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Abstract

We investigate the class of so-called epidemic algorithms
that are commonly used for the lazy transmission of up-
dates to distributed copies of a database. These algorithms
use a simple randomized communication mechanism to en-
sure robustness. Suppose n players communicate in paral-
lel rounds in each of which every player calls a randomly
selected communication partner. In every round, players
can generate rumors (updates) that are to be distributed
among all players. Whenever communication is established
between two players, each one must decide which of the ru-
mors to transmit. The major problem (arising due to the
randomization) is that players might not know which rumors
their partners have already received. For example, a stan-
dard algorithm forwarding each rumor from the calling to
the called players for ©(Inn) rounds needs to transmit the
rumor ©(nlnn) times in order to ensure that every player
finally receives the rumor with high probability.

We investigate whether such a large communication
overhead is inherent to epidemic algorithms. On the pos-
itive side, we show that the communication overhead can
be reduced significantly. We give an algorithm using only
O(nlnlnn) transmissions and O(lnn) rounds. In addi-
tion, we prove the robustness of this algorithm, e.g., against
adversarial failures. On the negative side, we show that any
address-oblivious algorithm (i.e., an algorithm that does
not use the addresses of communication partners) needs
to send Q(nlnlnn) messages for each rumor regardless
of the number of rounds. Furthermore, we give a gen-
eral lower bound showing that time- and communication-
optimality cannot be achieved simultaneously using random
phone calls, that is, every algorithm that distributes a rumor
in O(Inn) rounds needs w(n) transmissions.
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1 Introduction

We investigate the problem of spreading rumors in a
distributed environment using randomized communication.
Suppose n players exchange information in parallel com-
munication rounds over an indefinite time. In each round
t, the players are connected by a communication graph G,
generated by random phone calls as follows: each player u
selects a communication partner v at random and « calls v;
two players u and v are connected by an edge in G if u calls
v in round . Rumors can be started in any round by any
player and can be transmitted in both directions along the
edges in the graph G in round ¢. The goal is to spread the
rumor among all participating players using a small number
of rounds and a small number of transmissions.

The motivation for using randomized communication is
that it naturally provides robustness, simplicity, and scala-
bility. For example, consider the following so-called push
algorithm. Starting with the round in which a rumor is
generated, each player that holds the rumor forwards it to
a communication partner selected independently and uni-
formly at random. The distribution of the rumor is termi-
nated after some fixed number of O(Inn) rounds. At this
time all players are informed, with high probability?.

Clearly, one can also inform all players in O(Inn)
rounds using a deterministic interconnection of constant de-
gree, e.g., a shuffle network. (For an overview of determin-
istic information dissemination we refer to [5] or [6].) The
advantage of the randomized push algorithm, however, is
its inherent robustness against several kinds of failures com-
pared to deterministic schemes that either need substantially
more time [4] or can tolerate only a relatively small number
of faults [10]. For example, consider node failures in which
a player (different from the player starting the rumor) fails
to communicate or simply crashes and forgets its rumors.
Obviously, when using a sparse deterministic network, even
a single node failure can result in a large fraction of players
not receiving the rumor. When using the randomized push
algorithm, however, the effects of node failures are very lim-
ited. In fact, it is not difficult to prove that F' node failures
(specified by an oblivious adversary) result in only O(F)

1The term with high probability (w.h.p.) means with probability at least
1 — O(n—%) for an arbitrary constant o > 0.



uninformed players, w.h.p.

Unfortunately, the push algorithm produces a large com-
munication overhead. In fact, it needs to forward each in-
dividual rumor ©(nlnn) times before all players are in-
formed, in comparison to a deterministic scheme which re-
quires only n — 1 transmissions. It seems that the large
number of transmissions is the price for the robustness. This
gives rise to the question whether this additional communi-
cation effort is a special property of the above push algo-
rithm or is inherent to rumor spreading using random phone
calls in general.

1.1 Background

Demers et al. [2] introduced the idea of using so-called
epidemic algorithms for the lazy update of data objects in a
data base replicated at many sites, e.g., yellow pages, name
servers, or server directories. In particular, they propose the
following two concepts:

e Anti-entropy: Every site regularly chooses another site
at random and resolves all differences by exchanging
the complete data base contents.

e Rumor mongering: When a site receives a new update
it becomes a “hot rumor”. While a site holds a “hot
rumor”, it periodically chooses another site at random
and sends the rumor to the other site.

It turns out that anti-entropy is extremely reliable but pro-
duces such an enormous amount of communication that it
cannot be used too frequently. The idea of rumor mon-
gering is to exchange only recent updates, thereby reducing
the communication overhead significantly. In practice one
might use a combination of both concepts, that is, using ru-
mor mongering frequently and anti-entropy very rarely in
order to ensure that all updates are recognized by all sites.
In this paper, we solely investigate algorithms implementing
the rumor mongering concept.

