Discrete Mobile Centers

Jie Gao™ Leonidas J. Guibas™

Abstract

We propose a new randomized algorithm for maintaining a
set of clusters among moving nodes in the plane. Given a
specified cluster radius, our algorithm selects and maintains
a variable subset of the nodes as cluster centers. This subset
has the property that (1) balls of the given radius centered
at the chosen nodes cover all the others and (2) the number
of centers selected is a constant-factor approximation of the
minimum possible. As the nodes move, an event-based ki-
netic data structure updates the clustering as necessary. This
kinetic data structure is shown to be responsive, efficient, lo-
cal, and compact. The produced cover is also smooth, in the
sense that wholesale cluster re-arrangements are avoided.
The algorithm can be implemented without exact knowledge
of the node positions, if each node is able to sense its dis-
tance to other nodes up to the cluster radius. Such a kinetic
clustering can be used in numerous applications where mo-
bile devices must be interconnected into an ad-hoc network
to collaboratively perform some task.

1 Introduction

Collaborating mobile devices are of interest in diverse ap-
plications, from wireless networking to sensor nets to robot
exploration. In these applications there are mobile nodes
that need to communicate as they move so as to accomplish
the task at hand. These tasks can vary from establishing an
ad-hoc multi-hop network infrastructure that allows point-to-
point communication, to aggregating and assimilating data
collected by distributed sensors, to collaboratively mapping
an unknown environment. A challenge common to all these
tasks is that communication is usually accomplished using
low-power radio links or other short-range technologies. As
a result only nodes sufficiently close to each other can com-
municate and therefore the communication topology of the
network is strongly affected by node motion (as well as ob-
stacle interference, etc.). The mobile networking community
has been especially active in studying such problems in the
context of networking protocols allowing the seamless inte-

*Department of Computer Science, Stanford University, Stanford, CA
94305. E-mail: jgao,guibas,anzhu@cs.stanford.edu.

fMentor Graphics, 8005 S.W. Boeckman Road, Wilsonville, OR 97070.
E-mail: john_hershberger @mentor.com.

j;Compaq Systems Research Center, 130 Lytton Avenue, Palo Alto, CA
94301. E-mail: 1.zhang @compaq.com.

John Hershberger'

Li Zhang* An Zhu*

gration of devices such as PDAs, mobile PCs, phones, pagers,
etc., that can be mobile as well as switch off and on at arbitrary
times. An example of such an effort is the recent BLUETOOTH
specification [14].

A principle that has been discussed a number of times for
enabling such collaborative tasks is the organization of the
mobile nodes into clusters [3, 7, 11, 19]. Clustering allows
hierarchical structures to be built on the mobile nodes and
enables more efficient use of scarce resources, such as band-
width and power. For example, if the cluster size corresponds
roughly with the direct communication range of the nodes,
much simpler protocols can be used for routing and broadcast-
ing within a cluster; furthermore, the same time or frequency
division multiplexing can be re-used across non-overlapping
clusters. Clustering also allows the health of the network
to be monitored and misbehaving nodes to be identified, as
some nodes in a cluster can play watchdog roles over other
nodes [17].

Motivated by these issues, in this paper we study the prob-
lem of maintaining a clustering for a set of n moving points
or nodes in the plane. There is, of course, a huge literature
on clustering, as the problem in many variations has been
studied by several different communities, including opera-
tions research, statistics, and computational geometry. In our
setting we assume that all the nodes are identical and each
can communicate in a region around itself, which we take to
be an L, ball. For most of the paper we will focus on a ball
in the Lo, metric, that is an axis-aligned square whose side is
of length r, as this makes the analysis the simplest. We will
say that two nodes such that one is within the communication
range of the other are visible to each other. We seek a minimal
subset of the n nodes, the centers, such that every node is vis-
ible to at least one of the centers. In the mobile device setting,
unlike the general facilities location context, it is appropriate
to insist that the centers are located at the nodes themselves,
as these are the only active elements in the system; thus we
are interested in ‘‘discrete center’’” problems. We survey the
literature on the static version of this problem in Section 2.
The problem is known to be NP-complete and most of the
extant work has focused on approximation algorithms.

Much less is known, however, about maintaining a clus-
tering on mobile nodes. There have been a few papers in
the mobile networking community [3, 7, 11, 19] proposing
and simulating a number of distributed algorithms for cluster
maintenance, but to our knowledge there has been very little
prior work on a theoretical analysis of the problem. Bespamy-

atnikh et al. investigated the problem of maintaining a con-
tinuous 1-center and 1-median [6]. Their main observation is
that the center or median might move faster than the points
in the optimal solution. They presented a 2-approximation
algorithm for both the 1-center and the 1-median cases with
restricted velocity on the resulting center and median.

