol can be implemented as an event-
driven state machine that never blocks and requires just a
small amount of buffering, making it inexpensive to run.

Most important from the perspective of this paper,
however, the protocol overcomes the problems cited
earlier for other scalable protocols. Bimodal Multicast
has tunable reliability that can be matched to the needs of
the application (reliability is increased by increasing the
length of time before a message is garbage collected, but
this also causes buffering and I/O costs to rise). The
protocol gives very steady data delivery rates with
predictable, low, variability in throughput. For real-time
applications, this can be extremely useful. And the
protocol imposes constant loads on links and routers (if
configured correctly), which avoids network overload as
a system scales up. All of these characteristics are
preserved as the size of the system increases.

The reliability guarantees of the protocol are midway
between the very strong guarantees of virtual synchrony
and the much weaker best-effort guarantees of a protocol
like SRM or a system like TIB. We won’t digress into a
detailed discussion of the nature of these guarantees,
which are probabilistic, but it is interesting to note that
the behavior of Bimodal Multicast is predictable from
certain simple properties of the network on which it runs.
Moreover, the network information needed is robust in
networks like the Internet, where many statistics have
heavy-tailed distributions with infinite variance. This is
because gossip protocols tend to be driven by successful
message exchanges and hence by the “good” network
statistics. In contrast, protocols such as SRM or RMTP
often include round-trip estimates of the mean latency or
mean throughput between nodes. Such estimates are
problematic in the Internet where many statistical
distributions are heavy-tailed and hence have ill-defined
means and very large variances.

Although Bimodal Multicast has a very different
reliability model than does virtual synchrony (the model
is more similar to the best-effort guarantees of SRM or
RMTP), it is possible to superimpose stronger reliability
models over the infrastructure offered by the Bimodal
protocol. In particular, we have begun to work with an
implementation of virtual synchrony that operates over
Bimodal Multicast. The resulting protocol represents
something of a tradeoff. For small groups, its
performance is not as good as in a more traditional
virtual synchrony implementation. In larger groups,
however, we’ve seen that virtual synchrony becomes
unstable and eventually breaks down. Virtual synchrony
over Bimodal Multicast scales far better, remaining
robust and steady with apparently constant costs

independent of the size of the group. This observation
motivates the discussion that follows.

5. Randomized Limits to Scale

We can generalize from the phenomena enumerated
above. Distilling these down to their simplest form, and
elaborating slightly:

� With the exception of the gossip protocols, each of
these reliability models involves a costly fault-
recovery mechanism intended for infrequent use:

� Virtual synchrony employs flow control, failure
detection and membership-change protocols;
when incorrectly triggered, the cost is
proportional to the size of the group.

� SRM has a solicitation and retransmission
mechanism that involves multicasts; when a
duplicate solicitation or retransmission occurs,
all participants process an extra message.

� FEC tries to reduce retransmission requests to
the sender by encoding redundancy in the data
stream. As the group size grows, however, the
average multicast path length increases; hence
the risk of a multi-packet loss rises. The sender
will see increasingly many retransmission
requests (consuming a scarce resource), or the
redundancy of the stream itself must be
increased (resulting in a bandwidth degradation
and a system-wide impact).

� Again with the exception of the gossip protocols, the
mechanisms we’ve reviewed are potentially at risk
from convoy-like behaviors. Even if data is injected
into a network at a constant rate, as it spreads
through the network router scheduling delays and
link congestion can make the communication load
bursty. Such bursts have a global effect, in the sense
that processes in the application may become
overwhelmed by a high volume of data, or may run
“dry” for so long that the user is disrupted (as might
happen in a multicast media delivery setting). At
best, bursty traffic may trigger flow control at
inappropriate times, reducing overall throughput.
Perhaps more serious, bursty traffic increases the
likelihood that an overloaded router may drop large
numbers of packets, requiring a costly recovery.
However, whereas this phenomenon has actually
been observed in hierarchical implementations of
virtual synchrony, we have not seen anything
comparable in our work with other protocols, or
with virtual synchrony running over Bimodal
Multicast.

