MST Construction in O(loglogn) Communication Rounds

(Extended Abstract)

Zvi Lotker
Dept. of Electrical Engineering
Tel Aviv University
Tel Aviv 69978
Israel

zvilo@eng.tau.ac.il

Elan Pavlov
Dept. of Computer Science
Hebrew University
Jerusalem 91904
Israel

elan@cs.huji.ac.il

ABSTRACT

We consider a simple model for overlay networks, where all
n processes are connected to all other processes, and each
message contains at most O(logn) bits. For this model, we
present a distributed algorithm that constructs a minimum-
weight spanning tree in O(loglogn) communication rounds,
where in each round any process can send a message to each
other process. This result is the first to break the Q(logn)
parallel time complexity barrier with small message sizes.

Categories and Subject Descriptors

F.2 [theory of computation]|: analysis of algorithms and
problem complexity; G.2.2 [mathematics of computing]:
discrete mathematics—graph theory

General Terms
algorithms, theory

Keywords

minimum spanning tree, communication round complexity,
sub-logarithmic protocols

*On leave from the Dept. of Electrical Engineering, Tel Aviv
University, Tel Aviv 69978, Israel.

TSupported in part by a grant from the Israel Science Foun-
dation.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SPAA' 03, June 7-9, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

94

*
Boaz Patt-Shamir
Cambridge Research Laboratory
Hewlett Packard
One Cambridge Center, Cambridge MA 02142
USA

Boaz.PattShamir@HP.com

David PelegT
Dept. of Computer Science and Applied Math.
Weizmann Institute of Science
Rehovot 76100
Israel

peleg@wisdom.weizmann.ac.il

1. INTRODUCTION

A minimum-weight spanning tree (MST) is one of the
most useful distributed constructs, as it minimizes the cost
associated with global operations such as broadcasts and
convergecasts. In this paper we present an MST construc-
tion algorithm that works in O(loglogn) communication
rounds, where in each round each process can send O(logn)
bits to each other process (more intuitively, each message
can contain the identity and weight of only a constant num-
ber of edges). Our result shows that MST can be con-
structed with very little pairwise communication: through-
out the execution of the algorithm, each pair of processes
exchanges at most O(lognloglogn) bits; the overall num-
ber of bits communicated is ©(n?logn), which is optimal.
The algorithm extends to larger message sizes, in the sense
that the number of communication rounds is O(log 1) if each
message can contain n° bits for some € > 0. Note that if mes-
sages are not restricted in size, then MST can be trivially
constructed in a single round of communication: each pro-
cess sends all its information to all its neighbors, and then
each node can locally compute the MST.

The number of communication rounds dominates the time
complexity in situations where latency is high and band-
width is scarce. This may be the situation in some overlay
networks. Briefly, the idea in overlay networks is to think
of the underlying communication network (e.g., the Inter-
net) as a “black box” that provides reliable point-to-point
communication. On top of that network run distributed ap-
plications. This approach (whose precursor is the Internet’s
“end-to-end argument” [13]) is different from classical dis-
tributed models, where processes reside in networks nodes
(i.e., switches or routers), and thus their implementation
would require using low-level communication. Rather, the
pragmatic view now is that distributed applications create
their own overlay network by choosing which pairs of lo-
cal processes will communicate directly according to various

criteria. The concept of overlay networks is central to ar-
eas such as multicast or content distribution networks (see,
e.g., [8] and references therein), peer-to-peer systems (for
example, Chord [14]), and others.

1.1 Related Work

ST construction is well studied as a sequential optimiza-
tion problem (see, e.g., [15, 9]). Distributed MST construc-
tions are presented in [6, 3] (and see references in [11]).
These classical distributed algorithms are oriented towards
minimizing the total number of messages in general net-
works, and their time complexity is inherently Q(logn), even
when run on fully connected graphs. The model we use in
this paper is a special case of the model studied in [7, 12,
10]: in these papers, each message has O(logn) bits, but the
fully connected graph is not directly considered. The best
previously known upper bound for fully connected graphs in
this model is O(logn) communication rounds. This bound
holds also for graphs of diameter 2 [10]. (It is known that
the number of rounds jumps at least to Q(n'/*) when the
diameter of the network is 3 or more [10, 12].)