In this paper we present a new randomized clustering al-
gorithm that provides a set of centers that is an O (1) approx-
imation to the optimal discrete center solution with very high
probability. Our algorithm uses O (loglogn) rounds of a *‘-
center nomination’’ procedure in which each node nominates
another node within a certain region around itself to be a cen-
ter; a round of the nomination procedure can be implemented
in O(nlogn) time. Furthermore, we show how this approx-
imately optimal clustering can be maintained as the nodes
move continuously. The goal here is to exploit the continu-
ity of the motion of the nodes so as to avoid recomputing
and updating the clustering as much as possible. We employ
the framework of Kinetic Data Structures (KDS) [4, 13] to
provide an analysis of our method. For this analysis we as-
sume that nodes follow posted flight plans, though they may
change them at any moment by appropriately notifying the
data structure. The correctness of the clustering is certified
by a set of conditions, or certificates, whose predicted fail-
ure times are inserted as events into an event queue. At each
certificate failure the KDS certification repair mechanism is
invoked to repair the certificate set and possibly the clustering
as well. We show that the proposed structure is responsive,
efficient, local, and compact. Certificate failures and flight-
plan updates can be processed in expected time O (log*% n)
and O (lognloglogn) respectively. Under the assumption
of pseudo-algebraic motions for the nodes, we show that our
structure processes at most O (n” log log n) events (certificate
failures). We also give a construction showing that for any
constant ¢ > 1, there is a configuration of n points mov-
ing linearly on the real line so that any c-approximate set of
centers must change 2 (n? / ¢?) times. Thus, even though an
approximate clustering is not a canonical structure [1], we
can claim efficiency for our method.

Our clustering algorithm has a number of other attractive
properties:

* We can show that the clustering produced is an O(1)
approximation with high probability during the entire
history of a pseudo-algebraic motion—not only at a par-
ticular instant; this addresses one of the most common
concerns when randomization is used in kinetic algo-
rithms.

e The clustering generated by the algorithm is smooth
in the sense that, degeneracies aside, clusters always
change by adding or deleting a small (polylog) number
of nodes; furthermore, when new centers need to appear,
they are created near existing centers. This allows the in-
cremental updating of information maintained by an ap-
plication and convenient initialization of newly formed
centers.

* The algorithm can be implemented in a distributed fash-
ion: each node need only reason about the nodes visible
to it.

e If a node can sense when its set of neighbors changes
within certain subregions of its visibility range, the al-
gorithm can be implemented without any knowledge of
the actual positions of the nodes. This is advantageous
in mobile networking applications in which a GPS-type
device would be expensive to provide with every mo-
bile node. Hybrid schemes are also possible, where a
node uses kinetic-style prediction to estimate roughly
when such events might occur and employs active sens-
ing (e.g., polling) only then, so as to minimize power
consumption.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes previous work on discrete centers and re-
lated problems. Section 3 introduces the basic algorithm and
analyzes the approximation factors for the clusterings it pro-
duces. Section 4 describes a hierarchical version of the al-
gorithm and proves the constant approximation bound. Sec-
tion 5 shows how this clustering can be maintained kinetically
under node motion and analyzes the performance of the algo-
rithm. Finally Section 6 concludes with some directions for
future research.

2 Previous work

There is little prior work on this specific mobile clustering
problem. The static version of the problem is known to be
NP-complete [9] and to admit a PTAS (polynomial time ap-
proximation scheme). A variant, the connected dominating
set problem, has been studied extensively as well.

The static version of the discrete clustering problem is
equivalent to finding the minimum dominating set in the in-
tersection graph of unit disks. The dominating set problem
is defined as follows. Given a graph G = (V, E), find a
minimum size subset V' of vertices, such that every vertex in
V \ V' is adjacent to some node in V',

For our problem we build a graph G on all the points
and create an edge between two points if a disk of size r
centered at one point contains the other point. The goal
is to find the minimum dominating set in G. The domi-
nating set problem on general graphs is NP-complete and
hard to approximate as well. In fact, no algorithm with
approximation factor better than (1 — €)Inn exists unless
NP C DTIME(|V|°gloelVly [8]. A greedy algorithm can
construct a solution of size k* logn, where k* is the size of
the optimal solution (this follows from a reduction to the set
cover problem).

For the dominating set in an intersection graph, several
approximate algorithms have been developed. The sim-
ple greedy algorithm gives a const approximation. Hunt
et al. [16] gave a PTAS, providing a solution of size no more
than (1 4 €)k*, for the optimal k* and any € > 0. The basic

idea of the PTAS comes from an algorithm by Hochbaum and
Maas [15] for the continuous variant, in which centers can be
arbitrary points in the plane. Roughly speaking, the method
in [16] divides the space into strips of a certain width, and a
sub-problem is formed by grouping several consecutive strips
together and proceeding recursively.

The connected dominating set has the extra condition that
the subgraph induced by V’ must be connected. This problem
is NP-complete as well [10]. Guha and Khuller designed a
greedy algorithm that achieves an approximation bound of
O (logn) in a general graph [12]. Their algorithm is a slight
modification of the natural greedy algorithm (pick the next
available vertex with the maximum degree).

Unfortunately, these algorithms from the theory commu-
nity do not easily extend to the mobile case. Fixed spatial
subdivisions generate many updates to the clustering as points
move across subdivision boundaries. Greedy algorithms are
sequential by nature and highly sensitive to small changes.
The networking community, on the other hand, has devel-
oped many routing protocols to deal with changing network
topologies. However, no theoretical bounds have been de-
rived for many of these heuristics. We note that our basic algo-
rithm is similar to the Lowest-ID Cluster Algorithm proposed
by Gerla and Tsai [11]. Experiments show that this scheme
works well in practice. A similar idea leads to the Max-Min
D-clustering scheme that was proposed by Amis ez al. [2]. For
the connected dominating set problem, Wu and Li proposed
a distributed algorithm that performs badly in the worst case
(O (n)-approximation) but works well in simulation [21].

