RANDOMIZED CONSENSUS IN EXPECTED O(Nlog2 N)
OPERATIONS PER PROCESSOR

JAMES ASPNES* AND ORLI WAARTS!

Abstract. This paper presents a new randomized algorithm for achieving consensus among
asynchronous processors that communicate by reading and writing shared registers. The fastest pre-
viously known algorithm requires a processor to perform an expected O(n2 logn) read and write op-
erations in the worst case. In our algorithm, each processor executes at most an expected O(n log? n)
read and write operations, which is close to the trivial lower bound of Q(n).

All previously known polynomial-time consensus algorithms were structured around a shared
cotn protocol [4] in which each processor repeatedly adds random +1 votes to a common pool.
Consequently, in all of these protocols, the worst case expected bound on the number of read and
write operations done by a single processor is asymptotically no better than the bound on the
total number of read and write operations done by all of the processors together. We succeed in
breaking this tradition by allowing the processors to cast votes of increasing weights. This grants the
adversary greater control since he can choose from up to n different weights (one for each processor)
when determining the weight of the next vote to be cast. We prove that our shared coin protocol is
correct nevertheless using martingale arguments.’

1. Introduction. In the consensus problem, each of n asynchronous processors
starts with an input value 0 or 1 not known to the others and runs until it chooses a
decision value and halts. The protocol must be consistent: no two processors choose
different decision values; valid: the decision value is some processor’s input value;
and wait-free: each processor decides after a finite expected number of its own steps
regardless of other processors’ halting failures or relative speeds.

We consider the consensus problem in the standard model of asynchronous shared
memory systems. The processors communicate via a set of single-writer, multi-reader
atomic registers. Each such register can be written only by one processor, its owner,
but all processors can read it. Reads and writes to such a register can be viewed as
occurring at a single instant of time.

Consensus is fundamental to synchronization without mutual exclusion and hence
lies at the heart of the more general problem of constructing highly concurrent data
structures [20]. It can be used to obtain wait-free implementations of arbitrary ab-
stract data types with atomic operations [20, 23]. Consensus is also complete for
distributed decision tasks [11] in the sense that it can be used to solve all such
tasks that have a wait-free solution.

Consensus is often viewed as a game played between a set of processors and an
adversary scheduler. Using the standard wait-free model of an asynchronous shared-
memory system, each processor can execute as an atomic step either a single read
or write operation, or a flip of a local fair coin not visible to the other processors.
The sequencing of the processors’ actions is controlled by a scheduler, defined as a
function that at each step selects a processor to run based on the entire prior history of
the system, including the internal states of the processors. (Concurrency is modeled

* Yale University, Department of Computer Science, 51 Prospect Street / P.O. Box 208285, New
Haven, CT 06520-8285. E-mail: aspnes@cs.yale.edu. During the time of this research the first
author was at Carnegie-Mellon University, supported in part by an IBM Graduate Fellowship.

t Computer Science Division, University of California, Berkeley, CA 94720. E-mail:
waarts@cs.berkeley.edu. During the time of this research the second author was at Stanford,
supported in part by an IBM Graduate Fellowship, U.S. Army Research Office Grant DAAL-03-91-
G-0102, and NSF grant CCR-8814921.

1 A preliminary version of this work appeared in the proceedings of the Thirty-Third IEEE Sym-
posium on Foundations of Computer Science.

by interleaving.) Remarkably, it has been shown that the ability of the scheduler
to stop even a single processor is sufficient to prevent consensus from being solved
by a deterministic algorithm [10, 12, 16, 20, 22]. Nevertheless, it can be solved by
randomized protocols in which each processor is guaranteed to decide after a finite
expected number of steps.

Chor, Israeli, and Li [10] provided the first solution to the problem, but their
solution deviated from the standard model by assuming that the processor can flip
a coin and write the result in a single atomic step. Abrahamson [1] demonstrated
that consensus 1s possible even for the standard model, but his protocol required
an exponential expected number of steps. Since then a number of polynomial-work
consensus protocols have been proposed. Protocols that use unbounded registers
have been proposed by Aspnes and Herlihy [4] (the first polynomial-time algorithm),
by Saks, Shavit, and Woll [24] (optimized for the case where processors run in lock
step), and by Bracha and Rachman [8] (running time O(n? logn)). Protocols that use
bounded registers have been proposed by Attiya, Dolev, and Shavit [5] (running time
O(n®)), by Aspnes [3] (running time O(n?(p? + n)), where p is the number of active
processors), by Bracha and Rachman [7] (running time O(n(p? +n))), and by Dwork,
Herlihy, Plotkin and Waarts [13] (immediate application of what they call time-lapse
snapshots and with the same running time as [7]).

The main goal of a wait-free algorithm is usually to minimize the worst case
expected bound on the work done by a single processor. Still, for all of the known
polynomial-work wait-free consensus protocols, the worst case expected bound on the
work done by a single processor is asymptotically no better than the bound on the
total work done by all of the processors together.

Therefore, one of the main contributions of this paper is in showing that wait-
free consensus can be solved without requiring the fast processors to perform much
more than their fair share of the worst case total amount of work executed by all
processors together. At the same time, we improve significantly on the complexity
of all currently known wait-free consensus protocols, obtaining a protocol in which a
processor executes at most an expected O(n log? n) read and write operations, which
is close to the trivial lower bound of Q(n).? To do this we introduce a new weak
shared coin protocol [4] that is based on a combination of the shared coin protocol
described by Bracha and Rachman [8] and a new technique called weighted voting,
where votes of faster processors carry more weight.> We believe that our weighted
voting technique will find applications in other wait-free shared memory problems
such as approximated consensus and resource allocation.

The rest of the paper is organized as follows. The next section describes the intu-
ition behind our solution while emphasizing the main difference between our solution
and that in [3, 4, 5, 7, 8, 13, 24]. Section 3 describes our shared coin protocol. Sec-
tion 4 reviews martingales and derives some of their properties. Section 5 contains the
proof of correctness of our shared coin protocol. A discussion of the results appears
in Section 6.

2. Intuition and relation to previous results. All of the known polynomial-
work consensus protocols are based on the same primitive, the weak shared coin.
A weak shared coin returns a single bit to each processor; for each possible value

2 As discussed in Section 6, this gain in per-processor performance involves a slight increase in
the total work performed by all processors when compared with the Bracha-Rachman protocol.