The original idea for rumor spreading was to send rumors
only from the caller to the called player (push transmis-
sion) [2]. Several termination mechanisms deciding when
a rumor becomes “cold” so that it transmission is stopped
were investigated. All these algorithms share the same phe-
nomenon: the fraction v of players that do not know a par-
ticular rumor decreases exponentially with the number of
transmissions ¢ (i.e., messages that contain this rumor). So-
called mean field equations (implicitly assuming that v is
sharply concentrated around its mean value E [u]) lead to
the conjecture that u = exp(—t/n) for all variants of the
push algorithm that have been investigated. In other words,
a push algorithm needs © (n In n) transmissions for sending
a rumor to all players.

A further idea introduced in [2] is to send rumors from
the called to the calling player (pull transmission). It was
observed that the number of uninformed players decreases
much faster using a pull scheme instead of a push scheme.
This kind of transmission makes sense if updates occur fre-
quently so that (almost) every player places a random call in
each round anyway. Mean field equations lead to the con-
jecture that v ~ exp(—2?) for pull schemes. Clearly, this
double exponential behavior implies that only ©(n Inlnn)
transmissions are needed if the distribution of the rumor can
be stopped at the right time. Such a termination mechanism,
however, is not presented. Instead, the authors predict that
©(nvInn) transmissions are sufficient for some other spe-
cific termination mechanisms.

The work of Demers et al. initiated an enormous amount
of experimental and conceptual study of epidemic algo-
rithms. For example, there is a variety of research issues
like consistency, correctness, data structures, and efficiency
[1,7,8,9, 12]. Recent theoretical work concentrates on the
robustness against Byzantine failures [11]. In this paper,
we concentrate only on the efficiency of these randomized
algorithms. In particular, we study their time and communi-
cation complexity using a simple model for the underlying
randomized communication.

1.2 Therandom phone call model

Let V denote the set of players. The communication
graph Gy = (V,E; CV x V) of round ¢ > 1 is obtained
by a distributed, randomized process. In each round, each
player u chooses a communication partner v from V" at ran-
dom and w calls v. Unless otherwise stated, we assume that
all players choose their communication partners indepen-
dently and uniformly at random from V.

Even though we envisage an application (such as the lazy
transmission of updates to distributed copies of a database)
in which rumors are constantly generated by different play-
ers, our analysis is concerned with the distribution of a sin-
gle rumor only. We focus on the lifetime of the rumor
and the number of transmissions rather than the number of
connections established because the latter cost is amortized
over all the rumors using that connection.

In round ¢, the rumor and other information can be ex-
changed in both directions along the edges of G;. Whenever
aconnection is established between two players, each one of
them (if holding the rumor) has to decide whether to trans-
mit the rumor to the other player, typically without knowing
whether this player has received the rumor already. Regard-
ing the flow of information, we distinguish between push
and pull transmissions. Assume player « calls player v.

e The rumor is pushed If v tells v the rumor.

e The rumor is pulled if v tells u the rumor.



We do not limit the size of the information exchanged in
any way. Each information exchange between neighboring
players in a round is counted as a single transmission. (We
point out that our algorithms only add small counter val-
ues to rumors, whereas our lower bounds hold even for al-
gorithms in which players exchange their complete history
whenever the rumor is sent in either direction.) Communi-
cation inside each round, however, is assumed to proceed in
parallel, that is, any information received in a round cannot
be forwarded to another player in the same round.

The major issue that has to be specified by a rumor
spreading algorithm is how players decide whether the ru-
mor shall be forwarded to a communication partner. An
algorithm is called distributed if players make these deci-
sions using only local knowledge. In other words, the deci-
sion whether a player sends a message to a communication
partner in round ¢ depends only on the player’s state in that
round. The initial state of a player is defined by the player’s
address, the number of players, and possibly a random bit
string. The state of a player in round ¢ > 1 is a function of
its initial state, the addresses of its neighbors in the commu-
nication graphs G1, . . . , Gy, and the information received in
rounds 1 to ¢ — 1. (For our lower bounds we allow the state
to depend in addition on a globally known round number
and the birth date of the rumor considered.)

Finally, an algorithm is called address-oblivious if a
player’s state in round ¢ does not depend on the addresses
of the neighbors in G; but only on the number of neigh-
bors in G;. (The state can still depend on the addresses
of neighbors in Gy, ...,G;_1.) We point out that all ru-
mor spreading algorithms proposed by Demers et al. [2] are
address-oblivious.

1.3 Newresults

We prove that the number of transmissions can be re-
duced significantly when the rumor is sent in both direc-
tions, that is, when using push and pull rather than only push
operations. We introduce a simple push&pull algorithm
spreading the rumor to all players in O(ln n) rounds using
only O(n ln lnn) transmissions in comparison to ©(n lnn)
as used by the push algorithm.

The drawback of the simple push&pull-algorithm is that
its success heavily relies on a very exact, global estimation
of the right termination time. This mechanism is very sen-
sitive to any kind of errors that influence the expansion of
the set of informed players. In order to improve the robust-
ness, we devise a distributed termination scheme, called the
median-counter algorithm, that is provably robust against
adversarial node failures as well as stochastic inaccuracies
in establishing the random connections.

