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Labeling schemes for flow and connectivity 
(Extended abstract) 

Michal Katz * Nir A. Katz  * Amos Korman t David Peleg t 

Abstract  

This paper studies labeling schemes for flow and connec- 
tivity hnct ions .  A flow labeling scheme using O(log n .  
log D)-bit labels is presented for general n-vertex graphs 
with maximum (integral) capacity ~. This is shown to 
be asymptotically optimal. For edge-connectivity, this 
yields a tight bound of O(log 2 n) bits. A k-vertex con- 
nectivity labeling scheme is then given for general n- 
vertex graphs using at most 3 log n bits for k -- 2, 5 log n 
bits for k = 3 and 2 k logn bits for k :> 3. Finally, a lower 
bound of f~(k log n) is established for k-vertex connec- 
tivity on n-vertex graphs where k is polylogarithmic in 
n. 

1 I n t r o d u c t i o n  

1.1 P r o b l e m  a n d  m o t i v a t i o n .  
Network representations play an extensive role in 

the areas of distributed computing and communication 
networks. Their goal is to cheaply store useful informa- 
tion about the network and make it readily and conve- 
niently accessible. This is particularly significant when 
the network is large and geographically dispersed, and 
information about its structure must be accessed from 
various local points in it. 

The current paper deals with a network representa- 
tion method based on assigning informative labels to the 
vertices of the network. In most traditional network rep- 
resentations, the names or identifiers given to the ver- 
tices contain no useful information, and they serve only 
as pointers to entries in the data structure, which forms 
a global representation of the network. In contrast, the 
labeling schemes studied here involve using more infor- 
mative and localized labels for the network vertices. The 
idea is to associate with each vertex a label selected in a 
such way, that  will allow us to infer information about 
any two vertices directly from their labels, without using 
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any additional information sources. Hence in essence, 
this method bases the entire representation on the set 
of labels alone. 

Obviously, labels of unrestricted size can be used to 
encode any desired information, including in particular 
the entire graph structure. Our focus is thus on informa- 
tive labeling schemes using relatively 8hortlabels (say, of 
length polylogarithmic in n). Labeling schemes of this 
type were developed in the past for different graph fam- 
ilies and for a variety information types, including ver- 
tex adjacency [3, 4, 11, 5], distance [16, 15, 10, 7, 13, 8], 
tree ancestry [1, 12, 2], and various other tree functions, 
such as center, least common ancestor, separation level 
or Steiner weight of a given subset of vertices [17]. See 
the survey [9]. 

The current paper studies informative labeling 
schemes for flow and connectivity problems. These 
types of information are useful in the decision making 
process required for various reservation-based routing 
and connection establishment mechanisms in communi- 
cation networks, in which it is desirable to have accu- 
rate information about the potential capacity of avail- 
able routes between any two given endpoints. 

1.2 Labe l ing  s c h e m e s .  
Let us first formalize the notion of informative 

labeling schemes. A vertex-labeling of the graph G is 
a function L assigning a label L(u) to each vertex u 
of G. A labeling scheme is composed of two major 
components. The  first is a marker algorithm A,t, which 
given a graph G, selects a label assignment L -- .M(G) 
for G. The second component  is a decoder algorithm D, 
which given a set of labels L = {L1 , . . . ,Lk} ,  returns 
a value D(L). The  time complexity of the decoder is 
required to be polynomial in its input size. 

Let ] be a function defined on sets of vertices in 
a graph. Given a family {~ of weighted graphs, an f 
labeling scheme for g is a marker-decoder pair (Adf, DI) 
with the following property. Consider any graph G E g, 
and let L = My(G)  be the vertex labeling assigned 
by the marker 3d I to G. Then for any set of vertices 
W = ( v l , . - . , v k }  in G, the value returned by the 
decoder D 1 on the set of labels L(W) -- {L(v] [ v e W} 
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satisfies :Df(L(W)) = f ( W ) .  
It is important to note that  the decoder :Dr, respon- 

sible of the f-computat ion,  is independent of G or of the 
number of vertices in it. Thus Z) t can be viewed as a 
method for computing f-values in a "distributed" fash- 
ion, given any set of labels and knowing that  the graph 
belongs to some specific family G. In particular, it must 
be  possible to define :D I as a constant size algorithm. In 
contrast,  the labels contain some information that can 
be precomputed by considering the whole graph struc- 
ture. 