3 The consensus protocol can be constructed around our shared coin protocol using the established
techniques of Aspnes and Herlihy [4].

b € {0, 1} the probability that all processors see b must be at least a constant 6 (the
agreement parameter of the coin), regardless of scheduler behavior.* Aspnes and
Herlihy [4] showed that given a weak shared coin with constant agreement parameter it
is possible to construct a consensus protocol by executing the coin repeatedly within a
rounds-based framework which detects agreement. The number of operations executed
by each processor in this construction is O ((n + T (n)) /6), where T((n) is the expected
work per processor for the weak shared coin protocol. For constant é, and under the
reasonable assumption that T'(n) dominates n, the work per processor to achieve
consensus becomes simply O (T (n)).

So to construct a fast consensus protocol one need only construct a fast weak
shared coin. The underlying technique for building a weak shared coin has not changed
substantially since the protocol described in [4]; each processor repeatedly adds ran-
dom +1 votes to a common pool until either the total vote is far from the origin
[3, 4, 5, 7, 13] or until a predetermined number of votes have been cast [8, 24]. Any
processor that sees a nonnegative total vote decides 1, and those that see a nega-
tive total vote decide 0. (The differences between the protocols are largely in how
termination is detected and how the counter for the vote is implemented.)

There are many advantages to this approach. The processors effectively act as
anonymous conduits of a stream of unpredictable random increments. If the scheduler
stops a particular processor, at worst all it does is keep one vote from being written out
to the common pool— the next local coin flip executed by some other processor is no
more or less likely to give the value the scheduler wants than the next one executed by
the processor it has just stopped. Intuitively, the scheduler’s power over the outcome
of the shared coin is limited to filtering out up to n — 1 local coin flips from this
stream of independent random variables. But the effect of this filtering is at worst
equivalent to adjusting the final tally of votes by up to n— 1. If a constant multiple of
n? votes are cast, the total variance will be Q(n?), and using a normal approximation
the protocol can guarantee that with constant probability the total vote is more than
n away from the origin, rendering the scheduler’s adjustment ineffective.

Alas, the very anonymity of the processors that is the strength of the voting
technique is also its greatest weakness. To overcome the scheduler’s power to withhold
votes, it is necessary that a total of Q(n?) votes are cast— but the scheduler might also
choose to stop all but one of the processors, leaving that lone processor to generate all
Q(n?) votes by itself. Consequently, for all of the polynomial-work wait-free consensus
protocols currently known, the worst-case expected bound on the work done by a
single processor is asymptotically no better than the bound on the total work done
by all of the processors together.

We overcome this problem by modifying the O(n?logn) protocol of Bracha and
Rachman [8] to allow the processor to cast votes of increasing weight. Thus a fast
processor or a processor running in isolation can quickly generate votes of sufficient
total variance to finish the protocol, at the cost of giving the scheduler greater control
by allowing it both to withhold votes with larger impact and to choose among up to
n different weights (one for each processor) when determining the weight of the next
vote to be cast.

There are two main difficulties that this approach entails; the first is that careful

* The term agreement parameter was first used by Saks et al [24] in place of the more melodramatic
but less descriptive term defiance probability of Aspnes and Herlihy [4]. Aspnes [3] used a bias
parameter, equal to 1/2 minus the agreement parameter; however, this quantity is not as useful as
the agreement parameter in the context of a multi-round consensus protocol.

3

1 procedure shared_coin()

2 begin
3 my_reg(variance, vote) — (0,0)
4 t—1
5 repeat
6 fori:=1tocdo
7 vote «— local_flip() x w(t)
8 my_reg «— (my_reg.variance + w(t)?, my_reg.vote + vote)
9 t—t+1
10 end
11 read all the registers, summing the variance fields into the local
variable total_variance
12 until total variance > K
13 read all the registers, summing the vote fields into the local variable
total_vote
14 if total_vote > 0
15 then output 1
16 else output 0
17 end

Fi1G. 1. Shared coin protocol.

adjustment of the weight function and other parameters of the protocol is necessary to
make sure that it performs correctly. More importantly, correctness proofs for previous
shared coins based on random walks or voting [3, 4, 5, 7, 8, 13, 24] considered only
equally weighted votes, and have therefore been able to treat the sequence of votes as
a sequence of independent random variables using a substitution argument. Because
our protocol allows the weight of the i-th vote to depend on which processor the
scheduler chooses to run, which may depend on the outcomes of previous votes, we
cannot assume independence.

However, the sign of each vote is determined by a fair coin flip that the scheduler
cannot predict in advance, and so despite all the scheduler’s powers, the expected
value of each vote before it is cast is always 0. This is the primary requirement of a
martingale process [6, 15, 21]. Under the right conditions, martingales have many
similarities to sequences of sums of independent random variables. In particular,
martingale analogues of the Central Limit Theorem and Chernoff bounds will be used
in the proof of correctness.

3. The Shared Coin Protocol. Figure 1 gives pseudocode for each processor’s
behavior during the shared coin protocol. Each processor repeatedly flips a local coin
that returns the values +1 and —1 with equal probability. The weighted value of
each flip is w(t) or —w(t) respectively, where ¢ is the number of coins flipped by the
processor up to and including its current flip. Each weighted flip represents a vote
for either the output value 1 (if positive) or 0 (if non-positive). After each flip, the
processor updates its register to hold the sum of the weighted flips it has performed,
and the sum of the squares of their values. After every ¢ flips, the processor reads the
registers of all the other processors, and computes the sum of all the weighted flips
(the total vote) and the sum of the squares of their values (the total variance). If the
total variance is greater than the quorum K, it stops, and outputs 1 if the total vote

4

is positive, and 0 otherwise. Alternatively, if the total variance has not yet reached
the quorum K, it continues to flip its local coin.

The function local_flip returns the values 1 and —1 randomly with equal proba-
bility. The values K and c are parameters of the protocol which will be set depending
on the number of processors n to give the desired bounds on the agreement parameter
and running time. The weight function w(t) is used to make later local coin flips have
more effect than earlier ones, so that a processor running in isolation will be able to
achieve the quorum K quickly. The weight function will be assumed to be of the form
w(t) = t* where a is a nonnegative parameter depending on n; though other weight
functions are possible, this choice simplifies the analysis.

We will demonstrate that for suitable choice of K, ¢ and a all processors return
1 with constant probability; the case of all processors returning 0 will follow by sym-
metry. The structure of the argument follows the proof of correctness of the less
sophisticated protocol of Bracha and Rachman [8], which corresponds to Figure 1
when w(t) is the constant 1, K = ©(n?), and ¢ = ©(n/logn). Votes cast before the
quorum K is reached will form a pool of common votes that all processors see.”> We
will show that with constant probability (i) the total of the common votes is far from
the origin and (ii) the sum of the extra votes cast between the time the quorum is
reached and the time some processor does its final read in line 13 is small, so that the
total vote read by each processor will have the same sign as the total common vote.