The parallel time complexity of MST construction de-
pends on the particular architecture considered, but we are
not aware of any sub-logarithmic time algorithm that uses
small messages. For the PRAM model, there are quite a
few O(logn) algorithms, including a deterministic one for
the CRCW model [4], and a randomized one for the EREW
model [5]. Adler et al. [1] study the total number of bits
that must be communicated in the course of MST construc-
tion problem under various parallel architectures. For our
model, their results imply that the worst-case number of bits
that need to be communicated throughout the execution of
the algorithm is Q(n? logn).

1.2 System Model

In the formal model, the system is represented by a com-
plete n-node weighted undirected graph G = (V, E, w) where
w(e) denotes the weight of edge e € E. Each node has a dis-
tinct ID of O(logn) bits. Each node knows all the edges it is
incident to (and hence, since the graph is a clique, each node
knows about all other nodes in the system). An execution
of the system proceeds in asynchronous steps: in a receive
step, a node receives some of the messages sent to it in
previous steps. In a send step, a node makes a local compu-
tation and sends messages to the other nodes in the system.
Each message may be different, and we require that each
message contains at most O(logn) bits. (The results are
extended to larger message sizes in Section 4.) We assume
that messages may be delayed arbitrarily, but are never lost
or corrupted. The time complexity of an algorithm in the
asynchronoyus model is measured by normalizing the scale
so that the longest message delivery time is one unit.

Simplification: The Synchronous Model. In the model
of synchoronous communication, computation advances in
global rounds, where in each round processes send messages,
receive them, and do some local computation. This model
is much more convenient as a programming mode. Fortu-
nately, since we assume that the system is reliable, we may
apply a synchronizer that allows us to present the algorithm
in the synchronous model. Specifically, we use the 3 syn-
chronizer of Awerbuch [2]. Let us outline the idea briefly.
Assume that we have an algorithm S A for the synchronous
model. The execution in the asynchronous model is done as

95

follows. A process starts the next round only after receiving
a special “proceed” message from a distinguished node vg
(say, the node with the lowest ID in the system). It then
sends messages according to SA. For each SA message re-
ceived, the receiver node sends an “ack” message back to the
sender; when a sender had received acknowledgements to all
the messages it sent, the sender forwards a “safe” message to
vo; when vg receives “safe” messages from all nodes in the
system, it sends a “proceed” messages to all other nodes,
which may then send their next round SA messages. Note
that since we assume that the graph is fully connected, this
transformation incurs only a constant blowup in the mes-
sage complexity and in time complexity. We shall henceforth
use the synchronous model, but we emphasize that the algo-
rithm works for the asynchronous model as described above.

1.3 TheMST Construction Problem

We assume that in the initial state, the input to each node
v € V consists of the the weights of all its incident edges
w(v,u) for all u € V' \ {v}. Edge weights are assumed to be
integers that can be represented using O(logn) bits. With-
out loss of generality, we assume that all the edge weights
are distinct and thus the MST is unique. When our algo-
rithm halts, all nodes know the full list of all n — 1 edges in
the MST of G.

2. ALGORITHM DESCRIPTION

In this section we describe the algorithm. In Section 2.1
we give an overview of the main ideas. In Section 2.2 we
specify the main algorithm, and in Sections 2.3 and 2.4 we
specify local subroutines used by the main algorithm.

2.1 Overview

The algorithm operates in phases: Each phase takes O(1)
rounds, and there are at most O(loglogn) phases. At the
end of each phase k£ > 0, the nodes of GG are partitioned into
disjoint clusters F* = {Ff, ..., F,’flk}, U, FF = V. For each
cluster F € F*, the algorithm selects also a spanning sub-
tree T(F). The partition F* and the corresponding subtree
collection 7% = {T(F) | F € F*}, including the weights
of the edges in those subtrees, are known to every vertex
in the graph. (For notational consistency, we think of the
initial situation at the beginning of Phase 1 as the end of
an “imaginary” phase 0, with each node forming a singleton
cluster, i.e., F° = {F?,..., F2} where F = {v;} for every
1<i:<n)

Define a fragment to be a connected subtree of the MST.
For a set of nodes F' C V, denote by 7 (F) the subgraph
of M ST induced by F. With these notations, we can state
following invariant, satisfied by the algorithm at the end of
each phase k£ > 0:

For every cluster F, T(F) = T(F), namely the
spanning subtree selected for F is a fragment.

