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Abstract

We consider the problem of preprocessing an edge-
weighted tree

�
in order to quickly answer queries of the

following type: does a given edge � belong in the mini-
mum spanning tree of

����� ��� ? Whereas the offline min-
imum spanning tree verification problem admits a lovely
linear time solution, we demonstrate an inherent inverse-
Ackermann type tradeoff in the online MST verification
problem. In particular, any scheme that answers queries
in 	 comparisons must invest 
���
�������������
���� time prepro-
cessing the tree, where ��� is the inverse of the 	 th row of
Ackermann’s function. This implies a query lower bound of

�������
�� � for the case of linear preprocessing time. We also
show that our lower bound is tight to within a factor of 2 in
the 	 parameter.

1 Introduction

The theoretically best minimum spanning tree algo-
rithms [23, 10, 33] were made possible by even more fun-
damental algorithms and data structures, namely Komlós’s
minimum spanning tree verification algorithm [27, 17, 24,
5] and Chazelle’s Soft Heap [11]. It has been speculated
by some (see, e.g., Chazelle [10, p. 1029]) that the key to
a faster MST algorithm is some interesting new data struc-
ture. In this paper we show that there are no linear solutions
to the online minimum spanning tree verification problem,
ruling out this type of data structure in a faster MST algo-
rithm. In particular, we show that a preprocessing time of

���
����������!��
�� � is necessary in order to answer queries with
	 comparisons, where 
 is the size of the tree and � � is the
	 th-row inverse of Ackermann’s function.

Inverse-Ackermann type lower bounds are not too com-
"
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mon (see [35, 22, 13] for some fundamental ones) and in the
domain of purely comparison-based problems they were,
to our knowledge, previously non-existent. The closest re-
lated result is Klawe’s [25] 
���
#�$��
�� � lower bound on the
time to find row-maxima in a totally monotone %&
(')
 ma-
trix, where the non-blank elements are contiguous in each
column. However, in [25] the relevant operation is not the
comparison but the matrix query.

Although the MST verification problem is nominally
about minimum spanning trees, its closest cousins in the
literature fall within a well-studied family of problems con-
cerned with computing partial sums. In these problems
there is an underlying set of weighted elements, where the
weights are drawn from some (commutative) semigroup
�+*-,/.�� . The problem is to answer a set of queries, where
a query asks for the cumulative weight of some subset of
the underlying elements. The case where elements are
points in 021 has been studied extensively under various
types of queries. (There are too many papers to cite; see
[18, 38, 39, 7, 8, 4, 14, 9] for lower bounds and more ref-
erences.) Chazelle & Rosenberg [12, 13] studied the case
where the elements are packed into a 3 -dimensional array
and queries take the form of 3 -rectangles (see also [38, 2]
for 35476 .) In [13] a tight lower bound of 
���
98;:)����:<,�
����
semigroup operations is proved for the 1-dimensional of-
fline version of the problem, where 
 is the size of the ar-
ray and : the number of queries. This lower bound ob-
viously extends to the online problem, and it relates to the
MST verification problem because a 1-dimensional array is
just a kind of tree. For general trees, Tarjan [34, 36] stud-
ied certain offline partial-sums algorithms based on path-
compression. Online variants were studied in [6, 2].

The lower bounds cited above assume that semigroup el-
ements are only accessible via the semigroup operator . .
A consequence of this — which is key to previous lower
bounds — is that any algorithm solving such a problem
can be written as a straight-line program. However, for the
semigroups ��0�,>=@?&A#� and ��0$,�=;B�C�� it is most natural to as-
sume the decision tree model, where the algorithm chooses



which comparisons to make based on the outcomes of previ-
ous comparisons. Naturally, many bounds that hold for ar-
bitrary semigroups do not hold for �+0�,>=@?&A#� . For instance,
the problem of answering interval-maximum queries in a 1-
dimensional array can be done in constant time with linear
preprocessing [27] (contrast this with the superlinear lower
bound in [13] for arbitrary semigroups). Solving MST ver-
ification offline on arbitrary trees can be done in linear time
[27, 17, 24, 5], and the dual to this problem, MST sensitivity
analysis, can be solved in randomized linear time [20, 17]
or deterministic � ��: ����� ����:<,�
�� � time.1 All these prob-
lems have 
���:)����:<,�
���� lower bounds when generalized to
arbitrary semigroups [13]. Given this history it is somewhat
startling that the problem we consider, online MST verifi-
cation, does not admit a linear solution in the decision tree
model.