In particular, we show that the efficiency of the algorithm
does not rely on the fact that players choose their com-

munication partners uniformly from the set of all players.
We show that the median-counter algorithm takes O(Inn)
rounds and needs only O(nlnlnn) transmissions regard-
less of the probability distribution used for establishing the
random connections as long as all players act independently
and each player uses the same distribution D : V' — [0, 1]
to select its communication partner. For example, this al-
lows sampling from an arbitrary address directory (possibly
with redundant addresses and some non-listed players as in
a telephone book). In other words, the algorithm can be
executed even without global knowledge about the set of
players.

In addition, we provide lower bounds assuming that
the communication partners are selected using the uni-
form probability distribution. Both the simple push&pull
algorithm as well as the median-counter algorithm are
address-oblivious and use only O(nlnlnn) transmissions.
We prove a corresponding lower bound showing that any
address-oblivious algorithm needs to perform Q(nlnlnn)
transmissions in order to inform all players. We point out
that this bound holds independently of the number of rounds
executed.

The situation changes substantially when considering
general (i.e., possibly non-address-oblivious) algorithms.
Allowing ©(nlnn) rounds, an algorithm that exploits the
addresses of communication partners can spread the rumor
using only n — 1 transmissions. Here is a simple example.
The player initiating the rumor simply waits until each other
player appears as communication partner for the first time
and then forwards the rumor to this player. Clearly, this is
not a practical algorithm as it takes too many rounds. Nev-
ertheless, it illustrates the additional possibilities when the
addresses of communication partners can be exploited.

The above example leads to the question of whether gen-
eral epidemic algorithms can spread a rumor in a small num-
ber of rounds while using only a linear number of transmis-
sions. We give a lower bound answering this question nega-
tively. In particular, we show that any randomized rumor
spreading algorithm running for O(lnn) rounds requires
w(n) transmissions. This lower bound holds regardless of
the amount of information that can be attached to the ru-
mors. For example, players might always exchange their
complete communication history whenever the rumor is
transmitted in either direction. Thus, there is a fundamental
gap between rumor spreading algorithms based on random
interconnections and deterministic broadcasting schemes.

2 Theadvantage of push& pull

First, let us explain the differences in the propagation of
the rumor obtained by push transmissions on the one hand
and pull transmissions on the other hand.



e Consider a push scheme in which every informed
player, in every round, forwards the rumor to the player
it calls until all players are informed. In this case the
set of informed players grows exponentially until about
n/2 players are informed. At about this time the ex-
ponential growth of the set of informed players stops.
Starting from this point of time, let us consider the set
of uninformed players. Once half of the players are
informed, this set shrinks by a constant factor in each
round. At the end of the rumor spreading process this
factor is about 1 — 1/e since the fraction of players that
do not receive a call in a round is about 1/e. Thus,
the shrinking phase takes ©(Inn) rounds until every
player has received the rumor, and the push algorithm
sends ©(n) messages in each of these rounds.

e Now consider a pull scheme in which only called play-
ers send the rumor towards the calling players. In
this case, the player starting the rumor may have to
wait some rounds until it is called for the first time so
that the propagation in the first rounds becomes unpre-
dictable. But eventually (after O(lnn) rounds, w.h.p.)
about n/2 of the players will be informed. From this
time on, the pull algorithm has an advantage against
the push algorithm as the fraction of uninformed play-
ers roughly squares from round to round. This is be-
cause in a round starting with en uninformed play-
ers, each individual player has probability 1 — € to re-
ceive the rumor, so that the probability of staying unin-
formed is ¢, resulting in an expected number of e2n un-
informed players at the end of the round. Thus, we can
expect that the shrinking phase only takes ©(Inlnn)
rounds so that only ©(rn Inlnn) messages are sent dur-
ing this phase.

In order to combine the predictability of the push scheme
with the quadratic-shrinking property of the pull scheme,
we simply send the rumor in both directions whenever pos-
sible. In detail, our push&pull scheme works as follows.
The creator of the rumor initiates a time-counter with O rep-
resenting the age of the rumor. The age is incremented in
every round and distributed with the rumor. In every round
every informed player pushes and pulls unless the age of the
rumor is higher than t,,,x = logs n+ O(lnlnn). In the fol-
lowing theorem, we assume the uniform distribution and a
perfect interconnection without failures.

Theorem 2.1 The simple push&pull-scheme informs all
players in time log; n + O(Inlnn) using O(n1nlnn) mes-
sages w.h.p.

Proof. Let S; be the set of informed players and U, the set
of uninformed players at the end of round ¢. Define s; =
|S¢| and u; = |Uy|. We distinguish four consecutive phases.

1. The startup phase starts in the round in which the ru-

mor is created and ends with the first round after whose
execution there are at least (Inn)* informed players for
the first time. At the beginning of the first round only
one player holds the rumor. If we execute ¢ rounds
then the probability that this player has at least once
called an uninformed player (i.e., did not call itself) is
1 — n~¢ Thus, we double the number of informed
players in ¢ rounds, w.h.p. In general, starting with
at most (Inn)* informed players, we need at most
¢ rounds to double the number of informed players,
w.h.p. Thus O(ln Inn) rounds are sufficient to achieve
(Inn)* informed players.