In our model, it is easy for the nodes of each cluster to
learn, in constant time, the lightest edge to every other clus-
ter. Hence intuitively, it is possible to “contract” each clus-
ter C' into a vertex vc, thus creating a smaller logical graph
G, and continue working on this logical graph. (In prac-
tice, each real vertex belonging to some cluster C' knows the
weight of the edge connecting its vertex vc to every other
vertex in G. The operations of each vertex v of the logical

graph G are carried out by the real vertices belonging to the
cluster C, or by a single reperesetative called the leader of C,
denoted £(C).) This enables us to simulate the usual MST
construction process for G, based on growing fragments of
the MST by examining the edges one by one in increasing
order of weight and including in the MST each inspected
edge that is the minimum-weight outgoing edge (MWOE)
of its fragment. This can be done in O(logn) time.

To reduce the time complexity to O(loglogn), it is nec-
essary to speed up the process by making the cluster sizes
grow quadratically in each phase. The main idea used for
achieving this growth rate is the following. Essentially, we
would like to provide every vertex vc in the logical graph
G with information about additional edges in G, beyond its
own. In particular, if we were somehow able to let every
vertex vc learn the entire topology of G, then we could fin-
ish the MST construction for GG in a single step by asking
each vertex in the graph to compute the MST locally. Un-
fortunately, such information exchange seems to require too
much time. On the positive side, denoting the minimum
cluster size by N, it is possible for the (N or more) mem-
bers of each cluster to inform a distinguished vertex vg of
the graph, in constant time, of the IV lightest edges connect-
ing their cluster to other clusters, by appropriately sharing
the workload of this task among them. (For concreteness,
we assume that vg is the node with the smallest ID in the
system.)

Subsequently, we now face a special sub-task of the MST
construction problem to solve in (N This node now has a
partial picture of the logical graph G, consisting of all the
vertices vc but only some of the edges connecting them, par-
ticularly, the IV lightest edges emanating from each vertex
of G (to N other vertices). It is now necessary to perform
(locally) as many legal “fragment merging” steps as possible
on the basis of this information. That is, we would like to
sort the edges known to us by increasing order of weight, ex-
amine them one by one, and add edges that are the MWOE
of one of the two fragments they connect, so long as we can
be sure of that fact. So the question becomes, when is it
“dangerous” to continue the merging steps, in the absence
of information about the weights of the edges unknown to
us.

The answer to this question is, that it is perfectly safe to
continue merging a fragment F' (in the logical graph G), so
long as for each vertex vc in F', we have still not inspected
at least one of its N lightest edges (which is known to us by
assumption). However, once we have already inspected all
the edges of some vertex vec in the fragment F', it becomes
dangerous to continue attempting to merge the fragment
over edges known to us, as it is possible that the true MWOE
of F is the (IV+1)st lightest edge emanating from v, which
is not known to us (yet is lighter than any edge emanating
from C that we do know of at this moment).

The crucial observation is that this “safety rule” still al-
lows us to grow each of the fragments to contain at least
N + 1 vertices of G. This means that the clusters of the
next phase will be of minimum size Q(N?).

An interesting observation is that even when we can no
longer identify the MWOE of some fragment F, we may
still be able to safely merge F with some other fragment F’.
This may still be legitimate if we can ascertain that the edge
connecting F' and F’ is the MWOE of F’.

Finally, after constucting locally the new fragments, wvo

96

sends out the identity of the edges added to the chosen set.
This can be done in constant time by letting vo send each
edge to a different intermediate node, which will broadcast
that edge to all other nodes.

2.2 Themain algorithm

In the algorithm, whenever a node is instructed to send a
message containing the edge e = (u, v), this should be inter-
preted as a message including the ID’s of its two endpoints,
ID(u) and ID(v), as well as the edge weight w(e).

We now describe the steps taken in phase k for all 1 <
k < loglogn. Let vo denote the node whose ID is minimal
among all nodes in the graph.

Phase k: Code for node v in cluster F' of size N = |F|

Input: A set of chosen edges. The set of connected com-
ponents defined by this set is the set of clusters F*~!. For
each cluster F/ € F*~1 ¢(F') is the node with the minimal
ID in F'.