For a labeling L for the graph G = (V,E),  
let tL(u)l denote the number of bits in the (binary) 
string L(u). Given a graph G and a marker algo- 
rithm .A4 which assigns the labeling L to G, denote 
£A4(G) = max~ev IL(u)l. For a finite graph fam- 
ily g,  set E2¢!(~) --- max{£A4(G) I G e ~}. Finally, 
given a function f and a graph family G, let 

f -( f ,  ~) : min{EA4(~) I 3T}, (A4, 2)) is an 

f labeling scheme for G }. 

1.3 F l o w  a n d  c o n n e c t i v i t y .  
In the current paper we focus on flow and connec- 

tivity labeling schemes. Let G be a weighted undirected 
graph G = (V,E,w) ,  where for every edge e E E, the 
weight w(e) represents the capacity of the edge. For 
two vertices u, v E V, the maximum flow possible be- 
tween them (in either direction), denoted f low(u ,v) ,  
is defined as follows. The maximum flow in a path 
p = (e l ,e%.. . ,e , ,~)  is the maximum value that  does 
not exceed the capacity of any edge in the path, i.e., 
f low(p)  ---- minz<~<r~{w(e~)}. A set of paths P in G is 
edge-disjoint if each edge e E E appears in no more than 
one path p E P .  The maximum flow in a set P of edge- 
disjoint paths is f l ow(P)  -- ~pepf low(p) .  Let ~ , , .  be 
the collection of all sets P of edge-disjoint paths between 
u and v. Then f low(u ,v)  ---- maxpep~. . { f low(P)} .  See 
Figure 1. 
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~'igure 1: A £apacitated graph G, and the (symmetric) flow 
between its vertices. 

As a special case of the flow function, the edge- 
connectivity e-conn(u ,w)  of two vertices u and w in 

a graph can he given an alternative definition as the 
maximum flow between the two vertices assuming each 
edge is assigned one capacity unit. 

A set of paths P connecting the vertices u and 
w in G is vertex-disjoint if each vertex except u and 
w appears in at  most one path p E P .  The vertex- 
connectivity v-cons(u ,  w) of two vertices u and w in an 
unweighted graph equals the cardinality of the largest 
set P of vertex-disjoint paths  connecting them. By 
Menger's theorem (cf. [6]), for nonadjacent  u and w, 
v-conn(u,  w) equals the minimum number of vertices in 
G \ {u, ~v} whose removal from G disconnects u from 
ay. (When a vertex is removed, all its incident edges are 
removed as well.) 

1.4 Our  results .  
In this paper we present a number of results con- 

cerning labeling schemes for maximum flow, edge- 
connectivity and vertex-connectivity. In Section 2 we 
present a flow labeling scheme for general graphs, with 
label size O(log n-log D) over n-vertex graphs with max- 
imum (integral) capacity ~b. The scheme relies on the 
fact that  the relation "x and y admit a flow of k or more" 
is an equivalence relation. In the full paper [14] we also 
establish the optimality of our flow labeling scheme by 
proving a tight lower bound of f~(logn,  log&) on the 
required label size for flow labeling schemes on the class 
of n-vertex trees with maximum capacity ~.  For edge- 
connectivity, this yields a tight bound of O(log 2 n). 

In comparison, vertex connectivity seems to require 
a more involved labeling scheme whose label size de- 
pends on the connectivity parameter  k. In Section 3 
we present a/c-vertex-connectivity labeling scheme for 
general n-vertex graphs. The label sizes we achieve are 
logn for k ~ 1, 31ogn for k -- 2, 51ogn for k -- 3 
and 2 ~ logn for k ~> 3. In Section 4 we present a lower 
bound of f~(k log n) for the required label size for k- 
vertex connectivity on general n-vertex graphs, where k 
is polylogarithmic in n. 

2 F l o w  l abe l i ng  s c h e m e s  fo r  g e n e r a l  g r a p h s  

In this section we consider the family ~(n,&) of undi- 
rected capa~itated connected n-vertex graphs with max- 
imum (integral) capacity O, and present a flow labeling 
scheme for this family with label size O( logn-  log&). 
Given a graph G = (V, E,  w) in this family and an inte- 
ger 1 _< k <_ &, let us define the following relation: 

We make use of the following easy to prove fact. 
(Throughout, some proofs are omitted.) 

LEMMA 2.1. The relation Rk is an equivalence relation. 

", fl ' 



929 

For every k > 1, the relation R~ induces a collection 
of equivalence classes on V, Cl= = {C~, . . . ,  C ~  k }, such 
that C~ N C~ = 0 and Ui C~ = V. Note that for k < k', 
the relation Rk, is a refinement of R~, namely, for every 
class C~, there is a class C~ such that C~, C C~. 