� Many protocols (SRM, RMTP) depend upon
configuration mechanisms that are sensitive to

 9

network routing and topology. Over time, network
routing can change in ways that take the protocol
increasingly far from optimal, in which case the
probabilistic mechanisms used to recover from
failures can seem increasingly expensive. Periodic
reconfigurations, the obvious remedy, introduce a
disruptive system-wide cost.

In contrast, the gossip mechanisms used in NNTP, the
Xerox Clearinghouse system, and the Bimodal Multicast
protocol appear to scale without these kinds of problems.
Throughput is stable (at least, if measured over
sufficiently long periods of time – gossip protocols can
be rather unstable if metered on a short time scale).
Overheads are flat and predictable, and can be balanced
with information about network topology, so that links
and routers won’t become overloaded. And, the levels of
reliability achieved are very high – indeed, potentially as
high as those of the protocols purporting to offer stronger
guarantees, if one considers the possibility that such
protocols sometimes reconfigure themselves, incorrectly
excluding a process as “faulty” when it may actually
merely be the victim of bad luck.

Is there a general insight that relates these
observations?

� Many reliable multicast protocols depend upon
assumptions about the usual model of operation.
These have a small probability of being violated. As
a system scales the frequency of violations grows.

� These protocols typically have some form of
recovery mechanism with a potentially global cost.
As the system scales up, this cost grows.

� Each of these protocols is built in layers. The
problems cited arise within the lowest layers,
although they then propagate to higher layers
triggering large-scale disruptions of performance.

More broadly, we argue that these are all
consequences of a protocol stack architecture in which
the lowest layers of the stack provide reliability, and in
which randomized phenomena are threats to performance
or some other property guaranteed by the system. The
insight is then that as we scale the system to larger and
larger settings, the absolute frequency of these
probabilistic events rises, and hence the performance of
the system degrades.

In contrast, gossip protocols can be understood as
using an inverted protocol stack. In this approach,
recovery occurs at the lowest level and operates with
probabilistic behavior and guarantees. Higher-level
mechanisms do their best to impose end-to-end
properties on the lower level properties, but typically do
so without introducing extra communication for the
purpose of repairing gaps in the message sequence. In

effect, we adopt the view that the lower level
mechanisms have already done what can be done to
achieve data consistency among the participants, and we
must content ourselves with the outcome. These
protocols, then, offer probabilistic guarantees.

Probabilistic guarantees may sound like a
contradiction in terms, because common sense suggests
that anything but an absolute reliability guarantee would
be the equivalent of no reliability at all. Our work
suggests that this is not at all the case. First, it is possible
to design mechanisms that have stronger guarantees,
such as virtual synchrony, and yet reside in an end-to-
end manner over the basic network architecture afforded
by our gossip infrastructure. As just noted, when virtual
synchrony is implemented this way, it scales relatively
well; multicast throughput remains steady even under the
kinds of stress seen in Figure 1, although there may be
long delays when process group views change if the
system membership has become very large. But we are
also finding ways of embedding probabilistic guarantees
directly into useful tools that applications might find
valuable in their own terms, without trying to
superimpose some stronger (arguably, less natural)
reliability abstraction over the basic properties of the
protocol.

Thus, while layering virtual synchrony over Bimodal
Multicast may be useful, many data dissemination
systems can operate directly over Bimodal Multicast.
The properties of the protocol are well matched to the
needs of systems that do require a degree of reliability,
but can overcome bounded rates of error. The term
bounded is the key here; unlike a traditional unreliable
network mechanism that can behave arbitrarily badly if
luck turns against the user, Bimodal Multicast overcomes
all but the most severe outages and behaves in a
predictable manner at all times.

Similarly, the Section that follows describes
Astrolabe, a technology that offers probabilistic
guarantees for data managed in a scalable table. Tables
are a common and widely supported programming
abstraction (database relations, spreadsheets, etc); hence
the idea of a table made up of data drawn from various
parts of the network is both natural and easy to work
with. Astrolabe provides this model with probabilistic
reliability guarantees, and has the same scalability and
robustness properties seen for Bimodal Multicast.

6. Four Probabilistic Tools

Earlier we noted that the focus of the Spinglass
project is on practical software tools that can really be
used. In this section and the next, we first review the
tools we are currently developing, and then describe

 10

some applications that we view as especially promising
early targets for the technology.