Inverse-Ackermann type lower bounds are generally
proved by appealing purely to the structure of certain
fixed combinatorial objects. Contrast this with most lower
bounds on decision tree complexity, which are information-
theoretic in nature. The challenge in lower bounding the
online MST verification problem is in combining these two
very different approaches. We suspect that our techniques
might yield inverse-Ackermann type lower bounds in other
comparison-based problems; two candidate problems are
given in Section 5.

1.1 Organization

Section 2 defines our notation and a class of “hard” prob-
lem instances. The lower bound proper appears in Section
3. In Section 4 we give almost matching upper bounds
for online MST verification, and show that the problem be-
comes significantly easier when the input edge-weights are
permuted randomly. We discuss some open problems in
Section 5.

2 Preliminaries

The problem is to preprocess an edge-weighted tree
�

so that given any query edge � , we can determine if ���� * � � � � � ����� . This is tantamount to deciding whether �
is not the heaviest edge on the only cycle in

� �(� ��� . For
the sake of simpler notation we consider input trees that are
vertex-weighted rather than edge weighted. (A query then
decides if � is heavier than all vertices in the unique cycle of� � � ��� .) To further simplify matters we restrict the types of

1The split-findmin data structure [19, 31] was known to be useful in
certain weighted matching [19] and shortest path algorithms [37, 21, 31,
29, 30]. One application of split-findmin not mentioned in [19, 31] is
MST sensitivity analysis, which it solves in �����
	���
�������������� time, an� ������	 ��
���� factor faster than Tarjan’s path-compression-based algorithm
[36].

inputs and queries, as described below. Assertions 2.2 and
2.3, given in Section 2.3, provide further restrictions on the
input.

1. The input tree
�

is a full, rooted binary tree.

2. The query edge will connect a leaf to one of its ances-
tors.

3. The answer to the query � will be no, ���� � * � � � �
� ����� . Therefore, the query algorithm need only verify
this fact.

In a query it is clear that the query edge must partici-
pate in at least one comparison; the parameter 	�� � used
throughout the paper represents the desired number of addi-
tional comparisons per query. The terms “query complex-
ity” and “preprocessing complexity” refer to the number of
comparisons performed by the query and preprocessing al-
gorithms, respectively.

2.1 A Basic Lemma

We characterize the limits of the preprocessing algorithm
later. It is important first to characterize the behavior of the
optimal query algorithm. Regardless of what the prepro-
cessing algorithm does, for any query some subset * of the
vertices on the query path are candidate maxima. The nat-
ural query algorithm determines the actual maximum with! * !#" 6 comparisons in the obvious manner, then compares
this maximum with the weight of the query edge.

Lemma 2.1 The natural query algorithm is optimal.

Proof: Comparing two candidates, or a candidate with the
query edge, can eliminate only one candidate from consid-
eration. Now consider a comparison $&%�'($*) involving two
weights, one of which, say $*% , is not a candidate. If $+%
is known to be larger (smaller) than a candidate maximum,
then the case $ %�, $ ) ( $ %.- $ ) ) eliminates no candidates.
In all other cases the comparison can go either way without
eliminating candidates. /

It is conceivable that the natural query algorithm could
be improved under some measure besides worst-case per-
formance.

2.2 Ackermann’s Function

In the field of algorithms & complexity, Ackermann’s
function [1] is rarely defined the same way twice (see e.g.,
[1, 35, 13, 15, 16]). We would not presume to buck such a
well-established precedent. Here is a slight variant:



� � � ,�� � 4 %��� ���#8 6�, � � 4 � ���>, 6 �
� ���#8 6�,�� 8�6 � 4 � ���>,!%
	���
�������� ��� �

Let ����:<,�
�� be the inverse-Ackermann function and
���>��
�� be the � ��� -row inverse, defined as follows:

����:<,�
�� 4 =;B�C � � ' � ����,���� �! �+� 
 �
� � ��
�� 4 =;B�C � � ' � ���>,�� ��� 
 �

and let ����
�� be short for ����
 ,�
�� . An equivalent definition
of � , which is frequently more intuitive, can be had without
direct appeal to Ackermann’s function; see [26].