. The exponential-growth phase ends with the round af-

ter whose execution there are at least n/ In n informed
players for the first time. The expected number of mes-
sages (containing the rumor) sent during round ¢ in this
phase is 2s; 1 because each player holding the rumor
calls one player and is called by one player on average.
Applying a Chernoff bound yields that the number of
messages actually sentis m = (2 £ o(1/1nn))s;_1,
w.h.p, applying s;_; > (Inn)*. (Due to space lim-
itations, we dot not explain the mathematical details
behind the application of Chernoff bounds in this ex-
tended abstract.) Unfortunately, some of these mes-
sages are wasted as they are directed to the same player
or an informed player. As interconnections are cho-
sen at random, the probability that a particular mes-
sage is wasted is at most s;_1/n + m/n. This ex-
pression is bounded above by (3 + o(1/1nn))/Inn
because s;—; < n/lnn. As a consequence,

Els]] = se—1+m (1— %{llnn))

= $-1(3-0(1/lnn)) .
Applying a Chernoff bound yields
st = (1x0(1/1nn))E[s] = 81 (3£ O(1/1nn)) ,
since E[s;] > (Inn)*. Assuming this expansion fac-

tor in each round, we can observe that this phase takes
logs n £ O(Inlnn) rounds.

. The quadratic-shrinking phase ends with the round af-

ter whose execution there are at least /n(Inn)* unin-
formed players for the last time. Even if we only take
into account pull transmissions we obtain (by follow-
ing the arguments explaining the general properties of
pull algorithms) that

e[ < (%)




Applying a Chernoff bound yields
2
up < (1 + li) (ue)” )

nn n

w.h.p., provided u; > v/n(lnn)*. Now some easy cal-
culations show that we need O(Inlnn) rounds until
the number of uninformed players drops from n/Inn

to y/n(Inn)*.

4. In the final phase, we inform the few remaining unin-
formed players. Since the number of informed play-
ers in this phase is guaranteed to be larger than n —
v/n(lnn)*, each uninformed player has probability at

least
n —+/n(lnn)* (Inn)*
- v = 1=
n N
to receive a rumor due to a pull transmission in each
round of this phase. Consequently, we need only a con-

stant number of rounds until all players are informed,
w.h.p.

The exponential-growth phase takes logsn £ O(Inlnn)
rounds. During this phase the number of transmissions
grows exponentially from round to round. Therefore, we
send only O(n) messages during this phase. All other
phases have length only O(lnlnn). Thus, even if we as-
sume 2n transmissions in each of these rounds, the total
number of transmissions is only O(nlnlnn). This com-
pletes the proof of Theorem 2.1.

|

3 Themedian-counter algorithm

The push&pull algorithm relies heavily on a very ex-
act estimation of the expansion of the set of informed
players. The algorithm has to be executed for exactly
logs; n+0O(Inlnn) rounds. For example, a constant fraction
of players remains uninformed if the algorithm terminates
after (1—¢) logs n rounds, and the algorithm uses ©(n lnn)
transmissions when terminating after (1 + €) log; n rounds,
for any constant e > 0. A robust algorithm requires a more
flexible, distributed termination mechanism that recognizes
when all players are informed. This termination mechanism
is described in the following.

Let r denote the rumor being considered. During the
course of the algorithm each player v can be in one out of
four states A, B, C, or D (with respect to r). State A means
the player has not yet received the rumor. In all other states,
the player knows the rumor. When a player is in one of
the states B or C it pushes and pulls the rumor r along ev-
ery established connection. In state D the player does not
propagate the rumor anymore. Each player in state B holds

a counter ctr (v,r). We say a player v is in state B-m
if ctr (v,r) = m. These counters are irrelevant in other
states. The transitions between different states are defined
as follows.

e State A: The player v does not know r. (For the pur-
pose of analysis, we assume that ct r (v,r) = 0 in this
state.) If a player v in state A receives r only from
players in state B then it switches to state B-1. If a
player in state A receives r from a player in state C
then it switches to state C.

e State B-m: The player v knows r and ct r (v,7) = m.
(The player injecting the rumor starts in state B-1.)

Median rule: If during a round a player v in state B-m
receives r from more players in state B-m' with m' >
m than from players in state A and B-m/" with m" <
m then it switches to state B-(m + 1), i.e., increases its
counter.

There is one exception to this rule. If ctr (v,r) is in-
creased t0 Ct r pax (Where Ctr max = O(lnlnn) is
a suitable integer) then v switches to state C. Further-
more, if a player in state B receives the rumor from a
player in state C then it switches to state C, too.

e State C: Every player stays in this phase for at most
O(Inlnn) rounds, and then switches to state D, i.e., it
terminates the rumor spreading.

Roughly speaking, the counters in state B are used
in order to determine the point in time when the algo-
rithm switches from the exponential-growth phase into the
quadratic-shrinking phase. A counter value of Ct r 5% iN-
dicates that n/polylog(n) players are informed so that it
is sufficient to continue the propagation for only O(lnlnn)
rounds (which is done in state C). In order to make sure
that the median-counter algorithm terminates even in the
very unlikely event that the counter mechanism fails, we
determine that every player stops propagating the rumor af-
ter some fixed number of O(lnn) rounds, regardless of its
current state.