1. (a) Compute the minimum-weight edge e(v, F’) that
connects v to (any node of) F’ for all clusters
F' #F.
(b) Send e(v, F') to £(F') for all clusters F' # F.
2. If v ={(F) then

(a) Using the messages received from Step 1, com-
pute the lightest edge between F’ and F', for every
other cluster F”.

(b) Perform (locally) Procedure Cheap_Out. This pro-
cedure (described below) does the following:

o It selects a set A(F') containing the N cheap-
est edges that go out of F to N = |F| distinct
clusters; and

e [t appoints for each such edge e a guardian
node g(e) in F, ensuring that each node in F
is appointed as guardian to at most one edge.

3. Let ¢’ € A(F) be the edge for which v was appointed
as guardian, i.e., such that g(e’) = v. Send €’ to vy,
the node with the minimal ID in the graph.

(At the end of this step, vo knows all the edges in the

set A=Upicrp_ 1 AF").)
4. If v = vy then
(a)

Perform (locally) Procedure Const_Frags. This
procedure (described below) computes E*, the

new set of edges to add.
For each edge e € E*, send a message to g(e).

(b)

5. If v receives a message from wvo that e € E*, then v
sends e to all nodes in the graph.

6. Each node adds all edges in E¥ and computes F*.

2.3 Procedure Cheap_Out

The local procedure Cheap_Out is invoked by cluster lead-
ers in each phase, and it operates as follows at the leader
of cluster F' with |F| = N at phase k. Pseudo-cpde for the
procedure is presented in the following page.

Input: Cheapest edge e(F, F’) for every F' € F*~1.

1. Sort the input edges in increasing order of weight.
2. Let p=min{N, |F* 1}

3. Define A(F) to be the first 1 edges in the sorted list.
4. Sort the nodes of F' by increasing order of ID.

5. Appoint the ith node of F' as the guardian of the ith
edge added to A(F).

6. For each node u € F':
appointed.

send the edge to which u is

2.4 Procedure Const_Frags

The local procedure Const_Frags is invoked only by the
distiguished node vo, and it operates as follows. It receives
as input the initial partition F*~!, the spanning subtree
collection 7%~! and the set of edges for inspection, A. Its
output is a set of edges E¥, which defines a new partition
F* and its spanning subtress 7%: the edge set of 7" is the
union of the set of edges in 757! with the set E*, and F*
is the set of connected components of T%.

The procedure operates in two stages. In the first stage,
it contracts the input clusters into vertices, thus creating
a logical graph G, partitions this logical graph into “super-
clusters” and constructs a spanning subtree for each such
super-cluster. In the second stage, the procedure transforms
the super-clusters and spanning subtrees constructed for G
into clusters and spanning subtrees for the original graph G.

We now continue with a more detailed description of the
two stages. The first stage operates as follows. The proce-
dure starts by creating the logical graph G = (V E) where
each input cluster is viewed as a vertex, namely, V = F k=1
The edge set E consists of the logical edges correspondmg
to the edges of the set A. Set the logical edge correspond-
ing to e = (u,w) to be X(e) = (F,F’) where v € F and
w € F'. Then E = {X(e) | e € A}. Each logical edge X (e)
is assigned the same weight as e. .

Then, the procedure constructs a collection F of super-
clusters and a corresponding collection T of spanning sub-
trees on this logical graph. The construction operates as
follows. The procedure first initializes the output partition
as F = {{F} | F € F*7'}, i.e., each vertex of V = FF~!
is a separate super-cluster. The output collection of span-
ning subtrees is initialized to 7 = §. The procedure then
inspects the edges of E sequentially, in increasing order of
weight. An inspected logical edge X (e) is added to 7 if it
does not close a cycle with edges already in 7. Whenever an
edge X(e) = (F1,F») is added to 7, the super-clusters F}
and Fy containing F1 and F3 respectively are merged into
one super-cluster F, setting F' = F1 U F» and eliminating Fi
and F», and the corresponding spanning subtrees are fused
together into a spanning subtree for the new super-cluster
Fy, setting T(F) = T(F1) UT(F>) U{X(e)}.