3 Basic algorithm

We first present the algorithm for the static version of the
problem, using Lo, unit balls as the visibility ranges. The
formal definition of our static discrete center problem is as
follows: given aset of n points (nodes) P = {p1, p2, ..., Pn}
in the plane, each point has a visible range that is a unit
square (a square with side length 1) aligned with the axes and
centered at that point. Each point can cover all the points
that are in its visible range. The goal is to pick a minimum
number of centers out of the points in P such that all points
are covered.

3.1 Description of the basic algorithm

The algorithm, which is distributed in nature, is the fol-
lowing: we impose a random numbering (a permutation of
1,2,...,n) onto the n points, so that point p; has an index
N;. In most situations in practice each mobile node is given
a unique identifier (UID) at set-up time, and these UIDs can
be thought of as providing the random numbering (either di-
rectly, or via a hash function on the UIDs). Each point p;
nominates the largest indexed point in its visible range to be
a center (note that a point can nominate itself if there is no
other point with larger index inside its range). All points

nominated are the centers in our solution. A cluster is formed
by a selected center and all the points that nominated it.

First, we note that randomization is essential for the perfor-
mance of our scheme. Without randomization, the only ap-
proximation bound that holds, even in the one-dimensional
case, is the trivial O(n) bound. For example, consider the
one-dimensional case in which n points are equally spaced
along a unit interval, with their indices increasing monoton-
ically from left to right. Each point in the left half of the set
has a different center, the rightmost point within distance %
of it. Thus the number of centers produced by the algorithm
is n/2, even though the optimal covering uses only a single
center.

In the following, we are able to show that for any configura-
tion, if the ordering is assigned randomly, the basic algorithm
yields a sub-linear approximation (logn in 1-D, and /7 in
higher dimensions) with high probability.

3.2 Analysis for the basic algorithm
3.2.1 Analysis for the one-dimensional case

As a warm-up, we first present the analysis for this algorithm
in the 1-D case, where points are moving along the real line
and the unit square corresponds to the unit interval.

Lemma 3.1 If V' is a subset of the points which are mutu-
ally visible to each other; then there is at most 1 point in V'
nominated by points in V'

Proof. Only the point with the maximum rank in V' can
possibly be nominated by other points in V. a

Letthe optimal centersbe O;,i = 1, 2, ..., k. We partition
eachunitinterval U; centered at O; into two sub-intervals with
O; as the dividing point. We define the visible range of an
interval to be all the points on the line that are visible to at
least one of the nodes in the interval and call nodes in the
visible range the visible set for that interval.

Theorem 3.2 The basic algorithm has an approximation fac-
tor of 4Inn + 2 in expectation, where Inn = log, n.

Proof. It suffices to show that, for each sub-interval S, the
number of centers nominated by points in S is at most 2 log n+
1. For S, its visible range is contained in an interval of size %
as shown in Figure 1(a). We use S; to denote the portion of
the interval to the left of S and S, for the right portion. Note
that the points in S are mutually visible. Lemma 3.1 shows
that all the points in S nominate at most one center in S.
Now we calculate the expected number of centers in S,
that are nominated by points in S. Let x = |S| and y = |S;|
be the number of nodes in the respective subintervals. Scan
all points from left to right in S,. The i point in S, can be
nominated by a points in S only if it has the largest index
compared to all points to its left in S U S,. Therefore, the

expected number of centers in S, isnomore than 37 - <

i=1 x+i

L| S
S
S s S, I
\ | | | 3
ISR
‘ 3 ‘ — %—%
(a) (b)

Figure 1: Visible range in (a) 1-D, and (b) 2-D.

Inn. A similar argument works for S;, and we can conclude
that all points in S nominate at most 2Inn + 1 centers. O

We remark that the approximation bound is tight asymp-
totically. Consider the following situation in Figure 2: the
unit interval centered at p is divided into two sub-intervals
S; and S,. S; contains /n evenly distributed points, each
of which can see /n more points in S, from left to right.
In this configuration, with probability 0.5, the leftmost point
g in S; nominates a point in the first group of /n points in
S,. This is because g sees 2./n points (/7 in S; and another
J/n in S,). Under a random numbering, the point with the
maximum rank falls in S, with probability 0.5. In general, a
point in the i group of S, is nominated by the i-th point in S;
with probability Jlrl Thus the expected number of centers

(in S, alone) is Z,] l+1 = Q(logn). But a single cover
at p covers all the points. Further, we can prove that the

NN
L - |
)4

]

Figure 2: Lower bound for the 1-D case

O (log n) upper bound holds with high probability. This fact
is useful in our hierarchical algorithms, which achieve a con-
stant approximation factor, and in our kinetic maintenance
algorithms.

Theorem 3.3 The probability that there are more than
cklogn centers is O(I/n(”)(cz)), where k is the optimal num-
ber of centers.