2.3 The Input Distribution

If " is a tree node we let $ ��" � be the weight of " , and
size �#" � be the number of leaf-descendants of " . We call "
an � -node if size ��" � 4 � ���>,�� � for �%$ 	 and some � and an
� -node if it is an � -node but not an ��� 8�6 � -node.

If " is an � -node, � , � , we let & % be the sequence of
��� " 6 � -nodes between " and its nearest � -node ancestor. If
" is a leaf then & % is the sequence of 	 -nodes between " and
the root; see Figure 1.

Assertion 2.2 Let " be a non-leaf � -node and ' be a ( -node
ancestor of " , where ( �)� . Then $ ��" � - $ �#'/� is known
before the preprocessing algorithm begins.

Assertion 2.2 establishes some a priori knowledge about
the input. We are purposefully giving the preprocessing al-
gorithm information so that we may succinctly characterize
what it “knows” later on.

Assertion 2.2 implies that the sequence of � -node ances-
tors of any node is monotonically increasing; see Figure 1.
It also follows from Assertion 2.2 that for any query there
are at most 	 8�% candidate maxima: the most ancestral � -
node in the query path, for �*$+�!$ 	 , and the leaf involved
in the query. Note that leaves were specifically excluded
from Assertion 2.2.

Assertion 2.3 For all leaves " , or � -nodes " , � , � , $ ��" ��4
$ ��, % � where , % is a node selected uniformly at random
from & % , independent of all , ) , where ' � � ,-' �4." .

One can see by Assertion 2.3 that the weight of every
� -node, � , � , is set (randomly) to equal that of some an-
cestral � -node. The exact weights of the � -nodes are not
particularly important, so long as they accord with Asser-
tion 2.2.

First, we show that Assertions 2.2 & 2.3 are mutually
consistent and realizable. The danger in Assertion 2.3 is
that it is, perhaps, impossible to satisfy the independence
condition.

Lemma 2.4 There is a weight-distribution consistent with
Assertions 2.2 & 2.3.

Proof: Assertion 2.3 defines the independent variables� , %�� % . We only need to show no inconsistencies arise
when combined with Assertion 2.2.

Consider an auxiliary graph with the same vertex set as
the input tree, whose edges represent known (in)equalities.
Assertion 2.2 places a number of uni-directional edges in
this graph, and Assertion 2.3 places (randomly) some bi-
directional edges in the graph, representing equalities. An
inconsistency in Assertions 2.2 and 2.3 manifests itself in
the auxiliary graph as a cycle, at least one edge of which
is uni-directional. We show that no such cycles can exist.
Assuming the contrary, let / be such a cycle with minimum
length and ' be a vertex in / such that no proper descendant
of ' is in / . All uni-directional edges implied by Asser-
tion 2.2 go from nodes to their ancestors. Furthermore, by
Assertion 2.3 there is exactly one bi-directional edge con-
necting ' to an ancestor. Therefore, if ��"�,0'/� and ��' ,21 � are
the edges incident on ' in / , exactly one of them, say ��' ,21 � ,
must be bi-directional — see Figure 2. Suppose ' is an � -

a a

b b

cc

d d

i−node

(i−1)−node

next i−node above b

k−node,  k >= i

Figure 2. Left: the two edges incident on ' in
/ . Right: replaced by one edge.

node and let 3 be the closest � -node ancestor of ' . By Asser-
tion 2.3, 1 is a ��� " 6 � -node descendant of 3 . By Assertion
2.2, " is a ( -node ancestor of 3 (not necessarily proper), for
some ( �3� . Therefore, by Assertion 2.2 there is a uni-
directional edge �#1 ,2" � ; by replacing �#1 ,�'/��, ��' ,2" � with ��1 ,�" �
we obtain a smaller cycle. /
2.4 A Measure of Information

We define 4 % to be the elements of & % that could have
weight equal to " , given Assertions 2.2 & 2.3 and all the
comparisons made by the preprocessing algorithm. It fol-
lows from Assertion 2.3 that 4 % is non-empty. Define 5 ,06
as



A(i, j) = A(i−1, k  )1

A(i, j+1) = A(i−1, k  )2

1A(i−1, k  + 1)

1A(i−1, k  + 2)

.   
  . 