In each step during this process, whenever a logical edge
X (e) = (Fi, F2) between two super-clusters ', and F5 such
that F7 € Fl and F> € F’g is inspected, the procedure also
considers declaring one or two super-clusters finished. In
particular:

97

e If the step resulted in a merge operation creating a
new super-cluster F' =AF1 U Fg, then the newly con-
structed super-cluster F' is declared finished if one of
the following conditions hold:

— e is the heaviest edge in A(F1) or in A(F2), or
— either Fl or Fg is finished.

° If the step did not result in a merge between Fl and
F5, then:

— The super-cluster Fl is declared finished if e is
the heaviest edge in A(F1).

— The super-cluster F% is declared finished if e is
the heaviest edge in A(F»).

Also, after every edge inspection step, some of the remain-
ing edges become “dangerous” and are removed from the
set A. A remaining logical edge X(e) = (Fi, F»), F1 € Fi,
Fy € Fy, is still “safe” (i.e., not dangerous) if e € A(F})
and the super-cluster Fy s still unfinished, or if e € A(F3)
and the super-cluster Fg is still unfinished. Thus after ev-
ery edge inspection step, the procedure examines every edge
and removes each dangerous edge e from the set A. The
procedure also removes the corresponding logical edge X (e)
from E. The process terminates once all super-clusters are
declared finished (which, as can easily be verified, happens
concurrently with the set A becoming empty).

In the second stage, the procedure transforms the super-
clusters and spanning subtrees constructed for G into ones
for the original graph G. Specifically, for every super-cluster
F € F of the logical graph G, with spanning subtree T'(F'),
the procedure merges the original clusters included in the
super-cluster F into a cluster F’ of G, and creates the corre-
spondmg spanning subtree T'(F") for this cluster by merging
T(F) together with all the spanning subtrees from the col-
lection 7%~! spanning the original clusters included in the

super-cluster F, i.e., setting
T(E)}u | T(F

T(F)={e| X(e) €]

It then adds the cluster F’ to the output cluster collection
F* and the spanning subtree T'(F') for it into 7*.

3. ANALYSIS

In this section we prove that the algorithm described in
Section 2 is correct and analyze it complexity. It is more
convenient to start with the complexity analysis.

3.1 Complexity

The following lemma is the key to the complexity analysis.
It bounds from below the growth rate of fragments.

Consider phase k of the algorithm. Let GG be the logical
graph constructed by Procedure Const_Frags. Let F be the
collection of clusters constructed by Procedure Const_Frags
for G.

LEMMA 3.1. Every super-cluster in F consists of at least
w1 logical vertices of G.

Proof: To establish the lemma, we prove a stronger claim
as follows: whenever the procedure declares a super-cluster

F finished, it contains at least 1+ 1 logical vertices of G.
This claim is proved by structural induction on the super-
clusters.

There are three base cases. The first is when F is declared
finished following a merge step F' = F1 U F> where the two
merged super-clusters were unfinished. This merge step was
based on the inspection of some logical edge X (¢) = (F1, F)
such that F} € F1 and s € Fz, By the algorithm, w.l.o.g.
e is the heaviest edge in A(F1). As the edges are inspected
in increasing weight order, all other edges in A(F}) have al-
ready been inspected. There are p such edges, €;y,...,€;,,
leading to distinct original clusters Fj,,..., F;,. Whenever
an edge e;, was inspected, either the super-clusters contain-
ing F1 and Fj, were merged, or e; was found to close a
cycle, indicating that F1 and Fj, already belonged to the
same super-cluster. Hence the finished super-cluster F con-
tains (at least) the p + 1 original clusters Fi1, Fj,, ..., Fj,.

The second base case is when F is declared finished follow-
ing the inspection of some logical edge X (e) = (F, F>) such
that F € F and Fy € Fz, which did not result in a merge.
This happens since e is the heaviest edge in A(F'). Again,
all p other edges in A(F') have already been inspected, and
by a similar reasoning as above, the finished super-cluster
F contains (at least) p 4 1 original clusters. The third base
case is the dual case where F is declared finished following
the inspection of some logical edge X (e) = (F1, F) such that
FieFiand Fe F, which did not result in a merge. Again
this happens since e is the heaviest edge in A(F'), and the
claim follows in the same way. .