We investigate the robustness of the median-counter al-
gorithm against different sources of errors and inaccuracies.

e First, we assume the random connections in each
round are established using an arbitrary (possibly non-
uniform) probability distribution D : V' — [0, 1].

e Second, we assume that an oblivious adversary can
specify up to F' node failures occurring during the ex-
ecution of the algorithm. The adversary specifies a set
F of players (not containing the player starting the ru-
mor) that fail to exchange information in some of the
rounds (as specified by the adversary). We assume
|FI<Fandny: D) < F.



Clearly, we cannot hope to inform all players when allowing
adversarial node failures. Therefore, we are satisfied if the
algorithm informs all but O(F’) players. (Alternatively, one
may assume stochastic rather than adversarial failures, e.g.,
each random phone call fails with probability F/n. In this
case, staying for 7 = ©(Inlnn + In,,, F) rounds in stage
C ensures that all players are informed within O(lnn + 7)
rounds using O(7n) transmissions, w.h.p.)

Theorem 3.1 Assuming an arbitrary distribution D and up
to F' node failures as described above, the median-counter
algorithms informs all but O(F") players in O(ln n) rounds
using O(n Inlnn) transmissions, w.h.p.

Proof. First we investigate the errorless case. Let w; be
the probability that a player calls player i, let Sy, s¢, Uz, and
u; be defined as above and let g; be the weight of all in-
formed players: g; := ), wi. Consider the following
three phases.

Startup:  We want to ensure that at least s; € Q(Inn)
informed players with weight g; > 1"% are established.

A straightforward analysis shows that ©(loglogn)
rounds of push communication suffice to achieve this,
w.h.p.. Then, ©(loglogn) rounds of pull-communication
establish the wanted number of informed players w.h.p.

Exponential growth: This phase ends when the weight
gq is greater than 1.

In this phase the weight h; of the set of uninformed play-
ers H; with larger weight than % is of particular interest:

hy := Z w; .

i€Up:w; >1/s¢

Note that | H;| < s; and that the probability of a member of
H; being called by an informed player in S; is larger than
the constant 1 — 1/e. Therefore, push operations cause an
increase of the weight of informed players by the amount of
(1 —¢€)(1 —1/e)h, for some constant e > 0 w.h.p.

In U; \ H, the fraction of which get only one call in this
round is at least 1 /e — e for an arbitrary small constante > 0
w.h.p. The probability that one of these players gets the
rumor pushed from S; is 2£. The expected number of in-
formed players in the next round is therefore

Elscra] > s+ (1/6—6)(n—5t | H|)

2s
> st(1+(1/e—e)(1—7t))
Ifs; < %forht <

and in the other case g¢1 > g(3 — &5 —
arbitrary small € > 0.

L this implies s;41 > s:(1+ 1 —€')

e

€') for some

So after some O(logn) rounds we have either g; >
or s >

log n

m. In the second case every player with weight

larger than &si is informed in the next round w.h.p.
Furthermore, the expected weight of all informed players
is E[gi+1] > Yoo, w?se. It turns out that this sum is
minimal for the uniform probability distribution. Hence,
E [gt+1] > 2. Because the weights are upper -bounded we
can apply Chernoff bounds and get g;1 > 3= > 101 —.

For the number of messages note that in all but one round
s < 10 . Therefore, the number of messages is bounded
by O(n).

Now we discuss how often a counter of a player will be
increased during this phase. We consider a player ¢ with
weight w; who is informed during this phase.

1. w: > 3logn
Wi 2 T2

In every round at least 2 logn uninformed players call
i, while ¢ receives a call only from at most logn in-
formed players (s; < 12" ); 4’s push call can be ne-
glected. So, this player will communicate with more
uninformed than informed players in each round and
the median rule prevents an increment of ¢’s counter.

2. w; < 3logn

—_— n
We allow that during the time interval {a,...,b} for
which we have —5— < w;s; < clogn the counter of
P; is increased in every round t.

In every round g; or s; (but possibly not both) grows
by a factor @ > 1. Nevertheless they interact pair-
wise, since the expected number of uninformed nodes
informed by a pull is u;g;. Therefore we have s;41 >
(1 — €)uggs > nge(1 — €') for e, ¢’ > 0 w.h.p. On the
other hand, every informed node pushes in every round
such that gg41 > W w.h.p. So, this time interval
is bounded by O(log logn,).

At any time step after b the number of uninformed
players calling P; is higher than the number of in-
formed players calling P; for the same reasons as in
1.

At every round ¢ before a We concentrate on weights
w; wWith w; < - 10 . The probability that a player
with such a wergh% is called by an informed player
is smaller than 1 — (1 — 12n)3t < i L Let
g; be the number of the players which increase their
counter at least 4 times before round a and let g9 = s;.
In the worst case all players stay in this situation for
the whole phase. Only ¢; players can cause an in-
crease for a counter larger than s. The probability
that such a player calls another is TQ— There-

2 .
fore, we have E[g;11] < —qgg—n It follows £+ <

s¢ lo




Coribrs if gi € Q(logn); and if g; < O(logn), then
@i+ = 0 for some constants ¢, ¢’ w.h.p. This proves
do(loglog n) = 0. S0, there are no players whose coun-
ters will be increased more than some cloglogn time

during this phase.