    
.

2A(i−1, k  −1)

2A(i−1, k  −2)

2A(i−1, k  −3)

i−nodes

(i−1)−nodes

points to heavier node

A(i−1, k  −1)1

A(i−1, k  +1)2

Ca

a

Figure 1. An � -node " and its associated set & % . Inequalities implied by Assertion 2.2 are marked with
an arrow. To the right of each node is its size in Ackermann notation.

5 ��" ��4 � � �
! & % !! 4 % ! and 6 4��%���� 5 �#" ���

This following lemma may be obvious. We prove it for
completeness’ sake.

Lemma 2.5 If the preprocessing algorithm has a budget of�
comparisons, then 	�
�6
� $ �

, where the expectation is
over the input distribution and any random choices made
by the algorithm.

Proof: Consider, from Assertion 2.3, the set of random
variables , 4 � , %�� % . The expected number of bits of
information one could derive about , in

�
comparisons is

clearly no more than
�

. Now, 5 �#" � 4 ��� ��� ������ ����� measures
the number of bits known about , % , for the special case
when , % is uniformly distributed over 4 % . Therefore 5 ��" �
is never more than the actual number of bits known about
, % , and, by the independence of the

� , % � % (Assertion 2.3
and Lemma 2.4), 6 4�� % 5 ��" � is never more than the num-
ber of bits known about , . The Lemma follows. /

6 measures a certain kind of information. A conse-
quence of Lemma 2.6, proved below, is that for the right
kind of query, any other information gathered by the pre-
processor is not useful.

Lemma 2.6 Let � be an arbitrary node, and let "�,0' ,�� be
the first, second and last nodes of 4�� (i.e., � ancestral to ' ,
' ancestral to " ). Then for any node � between � and � it is
not known that $ ��� � $ $ ���&� ; for � between ' and � it is
not known that $ ��� � � $ ���&� .

Proof: We only consider the case when
! 4�� ! ��� , so there

are distinct nodes " , ' and � . Let � be an ���#8 6 � node, "�,�' ,��
be � -nodes and suppose � is a ( -node, ( $ � . If � is between� and � and it is known that $ � � � $ $ ���&� , then $ � � � -
$ �!� � also follows, since from Assertion 2.2 $ ���&� - $ �!� � .
This contradicts the fact that �
� 4�� . For the second case,
� lies between ' and � — see Figure 3. The definition of
& �#" 4$� implies ( $ � . Suppose that $ � � � � $ ���&� is

a

b

g

z

ew(g)  <=  w(e)
 
     implies
w(g)  <  w(z)

    w(g)  >=  w(e)    implies
w(g) larger than all k−nodes
         between  a  and  b

Figure 3. Ancestor relationship indicated by
height on the page.

known. Then by Assertion 2.2

% is heavier than all & -nodes
between ' and ( . However, by Assertion 2.3, if )+* %-,/.)+*!'-, then )+* %-,0.1)+*324, for some & node between ' and ( .
Therefore )+*�%5,768)+*!9�, implies ';:<�=$> , a contradiction. ?

Lemma 2.6 greatly simplifies our lower bound proof.
Consider any query path that includes % . Lemma 2.6 says
that if the upper endpoint is not too close to the upper end
of =$> , then no ancestor of % in the query is known to be



heavier than � , and no ancestor of � at or above ' is known
to be lighter than � . These two facts will prove useful in
Section 3.

3 The Lower Bound

Our main Theorem is stated below. The remainder of
this section constitutes its proof.