Proof. We divide the optimal intervals in the same way as in
the proof of Theorem 3.2. Consider a sub-interval S and its
right portion S,. We look for the fraction of random number-
ings such that points in § nominate not too many centers in S,..
We sort all points in S U S, from left to right into a sequence
of m points. The sequence of their indices can be viewed as a
random permutation on numbers 1, 2, ..., m. Each center in
S, must have a bigger index than all the other points to its left.
Thus, to guarantee that points in S nominate no more than s
centers in S,, it suffices to ensure that the total number of
left-to-right maximal indices in the sequence is no more than
s. The number of permutations with s left-to-right maxima

is known as the Stirling number c(m, s), which is asymptoti-

2
cally equal to m!e’%/m, for s = logm + 6./logm [20].
Let P(s) be the probability that there are s left-to-right max-
ima in this permutation. The probability that there are more
than s centers is

P@sy=/wpmdkg/w5@2dL
s s m!

If we set s = clogn, this formula becomes

P(> clogm)

A

o
logm
/(; 1)y/logm V

/logm - Jlogn - J/logn
=2 = (=12 T p0(?) ’
m 4 n 4

For O (k) sub-intervals, since each needs to be considered

only twice for its left and right points, the probability that
Jlogn

70’

which is O(T 2)) O

there are more than ck logn centers is less than ®(n)

3.2.2 Analysis for the two-dimensional case

Unfortunately this good result does not extend to higher di-
mensions. We will show that in two (and higher) dimensions,
the method above produces a ® (\/n log n) approximate cover
with high probability. The analysis is similar to the 1-D case.
Again, we consider the sub-squares with side length 0.5. For
such a square S, suppose that L is the visible range of S.
Clearly, L is a square of side length 3/2 and can be partitioned
into 9 sub-squares where S is the center one (Figure 1(b)).
Now, we have the following lemma:

Lemma 3.4 Suppose that |L| = m. Then the number of
centers nominated inside S is O(,/m) in expectation. Fur-
thermore, for any ¢ > 0, the probability that S contains more

than 8c/mlogm centers is bounded by O(I/mC2 logrmy

Proof. We need to consider only those points inside L. It
suffices to bound for each sub-square S’ of L. If §' =
since all the points are mutually visible in S, there can be at
most one point nominated. For §” # S, suppose that x = |S],
y = |S’|. A point p € § canbe nominated by apointg € S’ if
q finds that p has the largest index in its visible range. Since
g sees all points in ', p must have rank higher than all the
points in §’. Thus, the probability that p can be nominated
is at most # Thus, in expectation, there are at most ™
points nominated. On the other hand, since there are only
y points in §’, there can be at most y centers nominated by
points in §’. The expected total number of centers is therefore
no more than min(y, 1-)16-_y) <Jx+y+1-1<m.
Furthermore, in order for S’ to nominate s points in S, S
must contain at least s points with higher ranks than all the
points in §’. Or, S must contain the s highest ranked points
in SU S, Tt is not difficult to derive the high probability

result. Furthermore, if y < c+/mlogm, then we know
that S’ cannot nominate more than c/m logm points. For
suppose that otherwise, S’ contains y > c./m logm points.
In order to nominate s points in S, S must contain at least s
points with higher ranks than all the points in §’. Or, S must
contain the s highest ranked points in S U §’.

The probability for this to happen is:

()s!x+y =9 xlx+y—9)!
x4+ ! I —9)!
_ xx—1---(x—s+1
Sty +y—De(x+y—s+1)

x) y\S c/mlogm*
< < (1——) <|{l-——]) .
X+y m m

Thus, if s > c/m log m, we have that

clogm cy/mlogm
)

1 c2log?m o 1
< =00 Foen)

Summing over all the 9 sub-squares, we have that the
expected number of centers nominated in S is bounded by
O(y/m) and with high probability, the number of centers
nominated is bounded by O (y/m logm). O

By Lemma 3.4, it is easy to obtain

P(=s) < (1

Theorem 3.5 For points in the plane, the algorithm has an
approximation factor of O (\/n) in expectation. Further, the
probability that there are more than /nlogn - k centers is
O (1/n'2"=1) where k is the optimal number of centers.

Proof. Consider an optimal covering U;, 1 < i < k. We
partition each U; in the optimal solution into 4 quadrant sub-
squares and apply Lemma 3.4 to each sub-square. Since there
are at most O (n) sub-squares, the high probability result also
holds. O

Again, this bound is asymptotically tight. Consider the
configuration in Figure 3: the upper left sub-square S7 has
\/n points, each of which can see a distinct set of \/n points in
the lower right sub-square S>. Each point in S; will nominate
apoint in S, with probability % Thus the expected number of
centers in S is (/7). We remark that in this analysis, the
use of the unit square and the dimensionality is not essential.
It is easy to extend the analysis to any centrally symmetric
covering shape in any dimension; the constant factors, how-
ever, depend on the covering shape and the dimensionality.

Note also that the worst-case examples that prove the tight-
ness of the upper bounds in Theorems 3.2 and 3.5 require a
significantly non-uniform distribution of the points. If the
points are uniformly distributed, or within a constant factor
of being uniformly distributed, then the approximation factor
is O(1). This observation may explain the good performance
of the basic algorithm observed in practice [11].