This simple overview of the proof hides many tricky details. To simplify the
analysis we will concentrate not on the votes actually written to the registers but on
the votes whose values have been decided by the processors’ execution of the local
coin flip in line 7; conversion back to the values actually in the registers will be done
by showing a bound on the difference between the total decided vote and the total
of the register values. In effect, we are treating a vote as having been “cast” the
moment that its value 1s determined, instead of when it becomes visible to the other
processors.

Some care is also needed to correctly model the sequence of votes. Most impor-
tantly, as pointed out above, allowing the weight of the i-th vote to depend on which
processor the scheduler chooses to run means the votes are not independent. So the
straightforward proof techniques used for protocols based on a stream of identically-
distributed random votes no longer apply, and it i1s necessary to bring in the theory
of martingales to describe the execution of the protocol.

4. Martingales. A martingale is a sequence of random variables 51,53, .. .,
which informally may be thought of as representing the changes in the fortune of a
gambler playing in a fair casino. Because the gambler can choose how much to bet
or which game to play at each instant, each random variable S; may depend on all
previous events. But because the casino is fair and the gambler cannot predict the
future, the expected change in the gambler’s fortune at any play 1s always 0.

We will need to use a very general definition of a martingale [6, 15, 21]. The sim-
plest definition of a martingale says that the expected value of S; 1 given S1, Sa,...,5;
is just S;. To use a gambling analogy, this definition says that a gambler who knows
only the previous values of her fortune cannot predict its expected future value any
better than by simply using its current value. But what if the gambler knows more
information than just the changing size of her bankroll? For example, imagine that

5 The definitions of the common and extra votes we will use differ slightly from those used in [8];
the formal definitions appear in Section 5.

she is placing bets on a fair version of roulette, and always bets on either red or black.
Knowing that her fortune increased after betting red will tell her only that one of
eighteen red numbers came up; but a real gambler will see precisely which of the eigh-
teen numbers it was. Still, we would like to claim that this additional knowledge does
not affect her ability to predict the future. To do so, the definition of a martingale
must be extended to allow additional information to be represented explicitly.

The tool used to represent the information known at any point in time will be a
concept from measure theory, a o-algebra.® The description given here is informal;
more complete definitions can be found in [15, Sections TV.3, IV.4, and V.11] or [6].

4.1. Knowledge, c-algebras, and measurability. Recall that any probabilis-
tic statement is always made in the context of some (possibly implicit) sample space.
The elements of the sample space (called sample points) represent all possible results
of some set of experiments, such as flipping a sequence of coins or choosing a point at
random from the unit interval. Intuitively, all randomness is reduced to selecting a
single point from the sample space. An event, such as a particular coin-flip coming
up heads or a random variable taking on the value 0, is simply a subset of the sample
space that “occurs” if one of the sample points it contains is selected.

If we are omniscient, we can see which sample point is chosen and thus can tell for
each event whether i1t occurs or not. However, if we have only partial information, we
will not be able to determine whether some events occurred or not. We can represent
the extent of our knowledge by making a list of all events we do know about. This
list will have to satisfy certain closure properties; for example, if we know whether or
not A occurred, and whether or not B occurred, then we should know whether or not
the event “A or B” occurred.

We will require that the set of known events be a c-algebra. A c-algebra F
is a family of subsets of a sample space Q that (i) contains the empty set; (ii) is
closed under complement: if F contains A, it contains 2\ A (the complement of A);
and (iii) is closed under countable union: if F contains all of Ay, As, ..., it contains
U?il A;.” An event A is said to be F-measurable if it is contained in F. In our
context, the term “measurable,” which comes from the original measure-theoretic
use of o-algebras to represent families of sets on which a probability distribution is
well-defined, simply means “known.”

We “know” about an event if we can determine whether or not it occurred. What
about random variables? A random variable X is defined to be F-measurable if
every event of the form X < ¢ is F-measurable. (The closure properties of F then
imply that such events as a < X < b, X = d, and so forth are also F-measurable.)
Looking at the situation in reverse, given random variables X1, X5, ... we can consider
the minimum o-algebra F for which each of the random variables is F-measurable;
this o-algebra, written (X;), is called the o-algebra generated by X;, Xa,..., and
represents all information that can be inferred from knowing the values of the gener-
ators.

A o-algebra gives us a rigorous way to define “knowledge” in a probabilistic
context. Measurability and generated o-algebras give us a way to move back and
forth between the abstract concept of a o-algebra and concrete statements about
which random variables are completely known. To analyze random variables that are
only partially known, we need one more definition. We need to extend conditional

6 Sometimes called a o-field.
7 Additional properties, such as being closed under finite union or intersection, follow immediately
from this definition.

expectations so that the condition can be a o-algebra rather than just a collection of
random variables.

For each event A let I4 be the indicator variable that is 1 if A occurs and 0
otherwise. Let U = E[X | F] be a random variable such that (i) U is F-measurable
and (ii) E[UT4] = E[X14] for all Ain F. The random variable E[X | F] is called the
conditional expectation of X with respect to F [15, Section V.11]. Intuitively, the
first condition on E[X | F] says that it reveals no information not already found in
F. The second condition says that just knowing that some event in F occurred does
not allow one to distinguish between X and E[X | F]; this fact ultimately implies
that E[X | F] uses all information that is found in F and is relevant to X.

If F is generated by random variables X7, X5, ..., the conditional expectation
E[X | F] reduces to the simpler version E[X | X1, X3,..]. Some other facts about
conditional expectation that we will use (but not prove): if X is F-measurable,
then E[XY | F] = X E[Y | F] (which implies E[X | F] = X); and if ' C F, then
E[E[X | F]| F1=E[X | F]. See [15, Section V.11].

4.2. Definition of a martingale. We now have the tools to define a martingale
when the information available at each point in time is not limited to just the values
of earlier random variables. A martingale {S;, F;},1 < i < n, is a stochastic process
where each S; is a random variable representing the state of the process at time ¢ and
F; is a o-algebra representing the knowledge of the underlying probability distribution
available at time 7. Martingales are required to satisfy three axioms, for all z:

1. F; € Fig1. (The past is never forgotten.)
2. S; is Fj-measurable. (The present is always known.)
3. E[Sit1 | Fi] = Si. (The future cannot be foreseen.)

Often F; will simply be the o-algebra (Si,...5;) generated by the variables Sy
through S;; in this case axioms 1 and 2 will hold automatically.

To avoid special cases let Fy denote the trivial o-algebra consisting of the empty
set and the entire probability space. The difference sequence of a martingale is the
sequence X1, Xs,... X, where X; =57 and X; = S5; — S;_1 for i > 1. A zero-mean
martingale is a martingale for which E [S;] = 0.