Given G, let us construct a tree Ta corresponding 
to its equivalence relations. The k'th level of T corre- 
sponds to the relation Rk, i.e., it has ma nodes, marked 
by the classes C~ , . . . ,  C ~  ~. In particular, the root of T 
is marked by the unique equivalence class of R1, which 
is V. The tree is truncated at a node once the equiva- 
lence class associated with it is a singleton. For every 
vertex v E G, denote by t(v) the leaf in Tc associated 
with the singleton set {v}. Figure 2 describes the tree 
TG corresponding to the flow equivalence classes for the 
graph G of Figure 1. 

T Level 
I 

2 

3 

4 

5 

6 

7 

Figure 2: The tree TG corresponding to the graph G of Figure i.  

For two nodes x, y in a tree T rooted at r, define the 
separation level of x and y, denoted SepLovelT(X , y), 
as the depth of z -- lca(x,y), the least common 
ancestor of x and y. I.e., SepLevelT(X , y) ---- distT(z, r), 
the distance of z from the root. As an immediate 
consequence of the construction, we have the foIlowing 
connection. 

LEMMA 2.2. Far every two vertices v ,w  E V, 
 1o o(v, = SepL,  Zr(t( ), + 1. 

It is proven in [17] that for the class T(n)  of n- 
node unweighted trees, there exists a SepLevel labeling 
scheme with O(log 2 n)-bit labels. (This is also shown 
to be optimal, in the sense that any such scheme must 
label some node of some n-node unweighted tree with 
an N(log 2 n)-bit label.) 

Observe that if the maximum capacity of any edge 
in the n-vertex graph G is &, then the depth of the 

tree TG cannot exceed & levels, and it may have at 
most n nodes per level, hence the total number of 
nodes in TG is O(n&). We immediately have that 

= OClod(  )). 
A more careful design of the tree Ta can improve 

the bound on the label size. This is achieved by 
canceling all nodes of degree 2 in the tree Ta, and 
adding appropriate edge weights. Specifically, a sub- 
path ( vo , v t , . . . , v k )  in Ta such that k > 2, v0 and vk 
have degree 3 ot higher, and v l , . . . , v k - 1  have degree 
2 (with v l , . . . , v k  all marked by the same set C) is 
compacted into a single edge (vo,v~) with weight k, 
eliminating the nodes v l , . . . ,  vk-1, and leaving the sets 
marking the remaining nodes unchanged. Let To denote 
the resulting compacted tree. Figure 3 describes the tree 
:TG corresponding to the tree TG of Figure 2. 

Figure 3: The compacted tree Ta  corresponding to the tree T G 
of Figure 2. 

The notion of separation level can be extended to 
weighted rooted trees in the natural way, by defining 
SepaeveLT(x , y) as the weighted depth of z = Ica(x, y), 
i.e., its weighted distance from the root. The upper 
and lower bounds presented in [17] regarding SepLevel  
labeling schemes for unweighted trees can also be ex- 
tended in a straightforward manner to weighted trees, 
yielding SepLevel labeling schemes for the class T(fi, D) 
of weighted ~-node trees with maximum weight ~ using 
O(log fi log 5~ + log 2 ~)-bit labels. 

It is also easy to verify that for two nodes x, y in G, 
the separation level of the leaves t(x) and t(y) associated 
with x and y in the tree ~'a is still related to the flow 
between the two vertices as characterized in Lemma 2.2. 

Finally, note that as To has exactly n leaves, and 
every non-leaf node in it has at least two children, the 
total number of nodes in Tc is fi < 2n - 1. Moreover, 
the maximum edge weight in Tq is D <_ &. 

Combining the above observations, we have the 
following. 
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THEOREM 2.1. £(flow,~.7(n, co)) = O(logn • logco + 
log 9" n). II 

The above theorem immediately yields the following 
upper bound for edge-connectivity. Let G(n) denote the 
class of n-vertex unweighted graphs. 

COROLLARY 2.1. £(e-conn,  g(n))  = O(log 2 n). II 

Finally we give a lower bound of f l( logn - logo0) 
on the label size for flow on the class T(n,CO) of n_ 
vertex trees with maximum edge capacity CO (which is 
assumed to be integral). The proof idea is based on a 
modification of the lower bound proof of [10] for distance 
labeling schemes, and is omitted from this extended 
abstract (see [14]). 