Quadratic-shrinking: This phase ends, when all players
have left states A or B.

The probability for each uninformed player to remain
uninformed is at most 1 — g;, if we consider only pull-
communication. Therefore we have E [u;y1] < ui(1 — g¢),
which implies

lo
U1 < ut(l — gt) (1 + %) Whp

The expected weight of the uninformed player of the next
round is E[1 — gs11] = (1 — g¢)?. Note that max;cy, w; <
ﬂ’fﬁ—". Therefore, applying Chernoff bounds it follows that

log®
1— g1 <(1—ge)® (1 + \g/;ﬁn) w.h.p.

It is clear that after some O(loglogn) rounds we have
1—gi1 < &\;‘% Then, some constant number of rounds
of pull will sufficiently decrease the probability of an unin-
formed player remaining in state A.

Since in every round each counter may be incremented
only once, it suffices to choose Ct r max > cloglogn for
some constant ¢ independent of D.

It remains to show that after some additional
O(loglogn) rounds all counters reach Ctr ... Con-
sider the time point at which all players are informed.
Clearly, all counters are at least 1. Then, in every step i
each counter is at least 7 + 1. Therefore the distributional
algorithm ends after O(loglogn) rounds.

Since every player produces only one random call in
each round the overall number of messages in this phase
is bounded by O(n loglogn).

Now we focus on the case of F' < %n node failures with
weight F'//n. We assume that if a node failure occurs on
v that v terminates, i.e. switches to state D without learn-
ing the rumor. The analysis of the startup and exponential
phases can be easily adapted to this case, since the growth
of informed nodes proceeds more slowly but still exponen-
tially. We now investigate the situation in the double expo-
nential shrinkage phase.

Let F be the set of nodes which may be disconnected
in some rounds. Then S; and U; are defined as the set of
informed and uninformed nodes, excluding the nodes in F;
ug, S¢, and g, are defined as before. The probability that a

node remains uninformed is at most 1— g, per round. There-
fore we can conclude that w.h.p. usr1 < (1 — g¢)ug. Simi-
larly to the error-free case, we can conclude that 1 — g1 <
E | (1+ 98 12)(1 — g,)2 wh.p. This recursion converges
in O(loglogn) rounds to 1 — g € O(£). This implies
a maximum number of O(F’) uninformed nodes within the
next round.

The main problem for the error case is to verify that the
number of messages does not exceed O(nloglogn). We
prove this by showing that at least O(n/ logn) players have
reached state C or D, by the time the first error-free play-
ers reach state D. The remaining error-free players can only
cause O(logn) messages each, where F' faulty players do
not add further messages. We start our analysis at the mo-
ment when only F' € O(F) nodes with weight F'/n re-
mained uninformed. Let us assume that all informed players
are in the state B-1.

Let Z; ,,, be the set and y; ., the weight of error-free
nodes in round ¢ with ct r (v) = m. The probability that
a node in Z,, is increased is at least 301" ™y, ;. We
want to prove that in the triangular section where t < km
for some constant k, y; . decreases exponentially in ¢.
For the analysis we allow that some of the counters may
be decreased. The aim of this modification is that the
Series yi1,...,Yt,m, 1S exponentially increasing, the se-
res Ym, t> Ym,+1.¢, - - - 1S EXponentially decreasing, and the
weight g m,+1 > % contains the rest of the weight. More
formally, Vi < my Yti < oypirr and ypm, 41 =
1—F'/n— %"y, for some o > 1.

By decreasing some of the counters it can be ensured that
in the next round we have Vi < my; : y¢; < @ yg 41 and
Yir1,i < 12y, ;. This follows by the fact that Zgj Yij >
1 and by reducing the number of players increasing their
counter to a fraction of % each. After some constant num-
ber of rounds ¢ we have yiycm,+1 > OYtyecm,. Then, we
increase m;y. := m; + 1 and get the claimed triangular
section.

Therefore, after some O(loglogn) rounds only a frac-
tion of O(n/logn) players has a smaller counter than
cloglogn. O

4 Lower bound for address-oblivious algo-
rithms

Our first lower bound shows that the two presented
push&pull algorithms achieve the best possible results for
the class of address-ablivious algorithms. Clearly, any algo-
rithm requires (In n) rounds in order to inform all players.
In addition, we show that any address-oblivious algorithm
requires Q(n Inlnn) transmissions, regardless of the num-
ber of rounds. We assume the random phone call model
using the uniform distribution.



Theorem 4.1 Any address-oblivious algorithm guarantee-
ing that all but a fraction f of the players receive the ru-
mor with constant probability needs to perform Q(nInln & )
transmissions in expectation.