Theorem 3.1 Any (randomized) preprocessing algorithm
for the online MST verification problem making at most
1 
 ��� �2���/��
�� comparisons has query complexity at least
	-8 6 (with probability 6 "��

for any constant
� , � ), for

some constant 1 .

Corollary 3.2 Any linear-time preprocessing algorithm for
the online MST verification problem has query complexity

�������
�� � .

The outline of the proof is as follows. We generate a
query edge � � ,2"��&� by first finding an appropriate leaf

�
,

then finding a sequence of nodes " ��,�" ����� , � � � ,2" � , where
" � is a 	 -node ancestor of

�
and "�� is an � -node ancestor

of "��
	�� . If we can then show that
� � ,2" ��, � � � ,�" � � are all

candidate maxima for the query edge � � ,2" � � , by Lemma
2.1 the query algorithm must use at least 	 8(6 comparisons.

For deterministic preprocessing algorithms Theorem 3.1
could be proved with 1 4 �� . We set 1 4�
� and consider
randomized preprocessing algorithms as well. We assume
w.l.o.g. that ���/��
������ .

Define cost ��� � , where � is a leaf, as

cost ���+� 4 �
" ancestral to �
(including � )

5 ��" �
size �#" �

Clearly 6 4 � %���� 5 �#" ��4 ��� cost ���+� and from Lemma
2.5 we know that 	 
�6
� $ 1�
�������� � ��
�� . By Markov’s in-
equality ��� 
 6 $ � ��� 1/
 ��� �2���/��
�� � � 6 "�� . Since Theorem
3.1 is only guaranteed with probability 6 "��

, we assume
below that 6 $ � ��� 1�
�� � ��� ����
���4 �� 
�� � ��� �/��
�� .

Our query edge � � ,�"��&� is chosen as follows

1. Let
� 4 " ��	�� be a leaf such that cost � � �!$�� ���! #"%$ �'&(

2. For � $ � $ 	 , let " � be the second most ancestral node
in 4 %

�����
.

In (1), such an
�

can always be found because the aver-

age leaf cost is bounded by 
%) �+* � � �,�! #"-$ �'&$ � 	�� &�. 	 $/� �,�! 0"%$ �'&( . For
(2) we clearly require

! 4 %
�����
! � % . We will actually require

it to have at least 3 elements, in order to apply Lemma 2.6
later. Lemma 3.3 shows the feasibility of (2).

Lemma 3.3 For � - � $ 	 8�6 ,
! 4 %

�
! �8� .

Proof: We first show
! 4 % " ���

! 4 ! 421 ! �8� . By definition of

5 � � ��4 ����� � �43 �� � 3 � , and the fact that
! & 1 ! 4 � �/��
�� , we have! 421 ! 4 � � ��
��,5�%76 $ 1 & , and since 5 � � � $ cost � � � , ! 481 ! �

�+���/��
����'9: � � . Recall that ���/��
�� was assumed to be at least
� ; the last inequality follows since ; 9: �#� for ;.�<� .

Now to prove that
! 4 %

�
! � � for � $ 	 . Let � be such

that size ��" � � 4 � ���>,�� � . Recall that &�%
�

includes all ��� " 6 � -
nodes between " � and its next � -node ancestor. Therefore,! &�%

�
! 4 � 	

" � � " 6 where

� ���>,�� � 4 � ��� " 6�,�� � � and
� ���>,�� 8 6 � 4 � ��� " 6�,�� 	 �

For � , � , ! & %
�
! 4 % 	���
�� � �#� " % 	2��
���� � ) ��� " 6 , and for � 4 � ,! & %

�
! 4 % 	2��
���� ��� " % . In either case, if

! 4 %
�
! - � then

5 ��"�� � 4������ � ��� � �� � � � � � %7= $ ��> � & " % and hence

cost � � � � 5 ��"�� �
size �#" � � �

%?= $ ��> � & " %� ���>,�� � � � �/��
��

The last inequality follows from Lemma 3.4, below, stat-
ing that

� ���>,�� � � � � ��
�� �@� . We now have a contradic-
tion because we specifically chose

�
such that cost � � � $

������� � ��
���5BA .
/
The following lemma is only used in the proof of Lemma

3.3.