4.3. Gambling systems. A remarkably useful theorem, which has its origins in
the study of gambling systems, is due to Halmos [18]. We restate his theorem below
in modern notation:

THEOREM 4.1. Let {S;, F;},1 < i < n be a martingale with difference sequence
{X;}. Let {¢;},1 <i < n be random variables taking on the values 0 and 1 such that
each (; is F;_1-measurable. Then the sequence of random variables S = E;Il G X;
is a martingale relative to F;. (That is, {S}, Fi} is a martingale.)

Proof. The first two properties are easily verified. Because (; 1s F;_1-measurable,
E[6X: | Fic1] = GE[X: | Fi—1] = 0, and the third property also follows. O

4.4. Limit theorems. Many results that hold for sums of independent random
variables carry over in modified form to martingales. For example, the following
theorem of Hall and Heyde [17, Theorem 3.9] is a martingale version of the classical
Central Limit Theorem:
THEOREM 4.2 ([17]). Let {S;, Fi} be a zero-mean martingale. Let V2 =Y 7" | B [X? | Fi_1]
and let 0 < 6 < 1. Define L, =Y i, B [|Xi|*Y 2] +E [|V;2 — 1|'*°]. Then there custs
a constant C depending only on § such that whenever L, <1,

1
1+ [z|*(1+0)7/(3+20) | °

(1) [Pr[S, < z] — ®(z)| < CL}L/(?""”)

7

where @ is the standard unit normal distribution with mean 0 and variance 1.

For our purposes we will need only the case where and é are both set to 1. This
allows the statement of the theorem to be simplified considerably. Furthermore, the
rather complicated fraction containing z is never more than 1 and so can disappear
into the constant. The result is:

THEOREM 4.3. Let {S;, Fi} be a zero-mean martingale. Let V,2 = 2?21 E [XZQ | Ti_l]‘
Define L, =Y 1 B [|X;|*] +E [|V;2 — 11?]. Then there cxists a constant C' such that
whenever L, <1,

(2) [PrS, < 1] = ®(1)| < CL,/,

where @ is the standard unit normal distribution with mean 0 and variance 1.

If we are interested only in the tails of the distribution of S,,, we can get a tighter
bound using Azuma’s inequality, a martingale analogue of the standard Chernoff
bound [9] for sums of independent random variables. The usual form of this bound
(see [2, 25]) assumes that the difference variables X; satisfy | X;| < 1. This restriction
is too severe for our purposes, so below we prove a generalization of the inequality.
In order to do so we will need the following technical lemma.

LEMMA 4.4, Let {S;,F;},1 < i < n be a zero-mean martingale with differ-
ence sequence {X;}. Let Fo C F1 be a (not necessarily trivial) o-algebra such that
E[S1 | Fo] = 0. If there exisis a sequence of random variables wi, ws, ... w,, and a
random variable W, such that

1. W s Fg-measurable,
2. Fach w; 1s F;_1-measurable,
3. For all i, | X;| < w; with probability 1, and
4. 30w < W with probability 1,
then for any o > 0,

(3) E [| Fo] < W12

Proof. The proof is by induction on n. First, notice that since e®*! is convex we

have

- X - X

6QX1 S wy 1 e~ W1 + (1= wy 1 eozu)l7

2“)1 211)1

and thus
wy, — X wy, — X
E [eozXl |f0] S E 1. 1 e~ w1 + 1— 1 1 QW1 |f0
211)1 211}1

1 1 emawn _ gow
_ T awy _pawy - - X 31:'
3¢ tae < 2w,)E[11 70]

— _—6_aw1 + 5eoxwl
since E[X; | Fo] is zero.
But then

E [eaXl |f0] S (e—awl _|_6ozw1) — cosh aw S ea2wf/2.

G

N | —

8

If n = 1 we are done, since w? < W. If n is greater than 1, for each i < n — 1
let S; = Siy1 — Xy and F/ = Fiy1. Then {S;,F/},1 < i < n — 1 satisfies the
conditions of the lemma with F = Fi, w} = wiy1 and W' = W — w?, so by the
induction hypothesis E [eaS;—l |f6] < @ W-v)/2 Byt then, using the fact that
EX | F]=E[E[X | F']| F] when F C F', we can compute:

sl 15 = wfpfnen—is])

- et] 1)

< E [eaX16a2(W—wf)/2 |]jo]
— ea2(W—wf)/2E [eozXl | }-0]
< ea2(W—wf)/26a2wf/2

2
e? W/2.

O
THEOREM 4.5. Let {S;, F;},1 <i<n be a zero-mean martingale with difference

sequence {X;}. If there exists a sequence of random variables wy,ws, ... w,, and a
constant W, such that

1. FEach w; 1s F;_1-measurable.

2. For all i, | X;| < w; with probability 1, and

3. S°v w? < W with probability 1,
then for any A >0,

(4) Pr[S, > A < e M/?W.

Proof. By Lemma 4.4, for any a« > 0, E [e“sn] < e®"W/2 Thus by Markov’s
inequality

Pr[S, > Al =Pr [eaS" > ew‘] < e®’W/2g=aX,

Setting oo = A/W gives (4). O

Symmetry immediately gives us:

COROLLARY 4.6. For any martingale {S;, F;} satisfying the premises of Theorem
4.5, and any X >0

(5) Pr[S, < —A] < e~/

Proof. Replace each S; by —S; and apply Theorem 4.5. O

5. Proof of correctness. For this section we will fix a particular scheduler. We
may assume without loss of generality that the scheduler is deterministic, because any
random inputs the scheduler might use cannot depend on the history of the execution
and therefore may also be fixed in advance.

Consider the sequence of random variables X1, X5, ... where X; represents the
i-th vote that is decided by some processor executing line 7, or 0 if fewer than ¢ local
coin flips occur. Note that the notion of the i-th vote is well-defined since we model
concurrency by interleaving; it is assumed that the scheduler advances processors one

9

at a time. For each i let F; be (X;...X;), the o-algebra generated by X; through
X;. Because the scheduler is deterministic, all of the random events in the system
preceding the i-th vote are captured in the variables X; through X;_i, and the o-
algebra F;_; thus determines the entire history of the system up to but not including
the i-th vote. Furthermore, since the scheduler’s behavior depends only on the history
of the system, F;_1 in fact determines the scheduler’s choice of which processor will
cast the i-th vote. Thus conditioned on F;_;, X; is just a random variable which
takes on the values +w with equal probability for some weight w determined by
the scheduler’s choice of which processor to run. Hence E[X; | F;—1] = 0, and the
sequence of partial sums S; = E;’:l X; is a martingale relative to {F;}.

We are not going to analyze {S;, F;} directly. Instead, it will be used as a base
on which other martingales will be built using Theorem 4.1.