M

i

S

Figure 3: Lower bound for the 2-D case

4 Hierarchical algorithms for cluster-
ing

The basic algorithm is simple, but it only achieves an O (4/n)
approximation for points in the plane. To obtain a constant
approximation, we will use a hierarchical algorithm in which
we proceed in anumber of rounds. Ateachround we apply the
basic algorithm to the centers produced by the previous round,
using a larger covering ball. Suppose that §; = 2//Ign, for
i > 0. (Note that lgn = log, n.) Initially, set Py to be P, the
input set of points. At the i step, for 1 < i < Iglgn, we
apply the above algorithm using squares with side length §;
to the set P;_| and let P; be the output. The final output of
the algorithm is P’ = Pig1g,—1. We claim that:

Lemma 4.1 P’ is a cover of P with unit squares.

Proof. We actually prove a stronger statement: P; is a cover
of P with side length 21! /1gn.

We proceed by induction. The assertion is clearly true
when i = 0. Suppose that it is true for i, i.e., every point
p € P can be covered by a size 2/*!/1gn square centered
at a point ¢ € P;. If g is also in P;1, then p is covered.
Otherwise, there must be a ¢’ so that ¢ nominates ¢’ at the
(i + D™ step. Thus, p is covered by ¢’ with a square with
side length 2/+!/1gn + 8; 1 = 2/+%/1gn. Thatis, P;1| isa
cover of P with side length 2/+2/1gn. O

In the following, we bound the approximation factor for
P’. To explain the intuition, we first consider the situation
when P admits a single cover, i.e., there is a unit square that
covers all the points in P. Denote by «(x) the number of
centers of an optimal covering of P by using squares with
side length x. First, we observe that

Lemma4.2 o(x) < iz.

X
Proof. We uniformly divide the unit square into ;12 small
squares of size 7. We then pick one point from each non-

empty small square, which gives a covering with % centers.
a

According to Theorem 3.5, the expected size of P,y is at
most c+/| P;|a(8;), for some constant ¢ > 0. Denote by n;

the size of P;. We have the following recursive relation:

41g%n
np=n, nip1 <cynia(s) < C«/n_i% .
By induction, it is easy to verify that:

1

(c? lg4 nyn?

| < —
42i —4

We have that | P'| = nigign—1 < 2213 = 0(1).

Theorem 4.3 P’ is a constant approximation to the optimal
discrete covering of P with unit squares, with high probabil-

ity.

Proof. We first prove a statement similar to Lemma 3.4. For
any square S of side length §;, let m; denote the expected value
of | P;NS|. Consider asquare S’ of side length §; 1 1. Its visible
region L, with respect to side length §;1, is a square with
side length 28; ;| = 48;. Thus L can be covered by 4> = 16
squares with side length §;. That is, |P; N L] = O(m;)
in expectation. By Lemma 3.4, we know that the expected
number of points inside S’ that survive after the (i + 1) step
of the algorithm is O(,/m;). Thus, the following relation

holds:
my = 0(/n), miy1 <cm;,

for some constant ¢ > 0.

Solving this recursive relation, we have that m; <
0(c2n§). Setting i = Iglgn — 1, we have that mig1g,—1 =
0(1), i.e., for a square S with side length %, the expected
number of points of P’ inside S is O(1).

Now, suppose that an optimal cover uses k unit squares.
We can then cover all the points by O(1) - k squares with
side length % Since each of these squares contains O (1)
points in P’ in expectation, the total number of points in P’
is bounded by O (k). Note that in the proof above, we assign
an independent random ordering to each level. Since we
have a high probability argument as stated in Lemma 3.4, we
can replace the recursive relation with m; 1 < c/m; logm;
and prove that the hierarchical algorithm achieves an O (1)
approximation with high probability. The details are omitted
in this version of the paper. |

5 Kinetic discrete clustering

To kinetize the algorithm, we place a half-size square centered
over each point. If two such squares intersect, we know the
corresponding points are mutually visible. In this section
when we say ‘‘squares,”’ we refer to these half-size squares.

5.1 Standard KDS implementation

The intersection relation between two squares can change
only atdiscrete times. If two squares of the same size intersect

with each other, one square must have a corner inside the
other square. Therefore, we can maintain the left and right
extremes of squares in x-sorted order and the top and bottom
extremes of squares in y-sorted order. The certificates of
the KDS are the ordering certificates for the x- and y-sorted
lists of square extremes. We maintain the lists containing the
extremes of active squares for each level of the hierarchy. An
event is a certificate failure. When an event happens, we first
check whetheritis a ‘‘real’’ event, i.e., whether it causes two
squares to start/stop intersecting. When two squares Si, S
start intersecting, we will need to check the square with the
lower rank, say S, to see if its nomination has a lower rank
than S,. If so, we need to change S to point to S». If Sy, S
stop intersecting, we need to check if S| nominated S;. If so,
we need to find another overlapping square with the highest
rank. To answer this query efficiently, we maintain a standard
range search tree [18] for the n points. For our purpose, the
internal nodes of the second-level binary trees in the range
tree are augmented with the maximum index of the points
stored at descendants of each node. This will let us find the
points within a query square that are larger than some query
index in 0(10g2 n) time. To maintain the range search trees
kinetically, we keep sorted lists of the x- and y-coordinates of
the points themselves, in addition to the sorted lists containing
the extremes of the squares on each level. A range tree can
be updated by deleting a point and re-inserting it in the right
place [5].