Lemma 3.4 For � - � $ 	 , size �#"�� ��� � �/��
��
Proof: (sketch) Since "�� is an ancestor of "��
	�� and hence
size �#"�� � , size ��"��
	�� � , we need only prove the lemma for
� 4 	 . By our selection of " � , the lemma will follow from
the inequality

� ��	>,���; 9:  " % � ��; , which holds for all
	 � � ,C;��D� . One can prove by induction that for all �>,�� ,� ����,�� ��� % � , and that ��;�9:  " %.� �����E; for all ;.�F� .
/
Lemma 3.5, given below, establishes that

� � ,2" ��, � � � ,2" � �
are all candidate maxima, and by Lemma 2.1, at least 	28
6 comparisons will be needed to answer the query � � ,2" � � .
This will conclude our proof of Theorem 3.1.

Lemma 3.5 On the query � � ,�" � � , the set of candidate max-
ima includes

� � ,�" ��, � � � ,�" � � .

Proof: Assuming the contrary, let "CG � � � 4
" ��	�� ,�" � , � � � ,2"�� � and H be a node in the query path such
that $ ��H � , $ ��"IG � is known. By Lemma 2.6 H cannot be
an ancestor of "CG . Suppose H is an � -node descendant of "!G .
(If "IG 4 �

this is clearly impossible.) By Assertion 2.2,
clearly � , ( . Since, also by Assertion 2.2, $ ��H � , $ ��" G �
implies all � -node ancestors of H are heavier than " G , we



may as well assume H 4 "�� as "�� is the most ancestral � -
node on the query path. By Lemma 3.3

! 4 �#" �+� ! �8� and by
our choice of " ��� � , the upper endpoint of the query path has
at least 2 elements from 4 �#" � � below it. This allows us to
apply the second part of Lemma 2.6, implying that it is not
known whether $ ��" � � , $ ��"IG�� , a contradiction. Therefore
" G is a candidate maximum on the query path � � ,2"I� � . /
3.1 One Last Detail

We proved our lower bound with a slightly non-standard
version of Ackermann’s function. Below we define

�
, fol-

lowing a more typical definition of Ackermann’s function,
and compare its row-inverse ��� with �-� . Lemma 3.6, given
below, can be repeated with little modification for any of
the other definitions of Ackermann’s function found in the
literature [1, 35, 13, 15, 16].

� � � ,�� � 4 % �� ��� 8 6�, � � 4 � ���>, 6 �� ���#8 6�,�� 8 6 � 4 � ���>, � ��� 8�6�,�� � �

� � ��
�� 4�=;B�C � � ' � ���>,�� ��� 
 �
We omit the proofs that

�
and

�
are ascending in both

arguments.

Lemma 3.6 For any 	>,�
 , � ����
�� $#� � �/��
��#8�6 .

Proof: We will prove by induction that
� ���>,�� � 8 6 � �� ���>,�� � for all �>,�� , giving the lemma. Notice first that since� ��� ,�� � 4 � ��� ,�� � 4 % � , the Lemma holds for � 4 � . As-

sume, henceforth, that � , � . The following inequalities are
easily proved by induction.

� ���>, � � � A �
for � � % � (1)� ���>,�� � � %
	 � �
for � � 6 � (2)

The case � 4 � : � ���>,�� � 8 6 � 4 � ���>, 6 ��4 � ��� "
6�, � ���>, � � � . If � 4 6 then

� ��� , � � 6�, � ��� , � � 6�, � � and
we are done, so assume � , 6 . By Inequality 1,

� ��� "
6�, � ���>, � � � � � ��� " 6�,,A � � � ��� " 6�, 6 � 4 � ����, � � , where
the second inequality is by our inductive assumption.

Now for the general case: ��,�� � 6 .