THEOREM 2.2. For CO > log(n + 1) -- 1, 
£( low, rCn, co)) = n(lognlog,2), i 

COROLLARY 2.2. L:(e-conn, Q(n)) ----- O(log 2 n). | 

3 V e r t e x - c o n n e c t i v i t y  l a b e l i n g  schemes  for  
g e n e r a l  g r a p h s  

In this section we turn to k-vertex-connectivity, and 
present a labeling scheme for general n-vertex graphs. 
The label sizes we achieve are log n for k = 1, 3 log n for 
k = 2, 51ogn for k = 3 and 2klogn for k > 3. 

3.1 P r e l i m i n a r i e s .  
We start with some preliminary definitions. In an 

undirected graph G, two vertices are called k-connected 
if there exist at least k vertex-disjoint paths between 
them. A set S C V separates u from v in G = (V, E) if u 
and v are not connected in the vertex induced subgraph 
G \ S .  

THEOREM 3.1. [Menger]  (eft [6]) In an undirected 
graph G, two nonadjacent vertices u and v are k- 
connected iff no set S C a \ {u, v} of k - 1 vertices 
can separate u from v in G. 

The k-connectivity graph of G = (V, E) is C~(G) = 
(V, E ') ,  where (u, v) 6 E '  iff u and v axe k-connected 
in G. A graph G is closed under k-connectivity if it has 
the property that  if u and v are k-connected in G then 
they are neighbors in G. Let C(k) be the family of all 
graphs G which are closed under k-connectivity. 

OBSERVATION 3.1. 1. /~ G 6 C(k) then each con- 
nected component of G belongs to C(k). 

9. I IG = H U F  where H , F  6 C(k) are vertex-disjoint 
subgraphs of G, then G 6 C(k). 

A graph G is called k-orientable if there exists an 
orientation of the edges such that  the out-degree of each 
vertex is bounded above by k. The class of k-orientable 
graphs is denoted Jo~(k). 

OBSERVATION 3.2.  I f  G = H U F where H, F 6 Jo~(k) 
are vertem-disjoint subgraphs of G, then G 6 Jo,(k). 

LEMMA 3.1. Let G' = (V,E') ~uhere E' = EU {(u,v)} 
for some pair of k-connected vertices u and v. Then 
G and G' have the same k-connectivity graph, i.e., 
Ok(G) = Ck(G'). 

Proof: Use induction on k. For k=l the Lemma is 
obvious. Assume the Lemma is true for k -  1. It suffices 
to show tha t  if two vertices w,w' axe not k-connected in 
G then they axe not k-connected in G'. Suppose that  
w,w' are not k-connected in G. If w,¢0' are neighbors in 
G then let G- = G \ {u,v}. In G - ,  w and w' are not 
k - 1-connected and since u and v are k - 1 connected 
in G -  , by induction hypothesis w and w' are not k - 1- 
connected in G' \ {u, v}. This implies that  they are not 
k connected in G' as desired. If w,w' axe not neighbors 
in G then by Menger's theorem there exists a set of 
vertices S = { x x , x ~ , . . . , x ~ - i }  that  separates w from 
w' in G. We claim that  S separates w from w' also in 
G'. The proof breaks into the following cases. 

• C a s e  1: One or more of t h e x ~ ' s i s  u o r  v. Then 
G\S=G'\S. 

• C a s e  2:  None of the xi 's is u or v. If u and v 
belong to the same connectivity component of G \ S 
then the connectivity components of G' \ S will be 
the same as the connectivity components of G \ S, 
implying that  S separates w from w' also in G', 
which is what  we wanted to prove. If u and v belong 
to different connectivity components of G \ S then 
S separates u from v in G, or in other words, u 
and v are not k-connected in G, contradicting our 
assumption. | 

COROLLARY 3.1. For every graph G, If  u and v are k- 
connected in C~(G) then they are neighbors in C~(G), 
i.e., Ck(G) c(k). 

Proof: Transform a given graph G into G+ = GUCk(G) 
by adding the edges of C~(G) to G, one by one. By 
induction on the steps of this process using the previous 
Lemma, we get Uk(G +) -- Ck(G). Therefore if u 
and v were k-connected in C~(G) then they are k- 
connected in G + and therefore they are neighbors in 
C~(g +) = Ok(G). | 

For a connectivity component C of C~(G), a left- 
most BFS tree for C, denoted T(C, k), is a BFS tree 
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spanning C, constructed in the following way. Take 
a vertex r from C to  be the root of T(C,k). Let 
level(r) = 1. Assume we constructed i levels of T(C, k) 
and haven't used all vertices of C. Construct the 
(i + 1)'st level of T(C, k) as follows. Repeatedly take 
a vertex v of level i and connect it to all the vertices 
adjacent to it in Ck(G) that haven't been included so 
far in the tree construction. For each such new vertex w 
let level(w) = i + 1 and let v be w's parent in T(C, k). 