Proof. Let us fix an address-oblivious algorithm A. De-
pending on the execution of .4, we will partition the rounds
into contiguous phases such that the number of transmis-
sions during the first 4 phases is at least (i — 1)n/4 = Q(in).
(The actual length of the phases depends possibly on the
outcome of random experiments influencing the execution
of A. Thus, the length of the phases might give some evi-
dence about the outcome of some random experiments. The
following statement, however, holds regardless of this ev-
idence.) Let U; denote the number of uninformed players
at the end of phase ¢, and define u(i) = nexp(—2' + 2).
We will show by induction that U; > w(i), w.h.p. Conse-
quently, A needs Q(In In f) phases and, hence, Q(n1nln f)
transmissions in order to inform all but a fraction f of the
players. Clearly this yields the Theorem.

Phases are defined as follows. Phase 1 starts with the
round in which the rumor is generated. If phase ¢ ends in
round ¢ then phase ¢ + 1 starts in round ¢ + 1. Thus, it re-
mains to describe when a phase ends. We distinguish sparse
and dense phases. A sparse phase contains at most n/2
transmissions. The length of these phases is maximized,
that is, a sparse phase ends in round ¢ if adding round ¢ + 1
to the phase would result in more than n/2 transmissions.
A dense phase consists of only one round containing more
than n/2 transmissions. Observe that the number of trans-
missions during the phases 0 to 4 is at least (i — 1)n/4 be-
cause any pair of consecutive phases contains at least n/2
transmissions by construction.

Now assume by induction that the number of uninformed
players at the beginning of phase i is at least u(i — 1). We
have to show that the number of uninformed players at the
end of phase i is at least w(4), w.h.p.

For1l < k < u(i — 1), let z denote a 0-1 random vari-
able indicating whether the kth of those players that are un-
informed at the beginning of round i receives a message
containing the rumor during the round. We claim

u(i —1) ‘

Pr [."L'k =0] >

The arguments leading to this inequality are different for
sparse and dense rounds.

e Suppose phase i is sparse. Then A sends at most %
messages during this phase. Each of these messages
is initiated without knowing the receiver because de-
cisions are placed in an address-oblivious fashion. As
connections are chosen uniformly at random, the prob-
ability that any particular message reaches player k& is

1 Consequently Prizy=1] < 2.1 < 1 so0that

Prae = 0] > § > *(H.

e Now suppose phase ¢ is dense. Then the phase con-
sists of only one round. In this case, the probabil-
ity p; that player & does not call an informed player
is at least @ Furthermore, the probability p-
that player & is not called by any other player is at
least % As these two probabilities are independent,

Prlzy = 0] = pip2 > u(i-1),

en

Since U (i) = Z(:"fl)(l — x1), We obtain
u(i—1)
EUG] = ) Prize=0
k=1
(i-1)2  (nexp(=2""'+3))
en B en

In particular, u(i) < (1 — $)E[U(i)]. Observe that the ran-
dom variables z; are sllghtly dependent since the random
interconnections used for transmissions in phase ¢ form par-
tial permutations on the caller sites. This dependence, how-
ever, is negative so that we can apply a Chernoff bound [3].
Assuming u(i) > (Inn)?, we obtain

PrU; <u(i)] <
< eXP( E[U(
< eXP(——U(Z)) = 0(n %),

for any positive constant «. This completes the proof of
Theorem 4.1. O

5 Lower bound for general algorithms

The above lower bound for address-oblivious algorithms
does not hold for those rumor spreading algorithms that
can base their decisions on the addresses of communica-
tion partners. In the introduction, we give an example
showing how all players can be informed using only O(n)
transmissions. This unrealistic algorithm, however, requires
O(nlnn) rounds. Now we investigate whether there is
an algorithm that is both time-optimal (i.e., using only
O(logn) rounds) and communication-optimal (i.e., using
only O(n) transmissions) The following lower bound an-
swers this question negatively. Again, we assume the ran-
dom phone call model using the uniform distribution.

Theorem 5.1 Any distributed rumor spreading algorithm
guaranteeing that all but a fraction o(1) of the players re-
ceive the rumor within O(ln n) rounds with constant prob-
ability needs to perform w(n) transmissions in expectation.



Proof. The difficulty in analyzing arbitrary distributed ru-
mor spreading algorithms is that the distribution of the ru-
mor can be a highly dependent process although the under-
lying random calling mechanism is generated by = inde-
pendent experiments in each round. For example, if player
1 is the only player with an odd address sending the rumor
to players with even addresses then the success of the algo-
rithm is highly dependent on the event that player 1 receives
the rumor. This small example (not even involving any ad-
ditional communication) shows that the analysis needs more
than simply applying martingales or Chernoff bounds.

Our basic trick in the following analysis is that we choose
arandom sample of the players that can be guaranteed to act
independently. This independence, however, can be guaran-
teed only for about % log n rounds. Of course, this number
of rounds is not enough to inform all players about a rumor
initiated by a single player. Therefore, let us assume for the
time being that the rumor is spread already to at least half of
the players and we consider the next 7' = | 3 logn| rounds.

Consider an arbitrary rumor spreading algorithm A. Let
Uy < n/2 denote the number of initially uninformed play-
ers. (In order to be able to extend our result to more than T
rounds later, we assume that the initially uninformed play-
ers are known by all players in the system, e.g., assume
that {1, ..., Uy} is the set of initially uninformed players.)
Let Xy denote a random variable describing the number of
messages sent during the 7" rounds. Furthermore, let Uy,
denote a random variable describing the number of unin-
formed players after round 7'. (These random variables are
with respect to the random phone calls and any kind of other
random decisions made by A4.)