Let x; = 1 if Z;’:l X]»2 < K and 0 otherwise. Votes for which x; = 1 will be
called common votes. For each processor P let (' = 1 if the vote X; occurs before
P reads, during its final read in line 13, the register of the processor that determines
the value of X;, and let ¢(f = 0 otherwise. In effect, (" is the indicator variable for
whether P would see X; if it were written out immediately. Observe that for a fixed
scheduler the values of both x; and ¢ can be determined by examining the history
of the system up to but not including the time when the vote X; is cast, and thus

both x; and CZP are F;_j-measurable. Consequently the sequences {E;’:l Kj Xj} and
{Zj»:l C]PX]'} are martingales relative to {F;} by Theorem 4.1. Votes for which

¢F =1 but k; = 0 will be referred to as the extra votes for processor P. (Observe
that ¢(F > k; since P could not have started its final read until the total variance was

at least K.) The sequence {Z;II(CZP - m)XZ} of the partial sums of these extra

votes is a difference of martingales and is thus also a martingale relative to {F;}.

The structure of the proof of correctness is as follows. First, we observe that the
distribution of the total common vote, Y k;X;, is close to a normal distribution with
mean 0 and variance K for suitable choices of @ and K; in particular, we show that
for n sufficiently large, the probability that > x; X; > V'K will be at least a constant.
Next, we complete the proof by showing that if the total common vote is far from the
origin the chances that any processor will read a total vote whose sign differs from the
common vote is small. This fact is itself shown in two steps. First, it is shown that,
for suitable choice of ¢, the total of the extra votes for a processor P, Z(CZP — k)X,
will be small with high probability. Second, a bound A is derived on the difference
between Y ¢F X; and the total vote actually read by P.

It will be necessary to select values for a, K, and ¢ that give the correct bounds
on the probabilities. However, we will be in a better position to justify our choice
for these parameters after we have developed more of the analysis, so the choice of
parameters will be deferred until Section 5.5.

5.1. Phases of the protocol. We begin by defining the phases of the protocol
more carefully. Let #; be the value of the i-th processor’s internal variable ¢ at any
given step of the protocol. Let U; be the random variable representing the maximum
value of ¢; during the entire execution of the protocol. Let T; be the random variable
representing the maximum value of ¢; during the part of the execution of the protocol
where k = 1.

In the proof of correctness we will encounter many quantities of the form > ", x(7})
or y.°_, x(U;) for various functions y. We will want to get bounds on these quanti-

10

ties without having to look too closely at the particular values of each T; or U;. This
section proves several very general inequalities about quantities of this form, all of
which are ultimately based on the following constraint:

T'2a+1
2

T; T;
(6) KNSy [ia=3 g

i j=1 i i

The constant 2a + 1 will reappear often; for convenience we will write it as A. As
noted above, @ > 0, and hence A > 1.

A
Define T = (%)UA, so that K = nﬁK. The constant Tk represents the
maximum value of each T; if they are set to be equal while satisfying inequality (6).

Note that Tk need not be an integer. Now we can show:
LEMMA 5.1. Let () = /A and let x be any strictly increasing function such
that xy~' 1s concave. Then for any non-negative {z;}, if > ., ¥(z;) < K, then

>izy X(xi) < nx(Tk).
Proof. Since 1~ is concave, we have

(22 2o (52

[19, Theorem 92]. Simple algebraic manipulation yields

St < me (v (L H2))

But

! (Z @) =y (%Z mj) <y (%) = Tx.

Hence Y x(z;) < nx(Tg). O

Letting y be the identity function we have xy¢~1(z) = (Az)'/4, which is concave
for A > 1. Hence:

COROLLARY 5.2.

(7) > T < nTk.
i=1

In the case where 1) ~! is convex, the following lemma applies instead:

LEMMA 5.3. Let o(z) = z4/A and let x be any strictly increasing function
such that xy~1 is convez. Then for any non-negative {z;}, if Yo, ¥(x;) < K, then
Yoy X(23) < (n = 1)x(0) + x(n'/*T).

Proof. Let Y = Y 4(z;). Now x(z;) = x¢p~"4(z;) or

! ((1 B 1/}(?62’)) 0+ 1/)(9%)}/)

Y Y

which is at most

<1 - %ﬂ) Xy H(0) + @xw‘l(Y)

11

given the convexity of y1~'. Hence

nxy”H(0) — (Z y/}(yﬂ

= (n—Dxy 10)+ xy~! (Zn: 1/1(332'))

(]
P
£
IN

A
~
3
|
—_
v
>
=
A
~
o
S’
+
>
<=
A
—~~
]

which is just (n — 1)x(0) + x (nl/ATK). 0

The quantity n'/ATk is the maximum value that any z; can take on without
violating the constraint on 3~ z;. So what Lemma 5.3 says is that if yy~! is convex,
>~ x(z;) is maximized by maximizing one of the z; while setting the rest to zero.

For the variables U; we can show:

LEMMA 5.4. Let ¢(z) = 24 /A and let x be any strictly increasing function such
that x(¢~'(z) + ¢+ 1) is concave in z. Then,

n

(8) Zx(UZ) <nx(Tg +c+1)

i=1

Proof. Let W; be the number of votes written to the registers during the part
of the execution where the total of the register variance fields is less than or equal
to K. The set of variables {I¥;} satisfies the inequality Y WA/A < K using the
same argument as gives (6). Furthermore U; < W; 4+ 1 + ¢, because after the i-th
processor’s next vote the total variance in the registers must exceed K and it can cast
at most ¢ more votes before noticing this fact. Define x'(z) = x(z + ¢+ 1). Then
x(U;) < x(Wi+e+1) = x'(W;). But 9, x', W; satisfy the premises of Lemma 5.1 and
thus S x(U3) < S0, X'(W3) < n'(Tic) = nx(Tic + ¢ + 1). 0

Setting x to be the identity function gives

COROLLARY 5.5.

i=1

Proof. ("' (x) + ¢+ 1) = Az'/4 + ¢ + 1, which is concave since A > 1. 0
Define g = 1+ CT*;(S; then ¢Tx = Tk + ¢+ 3 will be an upper bound for Tx +c+1
as well as a number of closely related constants involving ¢ that will appear later.

5.2. Common votes. The purpose of this section is to show that for n suffi-
ciently large, the total common vote is far from the origin with constant probability.
We do so by showing that under the right conditions the total common vote will be
nearly normally distributed.

Let SK = E}Il k;X;. As pointed out above, {SZK = Z}Il K?]'X]',fi} is a mar-
tingale. Let N = [nTgk]. Tt follows from Corollary 5.2 that x; = 0 for ¢ > N and
thus SJI\? =lim;_ SZ»K is the sum of all the common votes. The distribution of Sjl\f 18
characterized in the following lemma.