When the context is clear we use the notation T 
instead of T(C, k). 

For T = TiC, k), we make the following definitions. 
Let Wi denote the set of vertices of level i in T, and let 
Hi = HI(C, k) = (Wi, E~) be the subgraph of C induced 
by Wi. For vertices u and v, denote Cs parent in T 
by p(u) and let lca(u, v) be the highest level common 
ancestor of both u and v in T. Let W/'+I denote the set 
of vertices of Wi+l that neighbor at least k vertices of 
Wi in C~(G). Let Fi = F~(C, k) be the subgraph of C 
induced by Wi u W~+ 1 . 

LEMMA 3.2. 1. For T = T ( C ,  k),  H~ e C(k - 1). 

2. For T = T(C, k), Fi E C(k - 1). 

Proof :  To prove (1), we show that every two vertices 
u,v E Wi that are ( k -  1)-connected in Hi, are 
neighbors in Ck(G) and therefore in Hi, implying Hi 
C ( k -  1). Assume, for contradiction, that u and v are 
not neighbors in C~(G). By Corollary 3.1 they are 
also not k-connected in C~(G), i.e., there exists a set 
S --- {x t , . . .  ,xk- l}  that separates them in Ck(G). Let 
S' = S N Wi. Since S t separates u from v in Hi and 
since u and v are (k - 1)-connected in Hi we get that  
ISq = k - 1 hence S ~ = S, so all the vertices in S must 
be of level i. But then, S does not separate u from v 
even in T, which is a subgraph of Ca(G), contradicting 
our assumption. 

Turning to (2), let u and v be (k - 1)-connected 
in Fi. As before, it suffices to show that they are 
neighbors in C~(G). Assume for contradiction that u 
and v are not neighbors in Ck(G) therefore they are 
also not k-connected in Ca(G), i.e., there exists a set 
S = {x l , . . .  ,X~-l} that  separates them in Ca(G). Since 
S ~ = 5' N Fi separates u from v in Fi and since u and 
v are ( k -  1)-connected in F~ we get, as before, that all 
the vertices of S must belong to F~. 

• Case 1: Both u and v are of level i. In this case, 
as before, S does not separate u from v even in 
T, which is a subgraph of Ck(G), contradicting our 
assumption. 

• Case  2: Without loss of generality u is of level i, 
v is of level i + 1 and v has at least k neighbors 

in Ce(G) of level i. In this case, v has at  least one 
neighbor w of level i in C~ (G)\  S. Since all vertices 
of S are in Fi, w and u are connected in C~(G) \ S 
via the edges of T. Altogether we get that  u and 
v are connected in Ck(G) \ S, contradicting our 
assumption. | 

3.2 O v e r v i e w  o f  the  s cheme .  
We rely on the basic observation that  labeling k- 

connectivity for some graph G is equivalent to labeling 
adjacencies for Ck(G). By Corollary 3.1, Ck(G) E C(k). 
Therefore, instead of presenting a k-connectivity label- 
ing scheme for general graphs, we present an adjacency 
labeling scheme for the graphs of C(k). 

The general idea used for labeling adjacencies for 
some G E C(k), especially for k > 3, is to decompose G 
into at most 3 'simpler' graphs. One of these graphs is 
a k-orientable graph K, and the other two, called G~,e, 
and Goad, belong to C(k-  1). The labeling algorithm for 
G E C(k) recursively labels subgraphs of G that  belong 
to C(t) for t < k. When we are concerned with labeling 
some n-vertex graph G E C(k) for k > 1, the first step 
in the labeling is to assign each vertex u in G a distinct 
identity id(u) from 1 to n. This identity will always 
appear as the last log n bits of the label L(G, u). Thus, 
when labeling the subgraphs of G in the recursion we 
may assume that the id's for the vertices are given. 

For graphs G = <V,E} and Gi = (V~,Ei), i > 1, we 
say that  G can be decomposed into the Gi's if Ui V~ = V, 
lJiEi = E and the Ei's are pairwise disjoint. 

LEMMA 3.3. Let G, GI andS2 be families of graphs such 
that each G ~ G can be decomposed into Gl E Gt and 
G2 e ~2. If  gl and G2 have adjacency labeling schemes 
of sizes ll and 12 respectively, then G has adjacency 
labeling scheme of size 11 + 12. 