For the hierarchical algorithm, we need to maintain these
structures for each levle. In addition, we also need to insert
or delete a point to or from a level which is caused by an
event happening at a lower level. This requires the sorted
lists and range search trees used in the basic algorithm above
to be dynamic. These requirements can easily be satisfied by
maintaining balanced binary search trees and dynamic range
search trees.

5.2 Kinetic properties

This kinetic data structure has most of the properties of a
good KDS [4]. We assume the points have bounded-degree
algebraic motion in the following arguments.

To analyze the efficiency, i.e., the number of events, of our
algorithms, we first give some lower bound constructions.

Lemma 5.1 The number of changes of the optimal cover for
n points in motion is @(n3) in the worst case.

Proof. Consider the graph G in which each vertex represents
apoint and each edge joins a visible pair of points. Clearly, the
minimum discrete covering of the points is exactly the same
as the minimum dominating set of the graph. The graph can
change only when two points become or cease to be visible to
each other. For bounded degree algebraic motions, this can
happen only O(n?) times. For each such event, the change
to the minimum covering is at most O (n). Thus, in the worst
case, the number of changes is ond).

We now construct an example in which any optimal cover
must change © (n3) times. The construction uses 6m 6 static
points along the perimeter of a rectangle [0, R] x [0, 1.6],
where R = 0.4(3m+1). The left and right sides of the rectan-
gle have three points apiece, located at (0, 0.47) and (R, 0.4i)
for i = 1,2,3. The top and bottom sides of the rectangle
have 3m points apiece, located at (0.47, 0) and (0.4i, 1.6), for
i =1,...,3m. We label the points counter-clockwise from
0 to 6m + 5 as shown in Figure 4. In this configuration, each
point i can see the points i — 1, i + 1 (modulo 6m + 6) and no
other points. Thus, an optimal cover contains 2m + 2 centers
and can be realized in one of three ways by using points 3i,
3i 4+ 1, or 3i + 2, respectively, which we call type 0, 1, and
2, respectively. Clearly, to change from one type to another,
we need to make ® (m) changes to the cover.

Now consider what happens when a single point p moves
linearly along the x-axis. For any i, suppose that g; is the
middle point between the pair 3i +j, 3i+j+1,for0 < j < 2.
When p is located at ¢, the only points p can see are 3i + j
and 3i 4 j + 1. Thus, an optimal cover has to use either 3i + j
or 3i + j + 1 as a center. In other words, an optimal cover
has to be of type j or j + 1. It is easily verified that when
p moves from g to g, an optimal cover has to change its
type. Therefore, an optimal cover changes ® (m) times when
p moves from gg to g>. When p moves from (0, 0) to (R, 0),
the number of changes is © (m?). We repeat this procedure
by sending m points along the x-axis, passing through the
interval [0, R] one at a time. This causes a total of © (m?)
changes to optimal covers. The total number of points is
n = Tm + 6, so the total number of center changes is Om3).

Pe $0-=-0-=-0dncmmmmmoi0 =m0 -- O
: : 3m-3 3m-2 3mil

—
o

Figure 4: Lower bound for optimal coverings

k+1/m AAN AN

~— SIS
[N NN A N S

Figure 5: Lower bound approximate coverings

While the optimal cover in this construction changes €2 (n?)
times, a 2-approximate cover does not change at all—we can
simply use an optimal cover for the static points and assign

each moving point to be a center. However, in the follow-
ing, we will show that for any constant c, there is a set of
moving points that forces any c-approximate cover to change
Q(n?/c?) times.

Theorem 5.2 For any constant ¢ > 1, there exists a configu-
ration of n points moving linearly on the real line so that any
c-approximate cover undergoes Q (n®/c*) changes.

Proof. In the following, we assume that ¢ is an integer and
n = 2cm, where m > 2c is an integer. We group n points
into m groups, each containing 2¢ points. We label each
point by (i, j) where 0 < i < m is the group number, and
0 < j < 2c is the numbering within each group. Initially, all
the points in the i group are located at i - 2m, and the speed
of the point (i, j) is j -2m. To summarize, we consider points
p(, j, t) defined as p(i, j, t) = (i +jt)-2m,for0 <i < m,
0<j<2candt>0.

Whenever ¢+ = k + 1/m, for some integer k < m,
p@, j.t) = (+ jk+ j/m) -2m = 23 + jkym + 2j.
For any two distinct points (i, j) and (i’, j/), if i + jk #
i’ + j'k, then |p(, j, t) — p(i’, j',)| > 2m — 4c¢ > 2; if
i+ jk =i+ j'k,since (i, j) and (i’, j') are distinct, j/ # j
and |p(i, j,t) — p(@i’, j/,t)| = 2. Thus, at time 7, no two
points are within distance 1. In other words, any covering
has to have n centers (Figure 5).

On the other hand, at time r = k for an integer k < m, since
pQ, j, k) =G+ jk)-2m where 0 <i <m,0 < j < 2c,
and k < m, each point has position 2sm for some 0 < s <
m+2ck. Thatis, att = k, the minimum covering has at most
m+2ck centers (Figure 5). Thus, a c-approximate cover may
have at most c(m + 2ck) centers. Therefore, between times k
and k + 1/m, there are at least n — c(m + 2ck) = n/2 —2c*k
changes to any c-approximate covering. In total, for all 0 <
t < K, the number of changes is at least) _;_x(n/2 —
2¢%k) > Kn/2 — 2K>. Setting K = # < m, we have
established that the total number of changes is Q (n?/c?). O

Lemma 5.3 The number of events in our basic algorithm is
0 (n?).