LEMMA 5.6. If

4A2
(10) nl/ATK S)

then

s <] a0 ()

nl/ATK

(11)

where C1 is an absolute constant.

Proof. The proof uses Theorem 4.3, which requires that the martingale be nor-

malized so that the total conditional variance VJ\% is close to 1. So let V; = “\}% and

consider the martingale {Z;Il X/j,fi}. To apply the theorem we need to compute a

bound on the value Ly .
We begin by getting a bound on the first term Y E [|¥;|*]. We have

Py DS

N 1 N 1
12 [v; - G XA =
(12) ;:1 [1Y:]%] KZELEI1 |% I] 7 E

i=1j=1
Now,
T T; datl
Zj‘ld S / j4a d_] 4 j’;4d [4 ;:Z'v;la.
= 0 4a+1

Consider the two parts of this bound separately. Define ¥(z) = I‘A/A x() =

a (4at1)/A |
42_:11, then yy~1(y) = % is convex, y(0) = 0, and hence >

l/ATR)4a+1
4a+1
Similarly, let y/(z) = 2. Here the convexity of y’1/~! depends on the value of

a. If @ > 1 then Yy~ (y) = (Ay)*e/4 is convex (since 4a/A = 4a/(2a + 1) > 1),
and thus (again by Lemma5.3) >°7_, T4 < (n'/ ATy)4 = ptalATde < pléati)/ATda
Ifa < % then x'¢y~!(y) is concave (since now 4a/A < 1), and thus by Lemma 5.1
Z?:l T'i4a < TLTI4(G < n(4a+1/A)TI%a.

Plugging everything back into (12) gives

i=1 4a+1 is at

most & using Lemma 5.3.

N
(4a+1)/AT4a (l/AT)4a+1
n n K
1 }/Z 4 < K
(13) ZHE V] < ==+ K2(4a + 1)

For the second term E [|VZ — 1|?], observe that

N N

Vi = ZE [Yiz | fi—1] = KZE [("fiXi)z | fi—l] ;

which is just 1/K times the sum of the squares of the weights | X;| of the common
votes. But the total variance of the common votes can differ from K by at most the
variance of the first vote X; for which k; = 0. Since the processor that casts this vote
can have cast at most n’/4Tk votes beforehand, the variance of this vote is at most

(nl/ATK + 1)2a , giving the bound

4a
(14) V212 < I—2<n1/ATK+1) .

13

Combining (13) and (14) gives

plAatl/ATda (pl/ATy ydatl (nl/ATK+1)4a

Ly <

K? K2(4a+ 1) K2
_ n(4a+1)/ATI4(a N n(4a+1)/AT;4(a+1 n4a/ATI%a(1 4 n—l/AT§1)4a
- K? K2(4a + 1) K?

_ _ A2TL_1/AT_1 _ _ _ _
< A% 1/ATK2+T1K+A2'”’ 2/ATK2eXp(4an 1/ATK1)
< 2A27'L_1/ATI;1 +61/2A2n_1/ATIE1

4A?
< nl/ATK

The third-to-last step uses the approximation (1 4 z)? < € for non-negative b and
z. The resulting exponential term is serendipitously bounded by e'/? if (10) holds,
since 2a < A < A? implies 4an_1/ATI}1 < 2A%(nMATE)~! < 2/4.

A more direct application of (10) shows that Ly < 1, and thus Theorem 4.3
applies. Hence

Pr

Pr [miX; < VE| - <I>(1)‘ — (1)

N
RES
i=1

4A2 1/5
(5
n /ATK

A2 1/5
0 (o)

5.3. Extra votes. In this section we examine the extra votes from the point of
view of a particular processor P.

Recall that ¢F is defined to be 1 if the vote X; is cast by some processor @) before
P’s final read of s register and 0 otherwise. Clearly, (¥ > &; since P could not have
started its final read until the total variance exceeded K. As discussed above, both
CZP and k; are F;_i-measurable. Thus & = gZP — k; 1s a 0 — 1 random variable that is

Fi_1-measurable, and {SP = Z;Il E'ij,Ti} is a martingale by Theorem 4.1.

AN

Define A = n(g7Tk)®. The following lemma shows a bound on the tails of }_ & X;.
LEMMA 5.7. If

1 [Tk
15 4 =
(15) 7= 2V nA’
and
A 1 8
(16) g? <1

=it 8log(10n)’

then for each processor P,

(17) Pr [Z(cf —k)X; <A-VE| < 10%1

8 By log(z) we will always mean the natural logarithm of .

14

Proof. The proof uses Corollary 4.6, so we proceed by showing that its premises
(stated in Theorem 4.5) are satisfied for {>° & X;, F;}.

By Corollary 5.5, X; and thus & X; is zero for i > n(Tx +¢+1). So > &X; = Sﬂ
where M = n(Tg +c+ 1).

Set w; = |£;X;|. Then the first premise of Corollary 4.6 follows from the fact that
for each i, & and | X;| are both F;-measurable. The second premise is immediate. For
the third premise, notice that

DUax* =D &XF = (FXF =D mXP <Y XP-D miX]

The first term 1s

The second term is

> kiXP> K-t

for some t which is at most U; for some i. Thus

n U;
_[(+t2a+22j2a

Saxi)? <)
n U:}-_l ”
< —K+) > g
(18) < —K+zn:(Ui +2)4/A.
Let x(z) = (z + 2)*/A. Then
(A et 3)”
(19) MR)

A

We can treat this function as an instance of a class of functions of the form
(zP + C)1, where z, p, q, C are all non-negative, whose concavity (or lack thereof)
can be determined by finding the sign of the second derivative:

d2
gn [E

(zf + C)q] sgn [%q(mp —I—C)q_lpmp_l]

= sgn [q(q — 1) (zF + OV 2p2a® =2 4 q(2P + C) p(p — 1):cp_2]
= sgn[q(e” +C)1 pa ™ (¢ — pa? + (aF + C)(p —)]

= sgn((q—)pa” + (2" + C)(p—1)]

= sgn[(pg — 1)a" + C(p—1)]

In the particular case we are interested in, p = 1/A4, ¢ = A, and C' = ¢+ 3. Since
pq— 1 = 0 the first term vanishes and the sign is equal to the sign of 1/4 — 1, which is

15

. . A .
less than or equal to zero since A > 1. Thus the function (l‘l/A +c+ 3) is concave,

. (Ay)l/A+c+3 A .
and since concavity is preserved by linear transformations = s concave
as well.
Lemma 5.4 now gives

n(Ti + e+ 3)* _ n(gTi)*
A =74

(20) i%ﬁnx(ﬂ(%-c—i—l):

i=1

It follows from (18) and (20) that

DX < W ~K=FK(g*-1)

Applying (5) from Corollary 4.6 now yields, for all A > 0,

(21) Pr [Sﬁ S —A] S 6—)\2/(2K(9A—1)).