Proof :  The general idea in the proof is to use 
concatenation of the labels of the decomposed graphs. 
Let (A4i, :Di) be adjacency labeling schemes for Gi (i -- 
1, 2). Let us construct an adjacency labeling scheme 
(Ad, ~D) for g as follows. 
T h e  m a r k e r  a l g o r i t h m  A4 for  G: For a given graph 
G 6 ~, decompose G into Gi 6 Gi (i = 1,2). Let 
Li = A/ti(Gi) for i=1,2. We construct L = A/I(G) as 
follows. For a vertex u in G, let L(u) = (Lt(u),L2(u)) 
where the first 11 bits of the label L(u) consist of LI (u) 
and the next l~ bits give L~(u). Altogether we use ll +12 
bits. 
T h e  d e c o d e r  a l g o r i t h m  l) for ~: Let G, G1 
and G2 be as before. Given the two labels 
L(u) = (LI(u),L2(u)) and L(v) "-- (LI(v),L2(v)) let 
~( L(u), L(v) ) = ~)l ( Ll (u), Ll (v) ) V Z)2( L2(u), L2(v) ). 



932 

Since G was decomposed into G1, G2 the vertices u 
and v axe neighbors in G iff they axe neighbors in G1 or 
in G2, hence the decoding algorithm is correct. II 

COROLLARY 3.2. Let ~,~1, ...,~,n be families of graph 
such that each G E ~ can be decomposed into G1, ..., G,~ 
were Gi E ~ for i = 1 to m.  If  the ~ 's have adjacency 
labeling schemes of sizes li respectively, then ~ has an 
adjacency labeling scheme of size ~ li. 

LEMMA 3.4. Let fin(k) be the family of n-vertex graphs 
in ffo~(k). Assuming id's are given, 
/ : ( ad jacency ,  Jn(k)) <__ k logn .  

P r o o f :  Suppose G e fin(k) then G is a k-orientable 
graph with n vertices. Hence there exists an orientation 
to the edges of G such that  the out-degree of each 
vertex is bounded above by k. In this orientation, 
for each u there exist at most k outgoing edges, say 
(u, vl),(u,v~),..., (u, vt), for t < k. 
T h e  m a r k e r  a l g o r i t h m  A4 for  Jn(k) :  Label u by 
L(u) = (id(Vl), id(vg), ..., id(vt)), i.e., use the first log n 
bits to write id(vl), the second logn bits to write id(vv), 
etc. Hence, for every u's, the size of L(u) is at most 
k log n bits. 
T h e  d e c o d e r  a l g o r i t h m  :D for  fin(k): Given L(u) 
and L(v),  check whether u 's  id appears in L(v), by 
inspecting each block of log n bits in L(v) separately. 
Analogously, check if o's id appears in L(u). 
As u and v are neighbors in G iff one of the two cases 
applies, the decoding algorithm is correct. | 

To illustrate the approach, we precede the treat- 
ment of the general case with a discussion of the cases 
k = 1,2,3,  for which slightly bet ter  schemes are avail- 
able. The simple case of k = 1 is handled in Section 
3.2.1. For k = 2 we show in Section 3.2.2 that  a con- 
nected graph G e C(2) can be decomposed into a tree 
and disjoint graphs in C(1). Graphs in C(1) axe collec- 
tions of cliques. It  follows that  each G E C(2) can be 
decomposed into a forest (which is a 1-orientable graph) 
and a graph made of disjoint cliques. For k = 3 we show 
in Section 3.2.3 that  a connected graph G E C(3) can 
be decomposed into a graph in C(2) and a 2-orientable 
graph. 

3.2,1 A 1-connectivity labeling scheme. 
Let us give a labeling scheme for l-connecti'dty for 

~n, the family of all n-vertex graphs. 
The marker algorithm J~4 for Gn: Fix G = 
iV, E) E Go- To each connected component C of G as- 
sign a distinct identity id(C) from the range { 1 , . . . ,  n}. 
For a vertex ~ E V, let C~ be the connected compo- 
nent of G that  u belongs to. The marker algorithm sets 
L(u) = id(C,,). 

T h e  D e c o d e r  7) for  g , :  Let D(L(u),L(v))  = 1 iff 
L(u) = L(v). 

Clearly u and v axe 1-connected in G iff they are 
in the same connected component, hence the decoder's 
response is correct. The size of the label is bounded 
above by log n. 

THEOREM 3.2. /~(1 - v - c o n n , ~ , )  _< logn.  II 

3.2.2 A 2 -connec t iv i ty  labe l ing  scheme .  
As explained earlier, labeling 2-connectivity for a 

family of graphs G is equivalent to labeling adjacencies 
for the family {C2(G) : G E G} _C C(2). In this section 
we present an efficient adjacency labeling scheme for 
C(2). 