Bimodal Multicast

As described above, Bimodal Multicast is a one-to-
many (or several-to-many) communications mechanism
that achieves tunable, probabilistically reliable data
delivery. The probability of successful outcomes, where
all operational processes receive every multicast, can be
made arbitrarily high by adjusting the parameters
governing the frequency with which participants gossip
and the length of time that they buffer copies of received
multicasts. In ongoing work at Cornell University, we
are exploring issues such as operation in wide-area
networks with firewalls surrounding secured enclaves,
using formal tools to characterize the conditions that a
network must have in order to run this protocol, and
understanding the kinds of network problems that
Bimodal Multicast is capable of overcoming.

Astrolabe

Astrolabe [18] is a system built using the same gossip
mechanisms employed in Bimodal Multicast, but in
support of a completely different data model. The basic
idea of Astrolabe is to support a distributed shared
memory in the form of a hierarchical table. The leaves
of the hierarchy are regional tables in which there is one
row per participating computer or application program,
and where the columns contain application-defined data
(this could be something small, like an indication of the
security level of the machine or the version number of a
program running on it or a load, or something large, like
an XML object describing a database or web page).
Within a region, all participants can see the entire
regional table but each can only update its own row.

Higher levels of the hierarchy are formed using what
we call a summary function. A summary function is a
computation on a column of a regional table that reduces
the contents of that column to a single value. For
example, minimum could be used as a summary function
for a column-reporting load. The contents of a higher-
level table will be one row for each of its child regions,
with columns defined according to the summary
function. While a region only has direct access to its
own regional table, all regions can access all of the
ancestor tables in the hierarchy. Normally, an ancestor
table would list properties of a whole region, like its
average communication load, together with attributes of
the region, like the IP address of a machine to contact for
a given service (incoming mail, database updates, etc).
The intention is that the application designer would
customize the summary functions.

Astrolabe is a useful technology for scalable system
management and resource discovery. In modern
computing systems, simply knowing where data can be
found or knowing versions of software and configuration
information for other machines is a critical and yet
poorly supported functionality. Astrolabe automates this
job and does so in a manner that is scalable and has
predictable delays (they grow slowly with system size),
constant overheads, and remarkable stability. Basically,
one arranges for summary functions that let the user
identify the regions where instances of the resource can
be found (for example, “regions where some computer
controls a satellite capable of imaging such-and-such a
location), and then where a match is found, drills in by
expanding the regional table and scanning its individual
elements (i.e. to find the machine actually controlling the
desired satellite).

Astrolabe’s table model is a good match with the new
generation of component architectures for PCs and
portable devices. Microsoft’s automation architecture,
used on many devices of this sort, has comprehensive
support for table-structured objects through the OLE-DB
interfaces (an evolution of the older ODBC interfaces).
Astrolabe supports these interfaces, which means that on
a PC, we can actually support drag-and-drop access to
Astrolabe tables. Such a mechanism would offer stable,
fault-tolerant distributed computing without the need for
distributed programming, much as a spreadsheet user can
work with other spreadsheet users and yet may never
need to learn to write any code.

Gravitational Gossip

This variation on the Bimodal Multicast protocol is
designed to support large numbers of subgroups within a
single network [11]. Subgroups are a traditionally
important problem in group communication systems,
particularly when supporting publish-subscribe styles of
communication, where large numbers of communication
groups can arise. With this new protocol, we are able to
superimpose large numbers of subgroups on a large
Bimodal Multicast group, and can arrange that each
group member will receive just the data it desires plus a
constant overhead. Moreover (this is the “gravitational”
aspect) members of a subgroup can specify a quality
rating. A member that wants to receive 100% of the data
in a group can do so, paying the full cost for all
multicasts in the group. However, if a member only
needs part of the data – say, 50% of the sensor readings
or 20% of them – it can adjust its rating to correspond to
its need. The load associated with the protocol is
reduced accordingly. Notice that we are deliberately
reducing the reliability of the protocol to cut the load
seen by processes with small rating values.