The inductive claim concerns the case where F' is declared
finished following a merge step F = Fl U F‘g where one or
both of the two merged super-clusters were finished. In this
case, the claim follows directly from the inductive hypothe-
sis.

LEMMA 3.2. The algorithm terminates after no more than
loglogn + 1 phases.

Proof: Denote by (i the minimum size of a cluster F' € Fr.
First note that for all £ > 0,

Br+1 > Br(Br + 1) (1)

Equation (1) is true by Lemma 3.1, which implies that clus-
ters generated in phase k + 1 consist of the union of at
least Br + 1 clusters of phase k, each containing at least
Br nodes. It follows from Equation (1) that for every k > 1,

Br > 22k_1. The lemma follows. I

The following statement is immediate from the code of
the algorithm.

LEMMA 3.3. Each phase requires O(1) rounds. |

We now conclude with the following result.

THEOREM 3.4. The time complexity of the algorithm is
O(loglogn) rounds, and the overall number of bits commu-
nicated is O(n”logn).

Proof: The time complexity bound follows directly from
Lemma 3.2 and Lemma 3.3. For the total number of bits
communicated, we account for each step separately as fol-
lows. Step 1 of the algorithm involves sending at most

98

n/QQk_1 messages by each node in each phase, and each
message contains at most clogn bits for some constant c.
Hence, the number of bits sent over all phases in Step 1 is
at most

loglogn+1 loglog n+1
n- clog n 2 _2k+1
-————=— = n°clogn Z 2
92k —1
k=0 k=0
2
= O(n’logn) .

No messages are sent in Step 2. The number of messages
sent in Step 3 of the algorithm in each phase is O(n) over all
nodes (since each node receives at most one message), for
a total of O(nlognloglogn) bits throughout the execution.
To account for the messages sent in Steps 4 and 5, we bound
the total number of messages sent in these steps over all
nodes and over all phases: since each edge added to the
MST contributes O(nlogn) bits sent at Steps 4 and 5, and
since exactly n — 1 edges are added to the MST overall,
the total number of bits sent in these steps throughout the
execution of the algorithm is O(n?logn). The result follows.

We note that by the results of Adler et al. [1] applied to
our model, the minimal number of bits required to solve the
MST problem is Q(n?logn) in the worst case.

3.2 Correctness

The correctness of the algorithm is proved by the following
invariant.

LEMMA 3.5. In each phase k, for every cluster FF € F*
constructed by Procedure Const_Frags, the corresponding span-
ning tree is a fragment, namely, T(F) = T (F).

Proof: By induction on k. The initial partition, F°, triv-
ially satisfies the claim. Now suppose that the collection
T*=! consists of only ST edges, and consider the collec-
tion 7% constructed in phase k. The spanning subtrees in
this collection are composed of spanning subtrees from 7%~*
fused together by new edges added by Procedure Const_Frags.
It suffices to show that every edge added to the trees of
T* in phase k is indeed an MST edge. For this, we rely
on the standard MST construction rule which says that
if e is the lightest outgoing edge incident on a fragment,
then it belongs to the MST. Consequently, we have to show
that whenever Procedure Const_Frags selects a logical edge
X(e) = (F1, F2), Fi € Fl, Fy e Fg, and uses it to merge the
two super-clusters Fyand Fy in é, then e is the lightest edge
outgoing from the corresponding clusters Hi = |Jp, o
and Hy = UFGF‘Q Fin G.

As the edge e has not been erased prior to this step, nec-
essarily either e € A(Fy) and F} is unfinished, or e € A(F2)
and F} is unfinished. Without loss of generality suppose the
former. We claim that in this case e is the lightest outgoing
edge incident on Hj.