If (15) holds, then A < YK So

Pr [Z&XZ» <A- \/K] < Pr lsﬁ < —gl
< KIBK@ =)

o~ 1/(8(a* 1))

But if (16) holds then

<
~ 8log(10n)

and, since log(10n) > 0 and g > 1,

from which 1t follows that

e=1/8(s%=1) < o= log(ion) — L

10n°

5.4. Written votes vs. decided votes. In this section we show that the dif-
ference between Y ¢F X; and the total vote actually read by P is bounded by A =
n(9Tk)°.

LEMMA 5.8. Let Rp be the sum of the votes read during P’s final read. Then

(22) D¢ X = Re| < n(Tk 4+ ¢+ 1) < n(gTx)" = A

Proof. Suppose ¢(f = 1, and suppose X; is decided by processor P;. If the vote
X; 1s not included in the value read by P, it must have been decided before P’s
read of P;’s register but written afterwards. Because each vote is written out before

16

the next vote is decided there can be at most one vote from P; which is included in
> ¢F X; but is not actually read by P. This vote has weight at most Uj. So we have
> ¢FXi — Rp| < Y202, UF

Now let x(z) = z*. Then x (1/)_1(3/) +c+ 1) = ((Ay)l/A +c+ 1)a. The concav-
ity of this function can be shown using the argument applied to (19) in Lemma 5.7:
the sign of its second derivative will be equal to the sign of (pg—1)z? +C(p—1) where
z=Ay, p=1/A, q=a,and C = ¢+ 1. Since Ay and ¢ + 1 are both non-negative
and a/A and 1/A are both less than or equal to 1, both terms are non-positive and
thus ((Ay)l/A +c+ 1)a is concave. The rest follows from Lemma 5.4. O

5.5. Choice of parameters. Let us summarize the proof of correctness in a
single theorem:
THEOREM 5.9. Define

A = 2a+1
AR\ A
o= ()
n
c+ 3
= 1
g + Tw

and suppose that all of the following hold:

1 [Tk
23 e < 22
() g - 2V nA
1
24 A 1
(24) 97 = T Slog(ion)
4A2

Then the protocol implements a shared coin with agreement parameter at least

9 1/5
(26) 1- <1>(1)+01< A) +1/10]

nl/ATK

where Cy 1s the constant from Lemma 5.6.

Proof. To show that the agreement parameter is at least (26) we must show that
for each z € {0, 1} the probability that all processors decide z is at least (26). Without
loss of generality let us consider only the probability that all processors decide 1; the
case of all processors deciding 0 follows by symmetry.

The essential idea of the proof is as follows. With at least a constant probability,
the total common vote is at least VK (Lemma 5.6). The “drift” added to this total
by the extra votes for any single processor P is small with high probability (Lemma
5.7). Thus even after adding in the extra votes for P, the total will be large enough
that the offset A = n(¢gTk)* caused by votes that are generated but not written out
in time for P’s final read will not push it over the line (Lemma 5.8).

More formally, we wish to show that the event

o > ki X; > VK, and

e For each P, > (¢ — ki) X; > A — VK
occurs with probability at least (26). Since this event implies that for all P, > ¢(F X; >
A, by Lemma 5.8 we have that each P reads a value greater than 0 during its final
read and thus decides 1.

17

It will be easiest to compute an upper bound on the probability that this event
does not occur. For the event not to occur, we must have either) x; X; < VK or
S(¢F — ki)X; < A —+/K for some P. But as the probability of a union of events
never exceeds the sum of the probabilities of the events, the probability of failing in
any of these ways is at most

Pr [ZmXZ- < \/f] —|—EPr [Z(QZP —k))X; <A - VK

(27) <

Az NP 1
o)+ (WTK) MRS

by Lemmas 5.6 and 5.7. So the probability that some processor decides 0 is at most
(27), and thus the probability that all processors decide 1 is at least 1 minus (27). O

The running time of the protocol is more easily shown:

THEOREM 5.10. No processor executes more than (AK)Y/A(2 4+ n/c) + 2¢ + 2n
register operations during an execution of the shared coin protocol.

Proof. First consider the maximum number of votes a processor can cast. After
(AK)I/A votes the total variance of the processor’s votes will be

(AK)MA (AK)/4 /44
AR
E $2a>/ :,;dezw:[(’
r=1 0 A

so after at most an additional ¢ votes the processor will execute line 11 of Figure 1 and
see a total variance greater than K. Thus each processor casts at most (AK)I/A +ec
votes. But each vote costs 1 write operation in line 8, and every ¢ votes costs n
reads in line 11, to which must be added a one-time cost of n reads in line 13.
The total number of operations is thus at most ((AK)I/A +¢)(1+[n/c])+n <
(AK)YA 1 6)(24n/c)+n=(AK)/A2 4+ n/c) + 2c+ 2n. O

It remains only to find values for a, K, and ¢ which give both a constant agreement
parameter and a reasonable running time. As a warm-up, let us consider what happens
if we emulate the protocol of Bracha and Rachman [8]:

THEOREM 5.11. Ifa =0, K = 4n?, and ¢ = ﬁ — 3, then for n sufficiently
large the protocol implements a shared coin with agreement parameter at least 0.05 in
which each processor executes at most O(n?logn) operations.

Proof. For the agreement parameter, we have A = 1, Tx = 4n, and ¢ = 1 +
1/(161logn). Then (23) holds since g* = 1 < 1/Tk /nA = 1. Furthermore,

1 L4 1
- -y
< + 810g(10n)> * S(logn + log 10)
1
16logn

1+

when n > 10. Thus (24) holds. The remaining inequality (25) holds for n > 1, so by
Theorem 5.9 we have a probability of failure of at most

1 \!/5
<1>(1)+Cl(m> +1/10

1
<0.842+ 0 (—) +0.1

n2/5

18

which is not more than 0.942 + ¢ for n sufficiently large. In particular for n greater
than some ng this quantity is at most 0.95, and the agreement parameter is thus at
least 1 — 0.95.

The running time is immediate from Theorem 5.10. O

Now consider what happens if a is not restricted to be a constant 0.

THEOREM 5.12. Ifa = (logn—1)/2, K = (16nlogn)10g"(n/logn), and ¢ =
(n/logn) — 3, then for n sufficiently large the protocol implements a shared coin with
constant agreement parameter in which each processor executes at most O(nlog2 n)
operations.

Proof. We have A =logn, Tk = 16nlogn, and g =1+ m.