 11

We like to visualize this protocol as emulating a
gravitational well. In practice ratings can have any
values desired, but these include values that give
behavior like that of a gravity fielding this case,
messages multicast within the “floor” of the well and
flow at full speed to other processes in the floor. With
some probability, these messages also ride up the “walls”
of the well, but the steeper the wall, the less likely this is
to occur, and a message that does ride up the wall is very
likely to fall back towards the base. Processes residing
on the wall thus see less load and receive just a
percentage of the data items.

Obviously, gravitational gossip is only useful in
settings where it is meaningful to take actions based on a
randomly selected subset of sensor values. However, as
discussed below, we know of a number of such
applications.

Anonymous Gossip

This direction within our project applies gossip
communication to mobile wireless devices [4]. We have
a number of applications in mind, but started by looking
at wireless multicast in so-called ad-hoc networks, which
are common in military applications. Anonymous gossip
is a technique for using gossip communication to
improve the quality of existing ad-hoc multicast
protocols. The idea is to take a multicast protocol (we’ve
considered several, but worked most closely with AODV
and the multicast layered over it, MAODV) and then to
superimpose a gossip repair mechanism similar to the
one in Bimodal Multicast.

Where Anonymous Gossip departs from Bimodal
Multicast is that in a mobile wireless setting, little
information is available about the identity of peers, since
these can change rapidly. For example, a platoon of
soldiers may fan out on a hillside, so that the network is
always “fully connected” and yet the connectivity of any
particular soldier’s computer varies widely. The
challenge is that in such a network, one has no idea with
whom to gossip. Anonymous Gossip solves this problem
by sending gossip messages that travel some distance
over a randomly chosen path in the ad-hoc network. The
eventual receiver replies to the sender.

In [4] we report on an experimental analysis of this
technique. We find that it improves the reliability of
MAODV, reducing loss rates by as much as two orders
of magnitude and also yielding better throughput with
lower overheads and lower jitter. We are now extending
the basic protocol by looking at other metrics and at the
use of gossip to maintain the basic routing infrastructure
itself. At the same time, we are starting to look at
application-level issues that arise in developing mobile
software to run over a gossip infrastructure.

7. Security Issues

Gossip mechanisms raise interesting issues of
authentication and security. On the one hand, we face
challenges in securing our new tools against intrusion
and disruption; on the other, one can view our system as
a potentially valuable tool for use in intrusion detection
systems and other aspects of security architectures.

With respect to the former question, our challenge is
that gossip employs a relaying mechanism. We need to
avoid the possibility that a process responsible for
relaying a message might undetectably change its
contents. Accordingly, our implementations include
session authentication mechanisms (access control lists)
as well as digital signatures used to validate the
correctness of gossiped information. If process p sends a
multicast or updates a row in Astrolabe, the signature of
process p for that data travels with the data, so that while
a faulty process might corrupt the information, a healthy
process will always be able to detect and ignore damaged
messages. Astrolabe’s summary functions are also
secured using signatures; this ensures that new summary
functions can only be introduced by users with
appropriate administrative permissions.

The power of gossip is that information reaches
destinations by following a diversity of paths. In effect,
every process is a potential source of data for every other
process, and over time the number of possible routes by
which information from process p might travel to process
q rises exponentially. For example, suppose that process
p has detected an event of interest. After t time units,
O(2t) processes will have know of that event.

When a system comes under attack, an adversary may
manage to corrupt a few messages or disrupt a region of
the network. Yet, if any connectivity remains at all5, the
gossip exchange of data will eventually prevail, and data
stored within Astrolabe will reach all sites in the system.
Thus, our protocols are not just secure in the sense of
using digital signatures to authenticate users and to
authorize their actions, but they are also relatively

5 Flooding attacks that dramatically reduce the capacity
of the network will cause Astrolabe to exhibit degraded
behavior (reporting updates after unusually long delays,
and potentially dropping some updates in favor of newer
ones). However, such an attack is unlikely to shut
Astrolabe down completely. Notice further that
Astrolabe does not increase its rate of communication
when error rates rise. In contrast, conventional protocols
often “melt down” when a flooding attack occurs,
sending retransmission requests and extra copies of
messages in a futile attempt to overcome errors, which
instead merely exacerbates the overload.