� ���>,���� 8�6 � 4 � ��� " 6�, � ��� " 6�, � ��� " 6�, � ���>,
����� " 6 �#8 6 � ��� � �

Def. of
� �

� �-4 6 � � � ��� " 6�,!% 	2��
���� � ) ��� ��
Inductive assumption �

4 � ���>,�� � ��� � � ,�� � 4 � ��� ,�� ���
� � , 6&� � � ��� " 6�,�%
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4 � ���>,�� � �

Def. of
� �
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4 Upper Bounds

In this section we show that the lower bound estab-
lished in Section 3 is within a factor of % of optimal. We
also show that under the assumption of randomly permuted
edge-weights, an expected linear number of preprocess-
ing comparisons is sufficient to answer MST verification
queries with 	 4 6 additional comparisons. Bear in mind
that we are mainly concerned with decision tree complex-
ity in this section. The tools required to actually implement
these algorithms are non-trivial.

Recall from Section 2 that we give the query algorithm
one comparison for free. Therefore a preprocessing algo-
rithm with parameter 	�4 � means zero additional compar-
isons are necessary.

Theorem 4.1 Suppose the edge-weights of a tree
�

are per-
muted randomly. With no more than %&
 preprocessing com-
parisons (expected), MST verification queries on

�
can be

answered with 	 4 6 additional comparisons. For 	 4 � ,
 ��
������ 
�� preprocessing is necessary.

Proof: Our notation here will reflect edge-weighted trees,
rather than the vertex-weighted ones from Section 3.

First consider the 	24 � case with random edge-weights.
If the input tree

�
is a star then we need to know the rela-

tive ordering of all edge-weights, which obviously requires

���
������2
�� preprocessing comparisons; � ��
������2
�� is also
sufficient. (Remark: If all tree nodes have degree bounded
by a constant, it seems likely that � ��
 ��� �2
�� preprocessing
would be required on average. Could linear preprocessing
suffice?)

For 	�4 6 the preprocessing algorithm must reduce the
number of candidate maxima (on any query) to at most two.
We root the tree arbitrarily and divide the query �
��,�� � into
two queries ��� ,�� & � ��� ,�� � � and �
��,�� & � �
��,�� ��� . Hence, it
will be sufficient to reduce the number of candidate maxima
on a query �!��,2" � to one, where " is an ancestor of � . Fix the
node � 41� � ; let �B� ,�� 	 ,�����, � � � be the sequence of ancestors
of � up to the root, and let � � 4 � � � ,����
	�� � . We must find



the prefix-maxima of the sequence � $ ���
� ��� � , which is tan-
tamount to finding the subsequence � � 4 ��� �

�
,>� � � ,>� � 9 , � � � �where � ��� has maximum weight among �+� ��, � � �/,>� ���

� �
��� � .

We compute � � from � � 4 �+� � �
,!� � � , � � � � , where � � is the

sequence for � � ( � ’s parent). One can see that � � is derived
from � � by substituting a (possibly empty) prefix of � � with
�0� . We find such a prefix in the obvious manner, by com-
paring $ ��� � � with $ �+� � �

�!, $ ��� � � �!, � � � until ��� is found such
that $ ��� � � - $ �+� ��� � . (If there is no such � ��� then for the
sake of consistent notation we let it be a dummy edge con-
necting the root to its nonexistent parent.) The comparison-
cost of this procedure, which is performed for every edge in
the input tree, is no more than � .2 We analyze the behavior
of � and ��� under the assumption that the tree edge-weights
are randomly permuted. We have

� � 
 �	� 4�; � $ 6 5 ; ��; 8�6 � (3)

	�
 � ! � � 4�; � $ 6$8

 ���
�
����� ��� 
 $ ��� � � 4 =@?�A��
 G 
 � � $ ���BG��>� �

4 6$8�� 
 ��� (4)

	 
 � � 4
�

�
 ��� � � 
 � � 4�; � � 	 
 � ! � � 4�; �
$ 6$8

�
�
 � 	 � 
 ���

; ��; 8�6 �

4 6$8
�

�
�����

�
6
� � �

�
 � �
	�� 6
; ��; 8�6 ���

4 6$8
�

�
����� 6

����� 8�6 � 4 % (5)

Lines 3 and 4 are inequalities, rather than equalities, due
to the finiteness of the ��� � � � sequence. Line 5 follows from
Lines 3 and 4 and the identity � G����� 6B5 �����/8 6 � 476 " 6B5 ��(#8
6 � , which is easily proved by induction on ( . /

In the general case, Theorem 4.2, given below, has a
preprocessing cost of the form � ��
��������4G ��
�� � ; this is an
improvement over the previous constructions for arbitrary
semigroups [2, 6], which have a preprocessing cost of
� ��
�� G ��
���� . Both [2, 6] are generalizations of Yao’s con-
struction [38] for linear arrays. The proof of Theorem 4.2
is abbreviated; the techniques used are fully fleshed-out in
[27, 2, 6, 24].