Consider some other outgoing edge ¢’ incident on Hy, and
in particular, on a fragment Fi € Fy. Suppose, towards
contradiction, that w(e’) < w(e). If € is included in A(F),
then it should have been considered by the procedure before
e, and subsequently either added to the spanning subtree
T'(F1) or discarded as an internal edge, in either case con-
tradicting our assumption that €’ is an outgoing edge of Hy
(hence X (e’) is an outgoing edge of F1). Hence ¢’ & A(F}).
Let X (€') = (F1, F3). There may be two reasons why e’ was

not added to A(Fi). The first is that some other edge e”
with X (e'") = (Fi, F3) was already included in A(F}) before
€’. In that case, w(e’) < w(e'), hence also w(e”) < w(e).
This implies that ¢’ has already been inspected by the pro-
cedure at some earlier step. But then, the clusters Fi and
F3 must already belong to the super-cluster F1, hence in
Iy, the edge €’ is internal, contradiction. The other rea-
son why e’ was not added to A(F}) is that u other edges
lighter than it were added to A(F1) before it. Letting e” be
the heaviest edge in A(F1), it follows that w(e”) < w(e’).
Hence also w(e”’) < w(e). This means that ¢” has already
been inspected by the procedure at some earlier step. But
then, the cluster Fy that contained it at the end of that
step should have been declared finished, upon inspection of
its heaviest edge. This would necessitate that F} is finished
now, contradiction.

THEOREM 3.6. The tree produced by the algorithm 1is a
minimum weight spanning tree of the graph.

Proof: Follows from Lemma 3.5 and the fact that by Lemma
3.2, F* contains exactly one cluster for k > loglogn.

4. EXTENSION TO LARGER MESSAGES

In this section we extend the algorithm to a model in
which each message can contain any number of bits (so long
as it is at least logn). Specifically, we assume that each
meassage may contain £logn bits. The extension of the al-
gorithm to this case is straightforward. It turns out that
the asymptotic worst-case number of rounds drops to a con-
stant when the message size is n® for € > 0, but ©(loglogn)
rounds are required by our algorithm for any polylogarith-
mic message size.

First, we explain how to modify the algorithm to use mes-
sages that can contain ¢ edges. The idea is to change Steps
2b (which is the invocation of Procedure Cheap_Out) and 3
in the main algorithm so that each node can be the guardian
of £ edges. Specifically, the modified algorithm is identical
to the algorithm of Section 2 except for the following steps.

2b*. Perform (locally) Procedure Cheap_Out™. This proce-
dure (described below) does the following:

o It selects a set A(F') containing the £- N cheapest
edges that go out of F' to £ - N distinct clusters;
and

e It appoints for each such edge e a guardian node
g(e) in F, ensuring that each node in F' is ap-
pointed as guardian to at most ¢ edges.

3*. Let {el,...,ep} C A(F) be the edges for which v was
appointed as guardian, i.e., all edges e such that g(e;)
v. Send {el,...,e;} to vo, the node with the minimal
ID in the graph.
(At the end of this step, vo knows all the edges in the

set A= UF’EJ—'k—l A(F").)

The modified Cheap_Out™ procedure is identical to Proce-
dure Cheap_Out except for the following two steps:

2%, Let p=min{¢- N, |F*71}.

5*. Appoint the ith node of F' as the guardian of the jth
edge added to A(F) if j mod (¢- N) = 1.

99

The correctness of the modification is obvious, as Lemma
3.5 is stated in terms of a general u, and it relies only on
the assumption that A(F) contains the u lightest edges con-
necting F' to p distinct clusters.

The complexity analysis of the generalized algorithm re-
quires a little work. First, we observe that Lemma 3.1 holds
without change: it is also stated in terms of a general u.
Lemma 3.3 also holds by assumption that each message
can contain £ edges, and since each node is the guardian of
at most ¢ messages by the modified procedure Cheap_Out*.
However, Lemma 3.2 holds only for £ = ©(1). Below we
analyze two other special classes of values of £.

First, we give a constant upper bound on the number of
communication rounds for polynomial size messages.

LEMMA 4.1. If¢ > n® for some € > 0, then the worst-case
number of rounds of the extended algorithm is O(log %), and
the total number of bits communicated is ©(n?logn).

Proof: Let (B; be the smallest possible cluster size after
the kth round. By definition, oy = 1. If each guardian
node sends ¢ edges, then each cluster merges with at least
{0k other clusters in the kth phase. It follows that Bri11 >
(Br + 1)B, > B2, and hence B, > (2.
7 = log % we get

Therefore, for

1

g, > £27F (n)*

which means, using Lemma 3.3, that the modified algo-

rithm terminates in O(log 1) communication rounds. For

the total number of bits communicated by the algorithm,

we observe that the only difference in the accounting is that

the number of messages sent in Step 3* in each phase, over

all nodes, is now O(n'™¢), which does not change the asymp-
totic complexity.

n,

Note that Theorem 3.4 can be viewed as a special case of
Lemma 4.1, with € = loln'

Next, we show that the worst-case round complexity of the
extended algorithm is double-logarithmic even if the mes-

sages can have slightly super-polylog size.