 12

tolerant of denial of service attacks. On the down side,
when a system comes under attack, one can easily
imagine that the rate of change of information monitored
using Astrolabe could exceed the speed at which that
information can be propagated; in this case, new sensor
values begin to overwrite old ones and applications may
“miss” some values. This will also occur if the network
becomes heavily loaded. Moreover, Astrolabe limits
itself to communicating information; nothing about our
work provides a guarantee that the information is of high
quality, nor do we know how effective Astrolabe’s
summary functions will be as a tool for reducing the
volume of data that an application monitoring this data
might need to process. We believe that Astrolabe is best
seen as a potentially valuable tool for the developer of
distributed security mechanisms, but one that also brings
new issues and complexities.

For example, consider the problem of intrusion
detection. Traditionally, this is treated as a monolithic
issue. Our work suggests that it might be useful to
separate such systems into three parts: event collection,
data dissemination, and intrusion detection. We’re not
specialists in event collection or in the actual detection
problem itself. But Astrolabe, and Bimodal Multicast,
might represent useful technologies for data
dissemination, and they have properties that would seem
to represent advances over those of more conventional
solutions.

Similarly, consider the issue of system “control” that
arises when a problem is detected. Here, the key to
recovery involves orchestrating a cooperative and
consistent response while the attack is still underway.
Bimodal Multicast and Astrolabe are both options for
this purpose, depending on the urgency of the reaction.
Both protocols are secure and both will overcome even
an active attack, rapidly and consistently notifying
participants, which can then switch to a backup network,
rekey, or take other actions to repel the aggression.

Yet gossip technologies also introduce new
vulnerabilities. The mere act of placing a software
system on large numbers of nodes potentially introduces
a new common point for attacking those nodes. We’ve
noted that Astrolabe uses executable summary functions
to compute domain/value data for higher levels of the
information hierarchy, and one could imagine situations
in which corrupted functions might damage or disable
participating nodes. To minimize such risks, Astrolabe
employs a very limited functional programming
language for these functions, and requires that all
introduced information be appropriately signed, but
additional hands-on experience with large applications
will be needed before we fully understand the policy and
administrative implications of treating extremely large
systems as manageable, instrumented entities.

8. Applications

We have examined a number of application areas to
understand the right roles for our tools in support of
emerging scalable computing systems. Here, we briefly
describe three representative areas to illustrate some
matches between our technology and real-world
problems. At Cornell, each of these areas is being
examined in much greater detail.

Joint Battlespace Infosphere

Our team includes members of a new AFRL/IT
Information Assurance Institute, which was put in place
to foster collaboration and cooperation between the Air
Force and Cornell on topics arising our of demanding Air
Force computing systems. A focus for this work is the
Air Force Science Advisory Board report recommending
the development of the JBI.

The JBI, like its sibling programs in the Army and
Navy, is intended to offer a shared computing platform
that links information produced by a diversity of
"publishers", in a secure and scalable manner, with a
diversity of "subscribers." The intent of the architecture
is to create a vast web-like infrastructure that permits
anytime, anywhere access to mission-critical data, but
under the assumption that unlike the web, the data of
interest will be evolving rapidly in real-time.

There is no question that a JBI capability could be an
asset of incalculable value if we can successfully develop
it and make use of it during military engagements.
However, success implies that the platform must be
sufficiently scalable and stable to work well even when
large numbers of consumers tap into the JBI
simultaneously, even when components fail, become
overloaded, or come under attack. Existing complex
systems scale poorly, becoming fragile in all of these
respects.

Cornell is exploring possible applications of Spinglass
to the JBI infrastructure. Our goal is to show that an
infrastructure such as the JBI can be designed to be
intrinsically robust, so that as we scale it up, it continues
to work well and has predictable properties. In contrast,
were one to build a JBI with off-the-shelf tools, one must
fear that it would become unstable as we scale it up,
subject to unexpected overloads, degraded service, and
perhaps outright breakdown. Use of the Spinglass
technology in applications like these will no doubt reveal
new kinds of challenges, and we believe that a
substantial research effort will be required before we
fully understand the capabilities, and limits, of our new
technologies. However, the apparent match between
Spinglass capabilities and the JBI encourages us to

 13

believe that real progress can be made before such
limitations are encountered.