We want to apply Theorem 5.9, so first we verify that its premises are satisfied.
To show (23), compute

1 (logn—1)/2 ,
ga — <1+) < 6(10gn—1)/(32log n) < 61/(3210gn)
161og® n - -

which for n > 2 will be less than %\/TK/nA = 2. To show (24), note that

1 logn
A _ - 1/(16logn)
=11+ <
J < 16log2n) =

and thus log(g#) < 1/(16logn). But

1 1
log| 14+ —— > —
& (8 log(lOn)) = Blog(10n) 128log*(10n)
1 1
8(logn +log10) 128(logn + log10)?

(using the approximation log(l +z) > z — %aﬂ). For sufficiently large n this quantity
exceeds 1/(16logn) and (24) holds. The remaining constraint (25) is easily verified,
and thus Theorem 5.9 applies and the agreement parameter is at least

log® n

logn 1/5
>1- (0.842+O ((%)) +0.10)

which is at least 0.05 for sufficiently large n. Thus the protocol gives a constant
agreement parameter.

Now by Theorem 5.10, the number of operations executed by any single processor
is at most (AK)"/4(24n/c) 4+ 2c+ 2n, or

1/5
1—

+ 1/10]

(logn)*/ 18" (16n logn)(n/ logn)'/ 6" O(log n) + O(n)
which is O(nlog?n). O

6. Discussion. This paper presents the first randomized consensus algorithm
which achieves a nearly optimal worst-case bound on the expected number of op-
erations a processor needs to execute. To achieve this we construct a weak shared
coin protocol based on random voting where the weight of votes cast by a processor

19

increases with the number of votes it has already cast. The consensus protocol can
then be constructed around it using the established techniques of Aspnes and Herlihy

[4] with only a constant-factor increase in the number of operations done by each

pI’OCGSSOI‘.9

This work leads to several interesting questions. First, our voting scheme implic-
itly gives higher priority to operations done by processors that have already performed
many operations. Such implicit priority granting may yield faster algorithms for other
shared memory problems, such as approximate agreement or randomized resource al-
location.

Also, although our solution improves significantly on the worst-case expected
bound on the number of operations a single processor is required to perform in order
to achieve consensus, the total number of operations done by all of the processors
together is slightly larger (by a factor of logn) than in the unweighted-voting protocol
of Bracha and Rachman [8]. Tt is of theoretical interest whether there is an inherent
trade-off here.

7. Acknowledgments. We would like to thank Serge Plotkin and David Ap-
plegate for their many useful suggestions.

REFERENCES

[1] K. ABRAHAMSON, On achieving consensus using a shared memory, in Proceedings of the Sev-
enth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Aug.
1988, pp. 291-302.

[2] N. ALoN AND J. H. SPENCER, The Probabilistic Method, John Wiley and Sons, 1992.

[3] J. AspNEs, Time- and space-efficient randomized consensus, Journal of Algorithms, 14 (1993),
pp. 414-431.

[4] J. AspNEs AND M. HERLIHY, Fast randomized consensus using shared memory, Journal of
Algorithms, 11 (1990), pp. 441-461.

[5] H. ATTIva, D. DOLEV, AND N. SHAVIT, Bounded polynomial randomized consensus, in Pro-
ceedings of the Fighth ACM Symposium on Principles of Distributed Computing, Aug.
1989, pp. 281-294.

[6] P. BILLINGSLEY, Probability and Measure, John Wiley and Sons, second ed., 1986.

[7] G.BRrAcHA AND O. RACHMAN, Approzimated counters and randomized consensus, Tech. Report
662, Technion, 1990.

, Randomized consensus in erpected O(n?logn) operations, in Proceedings of the Fifth
International Workshop on Distributed Algorithms, Springer-Verlag, 1991.

[9] H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations, Annals of Mathematical Statistics, 23 (1952), pp. 493—407.

[10] B. CHOR, A. ISRAELI, AND M. L1, Waii—free consensus using asynchronous hardware., STAM
Journal on Computing, 23 (1994), pp. 701-712. Preliminary version appears in Proceedings
of the 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 86-97, 1987.

[11] B. CHOR AND L. Moscovicl, Solvability in asynchronous environments, in 30th Annual Sym-
posium on Foundations of Computer Science, Oct. 1989, pp. 422-427.

[12] D. DoLEv, C. DWORK, AND L. STOCKMEYER, On the minimal synchronism needed for dis-
tributed comsensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77-97.

[13] C. Dwork, M. HERLIHY, S. PLOTKIN, AND O. WAARTS, Time-lapse snapshots, in Proceedings
of Israel Symposium on the Theory of Computing and Systems, 1992.

[14] C. DwoRrk, M. HERLIHY, AND O. WAARTS, Bounded round numbers, in Proceedings of the 12th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Aug. 1993,
pp. 53-64.

® Due to the unbounded round structure of [4], the resulting consensus protocol assumes un-
bounded registers. We believe these unbounded registers can be eliminated using the bounded round
numbers construction of Dwork, Herlihy and Waarts [14].

20

[15] W. FELLER, An Introduction to Probability Theory and Its Applications, vol. 2, John Wiley
and Sons, second ed., 1971.

[16] M. J. FiscHER, N. A. LYNCH, AND M. S. PATERSON, Impossibility of distributed commit with
one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374-382.

[17] P. HaLL AND C. HEYDE, Martingale Limit Theory and Its Application, Academic Press, 1980.

[18] P. R. HaLMOS, Invariants of certain stochastic transformations: The mathematical theory of
gambling systems, Duke Mathematical Journal, 5 (1939), pp. 461-478.

[19] G. HarDY, J. LITTLEWOOD, AND G. POLYA, Inequalities, Cambridge University Press, sec-
ond ed., 1952.

[20] M. HERLIHY, Wait-free synchronization, ACM Trans. Prog. Lang. Syst., 13 (1991), pp. 124-149.

[21] P. KoPP, Martingales and Stochastic Integrals, Cambridge University Press, 1984.

[22] M. C. Lout AND H. H. ABU-AMARA, Memory requirements for agreement among unreliable
asynchronous processes, in Advances in Computing Research, F. P. Preparata, ed., vol. 4,
JAT Press, 1987.

[23] S. A. PLOTKIN, Sticky bits and universality of consensus, in Proceedings of the Eighth ACM
Symposium on Principles of Distributed Computing, Aug. 1989, pp. 159-176.

[24] M. Saks, N. SHAvVIT, AND H. WoLL, Optimal time randomized consensus — making resilient
algorithms fast in practice, in Proceedings of the Second Annual ACM-SIAM Symposium
on Discrete Algorithms, 1991, pp. 351-362.

[25] J. SPENCER, Ten Lectures om the Probabilistic Method, Society for Industrial and Applied
Mathematics, 1987.

21