(logn)€©
LeMMA 4.2. If £ < (logn) loglogn — 1 for some constant
0 < ¢ < 1, then the worst-case number of phases of the
extended algorithm is larger than (1 — c)loglogn.

Proof: Using the notation above, we have that Brpy1 =
0By + 1)Br < (¢ + 1)B%, and thus, in the worst case we

may have B < (£ + 1)2k. Now, suppose that

(logn)©
{ < (logn)loglogn -1,
7 < (1—-c)loglogn .
For these values we have

2(1—0) log log n

Br < (£+1)
(log n)€ (1Ogn)lic
< ((1Og ’I"L) Tog log n.)
(logn)€ UOgn)liC logn
= (2t=) — olen = g

Since the extended algorithm may terminate in 7 phases
only if 8, > n, the above inequality shows that in the worst
case, the algorithm does not terminate in less than (1 —
¢)loglog n phases using the given message size. |

COROLLARY 4.3. The number of communication rounds

of the extended algorithm is ©(loglogn) for polylogarithmic
message sizes.

5. CONCLUSION

This paper shows that MST can be constructed in sub-

logarithmic time even if each message can contain only a
constant number of edges. We believe that the algorithm
may be useful in some overlay networks. An obvious ques-
tion we leave open is whether the algorithm can be improved,
or is there an inherent lower bound of Q(loglogn) on the
number of communication rounds required to construct an
MST in this model.

6. REFERENCES

[1] M. Adler, W. Dittrich, B. Juurlink, M. Kutylowski,
and I. Rieping. Communication-optimal parallel
minimum spanning tree algorithms. In Proc. of the
1998 ACM Symposium on Parallel Algorithms and
Architecture, pages 27-36, 1998.

B. Awerbuch. Complexity of network synchronization.
J. ACM, 32(4):804-823, Oct. 1985.

B. Awerbuch. Optimal distributed algorithms for
minimum weight spanning tree, counting, leader
election and related problems. In Proceedings of the
19" Annual ACM Symposium on Theory of
Computing, pages 230-240, May 1987.

B. Awerbuch and Y. Shiloach. New connectivity and
MSF algorithms for the shuffle-exchange network and
PRAM. IEEE Trans. Computers, C-36:1258-1263,
1987.

R. Cole, P. N. Klein, and R. E. Trajan. Finding
minimum spanning forests in logarithmic time and
linear work using random sampling. In Proc. of the
1996 ACM Symposium on Parallel Algorithms and
Architecture, pages 243-250, 1996.

R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning
trees. ACM Trans. Prog. Lang. and Syst., 5(1):66-77,
Jan. 1983.

J. Garay, S. Kutten, and D. Peleg. A sub-linear time
distributed algorithm for minimum-weight spanning
trees. SIAM J. Comput., 27:302-316, 1998.

J. Jannotti, D. Gifford, K. L. Johnson, M. F.
Kaashoek, and J. J. W. O’Toole. Overcast: Reliable
multicasting with an overlay network. In 4th USENIX
OSDI, pages 197-212, October 2000.

D. R. Karger, P. N. Klein, and R. E. Tarjan. A
randomized linear time algorithm to find minimum
spanning trees. J. ACM, 42(4):321-328, 1995.

Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed
MST for constant diameter graphs. In Proc. 20th Ann.
ACM Symp. on Principles of Distributed Computing,
pages 6371, 2001.

N. Lynch. Distributed Algorithms. Morgan Kaufmann,
San Mateo, CA, 1995.

D. Peleg and V. Rubinovich. Near-tight lower bound
on the time complexity of distributed MST
construction. SIAM J. Comput., 30:1427-1442, 2000.
J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on
Computer Systems, 2(4):277-288, Nov. 1984.

3]

[4]

[9]

[10]

100

[14] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the ACM SIGCOMM ’01 Conference, San Diego,
California, August 2001.

R. E. Tarjan. Data Structures and network
Algorithms, chapter 6. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1983.