Cluster Management with Ising

Modern computing is increasingly organized around
powerful servers, such as databases, web servers, and
various kinds of enterprise network servers [21]. The
inexpensive way to accommodate large numbers of
clients is to somehow run these servers on clusters with
large numbers of cheap but powerful component
machines. Yet managing such clusters, especially in a
large network with multiple clusters, can be a tough
challenge. As a client of a wide-area cluster farm, even
knowing which server to connect to is hard, particularly
if that server might crash or migrate.

We have developed a project, Galaxy, which is
exploring architectures for supporting very large clusters.
Within this effort, the Ising technology is a cluster-
embedding of Spinglass protocols and solutions tuned for
use in PC clusters. The basic ideas are the same, but
because we know how the Ising versions of these
protocols will be used, we can undertake a type of
context-specific tuning that would not be appropriate in a
tool intended for very general settings.

Galaxy virtualizes the cluster: each application sees
what appears to be a dedicated platform, on which it
superimposes its own resource abstractions and policies,
such as job placement, load balancing, etc. The system
is flexible about how such problems can be solved,
offering standard mechanisms that the application can
override by supplying new modules. For example, many
applications will want to provide specialized load
balancing mechanisms.

Galaxy treats several levels of scale:

• A farm is a geographically distributed set of clusters
on which a single application is hosted, managed
from a centralized location. In the early stages of
our effort, we are focused on farms with no more
than a small number of clusters, but large farms will
eventually be considered as well. The JBI, for
example, will probably be a farm in this sense.

• An individual cluster is a reliable array of
computers. We consider two cases. A RACS is a
reliable array of cloned servers: machines that have
identical content and can behave in identical ways.
Queries against a rarely changing database system
can be directed to a RACS cluster; since any node
can handle any request, this offers inexpensive
scalability.

• A RAPS architecture is one in which a system, such
as a database, is partitioned. For example, perhaps
the database is divided into ten equal sized portions,

and each query can be routed according to the
portion of the data it will access.

• Finally, we support packed architectures. Database
systems can exploit low levels of parallelism
although large parallel databases run into
bottlenecks. A server pack is a small set of servers
on which a database operates in this sort of packed
mode.

Galaxy provides mechanisms in support of cluster
management and cluster-aware application development,
with the goal of understanding the right roles for
Spinglass protocols in such a setting, and the right styles
of application design where scalability is a requirement.
For example, the designers of the JBI will need to know
that they can implement a number of scalable
communication services, deploy them in a manageable
manner onto a scalable hardware platform, and simply
add more hardware if the application is successful and
load rises. Our hope is that Spinglass, residing in the
Ising subsystem of Galaxy, will respond to this need both
by offering a way to manage the cluster and also by
demonstrating the best ways of exploiting a cluster.

Electric Power Grid

Finally, we are collaborating with a consortium to
work on problems arising from the restructuring of the
national electric power grid. As has become painfully
evident to inhabitants of California, legislatures are
increasingly mandating a restructuring of electric power
systems to reduce the traditional monopoly structures
that prevail in this industry. With competition come both
the economic issues that are so much in the news, as well
as new technical challenges. Our effort involves
matching the Spinglass technology to the needs of these
emerging control and management systems.

As an example, the Gravitational Gossip protocol,
although useful in many settings, arose as a response to a
pattern of communication actually seen in restructured
electric power control and management systems. Prior to
restructuring, these systems adapted to changing loads in
a regional manner. Basically, within each region, it
sufficed to monitor line frequency; power laws dictate
that frequency falls when load exceeds production and
rises if power production exceeds load. Thus, without
any form of networked communication, all generators
can see when the regional need for power is rising or
falling and can adapt in parallel (for example, closing a
gate in a dam or reducing the supply of coal to a
furnace).

As we restructure and move to a competitive
architecture, it may be that Ohio Power and Light will
provide the power consumed by Corning Glass in New
York under a contract. Now, when the New York region

 14

senses an over or underload, it is no longer appropriate to
simply adjust production. Suddenly, we need an
elaborate communications architecture whereby Ohio
can monitor Corning. Moreover, for reasons of grid
protection many other devices may need to track the
status of the load-following contract between Ohio and
Corning, and this data is also useful as an input to the
pricing models used in the free market for electric power.