Proof. Aneventis the failure of an ordering certificate in an x-
or y-sorted list of square side coordinates or point coordinates.
Since the points have bounded-degree algebraic motion, each
pair of points can cause O(1) certificate failures. a

Theorem 5.4 The number of events processed by our hier-
archical KDS is at most O (n®loglogn), and hence the KDS
is efficient.

Proof. We maintain x- and y-ordering certificates on each
of loglogn levels. As in Lemma 5.3, each pair of points can
cause O (1) certificate failures on each level. In addition, in
the hierarchical KDS, we need to consider the events caused
by maintaining the range search tree. Those events can hap-
pen when two points swap their x- or y-ordering. Such an

exchange requires possible updates of the range trees on all
levels where the exchanging pair is present. Again, there are
0((n?) exchange events at each level. o

Since the clustering stays fixed between the roughly
quadratically many kinetic events, the high-probability result
of Section 4 shows that, with high probability, the current
clustering will be a constant factor approximation of the op-
timum at every instant, throughout the entire motion history.

Lemma 5.5 For any bounded degree algebraic motion, the
algorithm maintains O (1)-approximate coverings through
the entire motion, with high probability.

We now proceed to examine the cost of processing the
kinetic events.

Theorem 5.6 The expected update cost for one event is
O(log>®n). Hence the KDS is responsive in an expected
sense.

Proof. When two points exchange in x- or y-order, only
the relevant range search trees need to be updated. We need
O (log? n) time to update each of lglg n range trees.

When two points p;, p; start/stop being mutually visible
at the bottom level of the hierarchy, we can update the centers
involved with p;, p; in 0(log2 n) time (we may need to search
for a replacement center in the range tree). One new center
may appear and one old center may disappear; these changes
bubble up the hierarchy.

On hierarchy levels above the bottom, we divide the
changes into two kinds, those caused by the motion of the
points in that level and those caused by insertion or deletion
of points bubbled up from lower levels. Lemma 5.3 shows
that the number of changes of the first kind is O (n?).

Let us consider the insertion of point p. The only points
that may change their centers are those in p’s visible range
S. We divide S into four quadrants S;, each with k; (i =
1,2, 3, 4) points. If there is some point in S; that nominates
p to be its center, the index of p must be bigger than the
indices of all the k; points. The probability of this occur-
ring is k,lﬁ Therefore, the expected number of point-center
changes caused by the appearance of p is at most

ok B ks
ki+1 k41 k3+1 k41 -7

Assuming that p becomes a center, how many centers does
it replace? For a given quadrant S;, suppose the number of
centers its points nominate is m; < k;. At most one of these
centers is inside S;. If m’ points are outside S;, the probability
that p replaces j of them is at most 1/(m’ + 1). Hence the
expected number of centers replaced in a single quadrant is
upper bounded by either

_ m; + 1
T2k + 1)

=<

1+~-~+m,~—1)

1 . 1
ki +1 m; 2’

if one of the centers is inside S;, or by

1 L+ +m\ mj - 1
ki +1 < m; + 1 >_2(ki+1) -2
if none of the centers is inside S;. Each replaced center may
stop being a center at this level of the hierarchy, if it is nom-
inated by no points outside S. Thus the expected number
of centers created/destroyed in this level (inserted/deleted
at higher levels) due to the appearance of p is at most
4x3+1=3.
We can make a similar argument for the disappearance of a
point. So the expected total number of point-center changes
at all levels of the hierarchy is at most

5 X (n23lglgn +n23lglgn—1++n2)

which is O (n23'218") ~ O (n?1g' 0 n).

Since insertion or deletion in a range search tree costs
O (log? n), the total expected update cost is O (log”n x 5 x
3leleny ~ 0 (log*0 n). O

Theorem 5.7 The kinetic data structure uses
O (nlognloglogn) storage, and hence it is compact.

Proof. Range trees take O (n log n) space per level. All other
data structures use less space. O

Theorem 5.8 Each point participates in at most O (loglogn)
ordering certificates; therefore, the KDS is local.

Proof. Each point participates in at most O (1) ordering cer-
tificates in each level. g

5.3 Distributed implementation

The hierarchical algorithm can also be implemented in a dis-
tributed manner, making it appropriate for a mobile network-
ing scenario. Each node broadcasts a ‘‘who is there’’ mes-
sage and waits for replies. Each point that hears the request
responds. The hierarchy can be implemented by having nodes
broadcast with different power for each level or by other local
positioning mechanisms. We emphasize that no global posi-
tioning information is needed. Therefore, each point keeps
track of its neighborhood within different size ranges. This
information is sufficient for each node to select a center for
each level. Each node needs to sense or be informed when
a neighbor enters or leaves any of its lglgn ranges. When
such an event happens, each node involved checks whether
it needs to update its center. When it nominates a center that
is not nominated by any other node, the center will also be
added to a higher level and may cause updates in that level.
If a node ceases to be pointed to by any node, then it also
has to be deleted from higher levels in the hierarchy. Clearly,
all of these operations can be done locally without central-
ized control. The total storage needed is O (sn), where s is
the maximum number of nodes inside a node’s range. In the
worst case, this can be @(nz), but in practice, s is often small.