Theorem 4.2 We wish to answer MST verification queries
with 	 additional comparisons. For 	 4 � a preprocessing
cost of


 ��
������ 
�� is necessary and sufficient. For 	;4 6
a preprocessing cost of � ��
�� � �2�����2
�� is sufficient, and for

2It is usually equal to � , unless ��� � happens to be the “dummy” edge,
in which case the comparison � ����� ����� ����� � � never takes place.

	�4 % ( , ( , � , a preprocessing cost of � ��
 ��� ��� G ��
���� is
sufficient.

Proof: (sketch) For 	24 � , the argument is identical to The-
orem 4.1.

For 	 4 6 we use King’s reduction [24], which produces
an equivalent tree (for the purpose of MST verification)
with height no more than ��� �2
 . We then run a version3 of
Komlós’s MST verification algorithm [27] directly on this
tree, which takes � ��
�� � �����$4 � ��
�������� � �2
�� comparisons
on height � trees. Komlós’s algorithm lets us answer node-
to-ancestor queries in � comparisons, and hence arbitrary
queries with 6 comparison.

For 	 4 % ( we use the same tree-decomposition tech-
nique used in [2] and [6]. The idea is to generate ()8 6
forests  � ,! E� ,! 	 , � � �/,! G . A query on the original tree is
then translated into ( 8 6 queries: for each � , one query on
some tree

� � �" � . We preprocess the  � trees for 	�#�4 �
just by sorting their edge weights. For the remaining trees in � , � � � ,$ �G we preprocess them for 	�#24 6 using Komlós’s
algorithm [27]. For any query the number of candidate max-
ima is reduced to % ( 8�6 , as required. The time required to
generate  ���, � � � ,! G is � ��
�� ; the rest of the preprocessing
is � ��
�������� G ��
�� � . /

5 Open Problems

There are several natural comparison-based problems
which remain unresolved. Chief among them are the set
maxima problem [20, 3, 32] and the minimum spanning tree
problem; see [23, 10, 33, 32] for recent progress. We iden-
tify here two comparison-based problems for which slightly
super-linear lower bounds seem plausible.% The split-findmin problem is to maintain a set of in-

tervals, made up of 
 weighted elements, under split
operations, which split an interval in two, and : � 

decrease-key operations, which lower the weight of
some element. The interval-minima must be known
at all times. This peculiar data structure turns out
to be very useful in certain weighted matching algo-
rithms [19] and several recent shortest path algorithms
[37, 21, 31, 29, 30]. It can also be used to solve the
minimum spanning tree and shortest path tree sensi-
tivity analysis problems. This last application is an
unpublished result; see [36] for the definitions of the
sensitivity analysis problems.

Gabow’s [19] implementation of split-findmin takes
� ��: ����:<,�
�� � time on a pointer machine, which is op-
timal (for pointer machines) by a result of LaPoutré

3The first stage of Komlós’s algorithm is simply a preprocessing algo-
rithm for answering MST verification queries selected from a fixed graph&

. Setting
&

to be the complete graph makes it an all-purpose preprocess-
ing algorithm for online MST verification.



[28]. Pettie and Ramachandran [31] recently showed
that the number of comparisons required to implement
the split-findmin structure is only � ��: ��� ���$��: ,>
�� � .
It is conceivable that 
���: ��� � �$��: ,>
�� � is a lower
bound as well.% In [26] an � ��:)����:<,�
���� time algorithm is given to
find the row-maxima in an 
 ' : totally monotone
“staircase” matrix. Is there a matching lower bound?
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