The need for high quality data, however, varies within
this collection of players. Very high-resolution
information about a contract is needed by the producer
and consumer and by the protective relays along the
major path between them. Less detailed information is
needed by other relays in the region, and even less detail
is needed by the various market pricing programs. This is
good news, because in a world where every program
wants equally good data, our communication costs would
otherwise rise as O(nm) where n is the number of
processes in the application and m is the number of
contracts.

Gravitational Gossip lets us respond to the need in a
way that lets each process pay for just the data it will be
using. In this way, we can architect the system to load
the network in a predictable way, so that communication
overload cannot arise even in a worst case scenario
(presumably, during a major storm), ensuring stability
and speedy response no matter what might transpire.

9. Summary and Conclusions

We briefly examined a number of multicast scalability
problems and argued that they can be understood as the
outcome of a battle between random phenomena and
deterministic properties. These include throughput
instability, flow control problems, convoys seen in
ordered multicast delivery protocols, and high rates of
duplicated retransmission requests or unneeded
retransmitted data packets in protocols using receiver-
driven reliability. We traced these problems to a form of
complexity argument, and suggested that many protocol
architectures degrade as O(n2) or worse in the size of the
system. It is especially interesting to realize that this
phenomenon may stem in part from the traditional OSI
stack, which enforces reliability and performs flow
control low in the network.

The alternative we’ve proposed can be understood as
an inversion of the ISO stack, insofar as lower layers are
gossip-based and have probabilistic properties, while
upper levels introduce stronger properties (such as virtual
synchrony, if desired). The most natural presentation of
our architecture is in terms of a scalable reliable
communication protocol, the Bimodal Multicast, which
has reliability and stability properties that can often be
used directly (avoiding the need for stronger, more costly

reliability guarantees such as virtual synchrony). In
effect, we see our architecture as an end-to-end response
to a situation in which the traditional manner of building
multicast protocols violated the end-to-end methodology.
Experiments confirm that this approach yields substantial
immunity to the scalability limits just cited.

The same idea can be used in other settings. Cornell’s
work on Astrolabe, Gravitational Gossip and
Anonymous Gossip illustrate a number of other
presentations for these kinds of communication
protocols, and our work on security issues and
applications confirms that these mechanisms can be
effective if used appropriately.

Randomized low-level phenomena that compromise
system-wide performance are an unrecognized but
serious threat to scalability. While we often brush
concerns about “infrequent events” to the side when
designing services, in the context of a scalability analysis
it becomes critical that we confront these issues, and
their costs. Probabilistic gossip repair mechanisms fight
fire with fire: they overcome infrequent disruptive
problems with mechanisms having small, localized costs.
In a world where scalability of network mechanisms is
rapidly becoming the most important distributed
computing challenge, appreciating the nature of these
effects and architecting systems to minimize their
disruptive impact is an issue here to stay.

10. Availability

Our research effort at Cornell makes prototype
versions of the software developed under DARPA
support available to the public, at no fee. These research
prototypes can be downloaded by visiting our web pages
at http://www.cs.cornell.edu/Info/Projects/Spinglass.
However, Cornell is not able to provide support.
Hardened product-quality versions of the technologies
described herein are available from Reliable Network
Solutions, Inc.

11. Acknowledgements

The authors gratefully acknowledge the many
graduate students who have contributed to the work
reported here, including Mark Hayden, Yaron Minsky,
Zhen Xiao, Xiaoming Liu, Indranil Gupta, Kate Jenkins,
Ken Hopkinson, Ranveer Chandra, Vanugopalen
Ramasubramanian, Adrian Bozdog, Rimon Barr, Ben
Atkin and Tibor Janosi. We also wish to thank our
colleagues Al Demers, Fred Schneider, Johannes Gehrke
and Jon Kleinberg for stimulating dialog about gossip
protocols and for their many useful comments and
suggestions. Jim Gray and the members of the NT
Cluster group at Microsoft have been extremely helpful

 15

in posing questions and making suggestions about the
Galaxy project.