Consider a graph G E C(2) mad let Ct, . . . ,Cm 
be its connected components. By  Observation 3.1(1/ 
C~ E C(2) for every i. Fix i and let T = T(Gi, 21. 

CLAIM 3.1. The only neighbor of u in G which has a 
strictly lower level than u in T is p(u). 

Proof ' .  Suppose, for contradiction, tha t  there exist 
neighbors v and w such that  level(w) > level(v) but  
v is not p(w) in T. In this case, w and z = Ice(v, w) 
are 2-connected in T D {(% w)}, which is a subgraph of 
G. Since G e C(2), v must be a neighbor of w. Since 
level(w) < level(u) - 1 we get a contradiction to the 
way T was constructed. | 

CLAIM 3.2. G ~ C(2) can be decomposed into a forest 
F and a graph H of disjoint cliques. 

P r o o f :  Fix a connected component C/ of G and let 
T = T(Ci ,2) .  Since, by Lemma 3.2(I), each Hi ,  
subgraph of Ci induced by level j of T,  is in C(1), i t  
follows that H j  is a collection of disjoint cliques. Hence 
G can be decomposed into a forest F and a graph of 
disjoint cliques, H composed of the collection of all the 
H j  from all i 's and j ' s .  | 

Let Cn(2) be  the family n-vertex graphs in C(2). Let 
us now give an adjacency labeling scheme for the graphs 
of c.(2). 
T h e  m a r k e r  a l g o r i t h m  Ad for  C,~(2): Decompose G 
into F and H as in Claim 3.2. Fix a vertex u of G. Let  
p(u) be u's parent in F .  To each clique C in H give a 
distinct identity from the range {1 , . . .  ,n}, id(C). Let 
C(u) be the clique in H that  contains u. 

The marker algorithm for G assigns L(u) = 
(id(c(u), id(p(u)), id(u)). As before we use the first log n 
bits for id(c(u)) the second logn bits for id(p(u)) etc. 
The label size is bounded above by 31ogn. 
T h e  D e c o d e r  T) for  Cn(2): Given L(u) and L(v) we 
compare id(p(u)) with id(v) and id(p(v)) with id(u) to 
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check whether one is the parent of the other in the forest 
F.  We also check if id(C(u)) = id(C(v)) to see whether 
u and v are neighbors in H. We do this by looking at the 
corresponding bits in the label, for example, id(p(u)) 
is written in the second block of log n bits of L(u). 
Let D(L(u),LCv)) -- 1 iff either id(C(u)) = id(C(v)), 

= id( ) i d ( p ( v ) )  = i d (u ) .  
Clearly, u and v are neighbors in G iff they axe 

neighbors in F or in H, hence the decoder's response is 
correct. We get the following. 

THEOREM 3.3. Let ~ ,  be the .family o] n-vertex graphs 
then £(2 - v-corm, g,~) < 31ogn bits. 

3.2.3 A 3-connec t lv i ty  label ing scheme.  
Again, labeling 3-connectivity for a family Q 

is equivalent to labeling adjacencies for the family 
{C3 (G) : G E G} C C(3). In this section we show how 
to label adjacencies for C(3). 

Consider a graph G E C(3), and let C~,...,C,~ 
be its connected components. By observation 3.1(1), 
C, E C(3) for all i. Fix i and let T : T(C~, 3). 

LEMMA 3.5. Each vertex u has at most one neighbor 
of G ~hich has a strictly Zoner ~evel than u in T apart 
# o r e  p(  u ) . 

Proof :  Assume, for contradiction, that there exist a 
vertex u with two neighbors in G, v and w, both with 
a strictly lower level than u and both different from 
p(u). In this case, u must be 3-connected in G to 
either lca(u,v), lca(u,w) or lca(v,w). However, the 
levels of lca(u,v), Ica(u,w), lca(v,w) are all smaller 
than level(u) - 1, and since G e C(3), u is adjacent to 
one of them, contradicting the way T was constructed. 
(See Fig. 4.) II 

Figure 4: An illustration to the contradiction in the proof of Lemma 
3.5. 

LEMMA 3.6. E a c h  G G C(3) can be decomposed into a 
graph H E C(2) and a 2-orientable graph. 