6 Summary and future work

Our randomized hierarchical algorithm can easily be ex-
tended to higher dimensions. Most of the analysis for the
2-D case works for any dimension d, except that the con-
stant approximation factor depends exponentially on d. Our
algorithms can also be modified to deal efficiently with the
insertion or deletion of nodes.

This work also raises several open problems. Simple as
the distributed implementation is, it requires quadratic space
in the worst case when all the nodes are very close together.
Is there a distributed implementation with nearly linear total
space? In the standard KDS setting, on the other hand, where
we have nearly linear space, our center updating algorithm
exploits the fact that the ranges are aligned congruent squares.
Can we find a similar algorithm in a standard KDS setting
with congruent disk ranges instead? Finally, though we have
a high probability result, our algorithm is still randomized
and it would be interesting to find a deterministic algorithm
for the mobile centers problem.

We note that our algorithm clusters based solely on the po-
sitions of the mobile nodes. It would be interesting to develop
clustering strategies that utilize additional information about
the node motions, say both position and velocity. Such clus-
terings may be far more stable under motion, albeit they may
require more clusters. In fact a trade-off between the quality
and stability of a clustering needs to be investigated. Besides
clustering, numerous other problems for ad-hoc networks can
be studied in the same style as the clustering problem, includ-
ing network connectivity, route maintenance, node misbehav-
ior detection, etc.

We believe that kinetic clustering is a fundamental problem
for the organization of mobile devices and deserves further
study. Motion models and quality measures for different ap-
plication areas need to be developed further. We expect that
the ideas presented will find applications in other areas, such
as temporal data-bases, molecular modeling, and the large-
scale tracking of people or vehicles.

Acknowledgement

The authors wish to thank Michael Segal and Samir Khuller
for useful discussions. The work of J. Gao, L. Guibas, and
A. Zhu was supported in part by NSF grants CCR-9623851
and CCR-9910633, US Army MURI grant DAAH04-96-1-
0007 and AASERT grant DAAGS55-97-0218, and a grant from
the Stanford Networking Research Center.

References

[1] P.K.Agarwal,J. Basch, M. de Berg, L. J. Guibas, and J. Hersh-
berger. Lower bounds for kinetic planar subdivisions. In Proc.
15th ACM Symp. on Computational Geometry, pages 247-254,
1999.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh.
Max-Min D-cluster formation in wireless ad hoc networks. In
19th IEEE INFOCOM, March 1999.

S.Basagni. Distributed clustering for ad hoc networks. In Proc.
99’ International Symp. on Parallel Architectures, Algorithms,
and Networks (I-SPAN’99), pages 310-315, June 1999.

J. Basch, L. Guibas, and J. Hershberger. Data structures for
mobile data. J. Alg., 31(1):1-28, 1999.

J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on
moving points. In Proc. 13th Annu. ACM Sympos. Comput.
Geom., pages 344-351, 1997.

S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, and
M. Segal. Mobile facility location. In 4th International Work-
shop on Discrete Algorithms and Methods for Mobile Com-
puting & Communications, 2000.

C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered
multihop, mobile wireless networks with fading channel. In
Proceedings of IEEE SICON’97, pages 197-211, April 1997.

U. Feige. A threshold of In# for approximating set cover. In
ACM Symp. on Theory of Computing, 1996.

R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal
packing and covering in the plane are NP-complete. Inform.
Process. Lett., 12(3):133-137, 1981.

M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
New York, NY, 1979.

M. Gerla and J. Tsai. Multicluster, mobile, multimedia radio
network. ACM-Baltzer Journal of Wireless Networks, 1(3),
1995.

S. Guha and S. Khuller. Approximation algorithms for con-
nected dominating set. Algorithmica, 20:374-387, 1998.

L. J. Guibas. Kinetic data structures — a state of the art report.
In Proc. 3rd Workshop on Algorithmic Foundations of Robotics
(WAFR), pages 191-209, 1998.

J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, and
W. Allen. Bluetooth: Vision, goals, and architecture. Mo-
bile Computing and Communications Review, 2(4):38-45, Oct
1998.

D. S. Hochbaum and W. Maas. Approximation schemes for
covering and packing problems in image processing and VLSI.
J.ACM, 32:130-136, 1985.

H. B. Hunt, H. Marathe, V. Radhakrishnan, S. Ravi,
D. Rosenkrantz, and R. Stearns. NC-approximation schemes
for NP- and PSPACE-hard problems for geometric graphs.
Journal of Algorithms, 26(2), 1998.

S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In Proc. 6th Annual
International Conference on Mobile Computing and Network-
ing, pages 255-265, 2000.

F. P. Preparata and M. 1. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, New York, NY, 1985.

J. Sharony. An architecture for mobile radio networks with
dynamically changing topology using virtual subnets. ACM-
Baltzer Mobile Networks and Applications Journal, 1(1),
1996.

[20] J. H. van Lint and R. M. Wilson. A Course in Combinatorics.
Cambridge Press, 1992.

[21] J. Wu and H. Li. On calculating connected dominating set for
efficient routing in ad hoc wireless networks. In 3rd Inter-
national Workshop on Discrete Algorithms and Methods for
Mobile Computing & Communications, 1999.

10