12. References

[1] Birman, K.P. Building Secure and Reliable Network
Applications. Manning Publications and Prentice Hall,
1997.

[2] Birman, K., Gupta, I, Van Renesse, R. Fighting Fire
with Fire: Using Randomized Gossip to Overcome
Probabilistic Limits to Scalability. In preparation,
expected completion March 2001.

[3] Birman, K., Hayden, M., Ozkasap, O., Xiao, Z.,
Budiu, M., Minsky, Y. Bimodal Multicast. Cornell
University Dept. of Computer Science Technical Report,
(Feb. 1998). Submitted to ACM TOCS.

[4] Chandra, R., Ramasubramanian, V. and Birman,
K.P. Anonymous Gossip: A Technique for Improving
the Reliability of Ad-Hoc Multicast Protocols.
International Conference on Distributed Computing
Systems, Phoenix Arizona (April 2001).

[5] Cheriton, D and Skeen, D. Understanding the
Limitations of Causal and Totally Ordered
Communications. Proc 13th SOSP, Ashville, N.C. Dec.
1993 (44-57).

[6] Demers, A. et. al. Epidemic Algorithms for
Replicated Data Management. Proceedings of the 6th
Symposium on Principles of Distributed Computing
(PODC), Vancouver, Aug. 1987, 1-12.

[7] Floyd, S., Jacobson, V., McCanne, S. Liu, C., and
Zhang, L.. A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing. In
Proc SIGCOMM `95, Aug. 1995, Cambridge MA.

[8] J. Gray, P. Helland, P. O'Neil and D. Shasha. The
dangers of replication and a solution. Proceedings 1996
SIGMOD Conference, June 1996.

[9] Richard Golding and Kim Taylor. Group
Membership in the Epidemic Style. Technical report
UCSC-CRL-92-13, University of California at Santa
Cruz, May 1992.

[10] Guo, K. Scalable Message Stability Detection
Protocols. Ph.D. dissertation, Cornell University, 1998.

[11] Jenkins, K., Hopkinson, K., and Birman, K. A
Gossip Protocol for Subgroup Multicast. Submitted to
ICDCS Workshop on Reliable Group Communication.
Nov. 2000

[12] Kalantar, M and Birman, K. Causally Ordered
Multicast: the Conservative Approach. Proc. ICDCS
1999. Austin, June 1999.

[13] Liu, C. Error Recovery in Scalable Reliable
Multicast (Ph.D. dissertation), University of Southern
California, Dec 1997

[14] Lucas, M.. Efficient Data Distribution in Large-
Scale Multicast Networks (Ph.D. dissertation), Dept. of
Computer Science, University of Virginia, May 1998

[15] Marzullo, K., Cooper, R., Wood, M., Birman, K.
Tools for Distributed Application Management. IEEE
Computer, 24:8 Aug. 1991. 42-51.

[16] Rebuttals to [5] appearing in Operating Systems
Review, January 1994.

[17] Piantoni, R. and Stancescu, C.. Implementing the
Swiss Exchange Trading System. FTCS 27 (Seattle,
WA), June 1997, 309-313.

[18] Van Renesse, R. Astrolabe: A Scalable Resource
Location Service. Submitted to DISCEX-01. Dec. 2000.

[19] Van Renesse, R., Minsky Y, and Hayden, M.
Gossip-Based Failure Detection Service. In Proc. of
Middleware '98. England.

[20] Sanjoy Paul, Sabnani, K., Lin, K. and
Bhattacharyya, S. "Reliable Multicast Transport Protocol
(RMTP)", IEEE Journal on Selected Areas in
Communications, special issue on Network Support for
Multipoint Communication, April 97, Vol 15, No. 3

[21] Vogels, W. and Dumitriu, D.M., "An Overview of
the Galaxy Management Framework for Scalable
Enterprise Cluster Computing", in the Proceedings of the
IEEE International Conference on Cluster Computing:
Cluster-2000, Chemnitz, Germany, December 2000.

[22] Xiao, Zhen and Birman, Ken. A Randomized Error
Recovery Algorithm for Reliable Multicast. Accepted
for publication, IEEE INFOCOM `01. April 2001.