Let S denote a set of m = |n'/8] players chosen ran-
domly from V. The set S will be our random sample. Let
Ug denote the random variable describing the number of
initially uninformed players in S (with respect to the ran-
dom choice of S.) Let Xg denote a random variable de-
scribing the number of messages received by the players in
S, and let Ug denote the random variable describing the
number of uninformed players in the set S after the last
round. (These random variables are with respect to random
decisions of .4 and the random choice of S.)

Recall that the communication graph G; in round ¢ is
obtained by a distributed random process, i.e., each player
v chooses a player » from V' at random and v calls u. This
random process generates a probability distribution D on
the set G of possible communication graphs. Repeating this
random process for 7' rounds extends the probability distri-
bution D to the sample space G7.

In many parts of the following analysis, we will assume
a slightly different probability distribution D’ on G that is
easier to handle than D. Instead of letting each player call
a random other player, we assume that the connections are
established as follows. In each round ¢,

e we choose uniformly at random a collection of m dis-
joint subsets B, (v) (v € S), each containing mn players
from V' \ S; (once these sets are chosen, the players in
S can act fully independently)

e each player v € S, chooses at random an integer
d(v) > 0 with Pr[é(v) =1] = 5; (in the very un-
likely case that 6(v) > m, set 6(v) = m — 1)

e each player v € S, chooses independently and uni-
formly at random a set of d(v) + 1 different players
UO(U), - U(w) (’U) from Bt(’U).

We determine that every player v € S calls player ug(v),
and the players u; (v), ..., us)(v) call v. Every player
for which we have not yet specified whom to call simply
chooses a communication partner from V'\ S independently
and uniformly at random. Clearly, D and D' are different
distributions. The following lemma, however, shows that
these distributions are closely related.

Lemma 5.2 The total variation distance between D and D’
on GT is O(n=1/4).

Based on this bound, we are able to give the following
lemma comparing the behavior of the complete system V|D
with that of the small system S|D’.

Lemma5.3 For 6> 0,u>n""/1% 0<p<1,

8) E[Xy|D] < fn =
Pr[Xs > 22D <p+ O/,

b) Uy > un =
PrUs < %] = O(n~*/*), and

¢) Prius >um|D'] <p=
PrUl, < 2|D] <p+O0(n=1/*).

Informally, this lemma states that it is sufficient to ana-
lyze S|D' in order to estimate V|D. In fact, restricting to
the smaller and simpler system S|D' will enable us to deal
with the complex dependencies in the original system V'|D.
The following lemma summarizes our analysis for S|D’.

Lemma5.4 Let ¢ denote a suitable constant. Suppose
Us >m/aand Xg < fm witha >4 and g > 1. Then

UL > ma—ep(cad)

with probability 1 — O(n—1/4), provided that a, 3, ¢ are not
too large so that o~ exp(cab) > p~1/16



(Due to space limitations, we omit the proof of all three
lemmas. Lemma 5.2 and 5.3 can be shown using standard
methods from probability theory like, e.g., Chernoff bounds
and the Markov inequality. The proof of Lemma 5.4 is more
interesting. We transform the probabilistic system S|D’ into
a deterministic token game, which then can be analyzed
combinatorially.)

Combining Lemma 5.3 and 5.4, we obtain the following
result for V|D. Suppose Uy < n/aand E [Xy < Bn] with
2 < a <n'/%and B > 0. Applying Lemma 5.3 a) and b)
yields

Xs < kfpm and Uszﬂ ,
2a
with probability at least 1 — £ — O(n=1/%), for any « > 0.
Now applying Lemma 5.4 yields
UL > ma~@®ea(sftl)
with probability 1—1 —O(n=1/4). Finally, we can conclude
from Lemma 5.3 c) that

Uy >

gai exp(ca(kB+1)) , (1)
with probability 1 — 1 — O(n=1/%). Assuming n >> «, this
probability is lower-bounded by 1 — %

For the time being, let us assume « and 3 are constants.
Then equation 1 can be interpreted as follows. Starting
with n/a uninformed players (possibly known by all play-
ers), performing X, < fn transmissions in [%loglogn]
rounds reduces the number of uninformed players only by
some constant factor, with probability at least 1 — % Now
let us consider the execution of ¢ phases of length at most
[ loglogn] each, for any constant ¢ > 1. Suppose we
spend at most Sn transmissions in each of these phases.
Then the number of uninformed players after all ¢ phases
is ©(n), with probability 1 — 2¢. Let us set x > 2c/e, for
any constant e > 0. Then spending ©(n) transmissions in
O(Inn) rounds leaves ©(n) uninformed players, with prob-
ability 1 — e. (A rigorous analysis based on inequality 1
shows that informing all but a fraction f of the players with
constant probability requires E [Xy] = Q(In** 1), where

Int*! denotes the natural logarithm iterated for z times.)
Hence, Theorem 5.1 is shown. O
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