Proofi  First, it suffices to show the lemma for con- 
nected graphs C E C(3), since by Observations 3.1(2) 
and 3.2 C(2) and Jot(2) are closed under vertex-disjoint 
unions. Consider a connected graph C E (:(3) and let 
T = T(C,3). By Lemma 3.2(1), each subgraph Hj of 
C induced by the vertices of level j in T, is in (:(2). All 
the subgraphs Hj are vertex-disjoint, hence by letting 
H be the union of all the Hj ,  we get H E C(2). Let 
U be the graph C after deleting the edges of H. By 
Lemma 3.5, each vertex u of U has at most 2 neighbors 
of a strictly lower level Cone of which is u's parent in 
T). Hence directing the edges of U from higher level 
vertices to lower level vertices, each u has out-degree at 
most 2, i.e., U is 2-orientable. | 

By Lemmas 3.3 and 3.4 and from Theorem 3.3 we 
get the following theorem. 

THEOREM 3.4. Let G, be the ]amily o] n-vertex graphs, 
then L ( 3 -  v-cona,~,,)  < 51ogn bits. 

3.3 A k -connec t iv i ty  l abe l ing  scheme .  
Finally, labeling k-connectivity for a family 

is equivalent to labeling adjacencies for the family 
{Ck(G) : G e G} • C(k). In this section we show how 
to label adjacencies for C(k). 

Consider a graph G E C(k), and let C1, ..., C,, 
be its connected components. By observation 3.1(1), 
C~ e C(k) for all i. Fix i and let T --- T(C~, k). 

LEMMA 3.7. Each G E C(k) can be decomposed into 
two graphs in C(k - 1) and a (k - 1)-orientable graph. 

Proof :  Again, it suffices to prove the lemma for con- 
nected graphs C E C(k) since by Observations 3.1(2) 
and 3.2 both C(k-1)  and Jot(k) are closed under vertex- 
disjoint unions. Consider a connected graph C E C(k) 
and let T --- T(C, k). 

All the Fi's for odd i's axe vertex-disjoint, and 
Fi E C(k - 1) for all i's by Lemma 3.2(2). Therefore, by 
letting Godd be the union of all the F~'s for odd i's, we 
get Godd E C(k - 1). For the same reasoning, by letting 
G ~ , ,  be the union of all the F~'s for even i's, we get 
Ge~e, e C(k - 1). 

Let K be the graph C after omitting the edges of 
Goaa and Ge~,  (or equivalently, omitting all edges of 
all the Fi's). The proof is completed once we show 
that K is ( k -  1)-orientable. Since all edges (u, v) of 
C such that level(u) = level(v) = i for some i axe in 
Fi for the appropriate i, if (u, v) is an edge of K then 
level(u) ~ level(v). By the way T was constructed, the 
difference between the levels is 1. 

Let us direct the edges of K from higher level ver- 
tices to lower level vertices. Assume, for contradiction, 
that for some u and some i, level(u) = i + 1 and the 
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out-degree of u in K is at  least k. Then u must have 
at least k neighbors of level i in C, in which case all 
edges (u, v) for v such that  level(v) = i appear in Fi 
and therefore not in K.  Therefore, the out-degree of u 
in K is 0, contradicting our assumption. | 

Before stating and proving the next theorem, let us 
remark that we can get a weaker upper bound of 36 log n 
label size for £ ( a d j  acency,  C.(k)) in the following way. 
Use induction on k. For k - 1 ,2,3 our remark holds. 
For k > 3 fix k and assume that the remark holds for 
k - 1. The remaxk fo~ k follows from Lemmas 3.4 and 
3.7 and Corollary 3.2. 

To prove the next theorem, we show that  instead of 
concatenating u's labels in the three decomposed graphs 
(Godd, G~ven, I¢;), it sui]~ees to give u its label in only two 
of the three decomposed graphs. This yields the desired 
26 log n bits bound on £ ( a d j  acency,  C,(k)). 

THEOREM 3.5. Let C,(k) be the family of n-vertex 
graphs in C(k), then 

/ : ( ad jacency ,  Cn(]~)) _< 2 6 logn. 

P r o o f i  Use induction on k. For k = l ,  2 or 3 the theorem 
holds as seen in Theorems 3.2, 3.3 and 3.4. For k :> 3, 
fix k and assume that  the Theorem holds for k - 1. 
Consider a graph G q C~(k). For a vertex u in G, let C 
be its connected component in G, let T --- T(C, k) and 
let ~ = level(u). Let us now give a labeling scheme for 
adjacency on G 6 C(k). 
T h e  m a r k e r  a l g o r i t h m  J%46 for  C(k): For t < k, 
G 6 C~(t) and u, a vertex of G, denote the adjacency 
labeling on G by Lt(G) and u's label by L~(G, u). Let 
G 6 C,(k) and let u be a vertex in G. we define State(u) 
according to the following three cases: 

C a s e  1: u participates in both Goad and G~ ,n .  
Let State(u) = Dual. 

Note that  in this case the out-degree of u in K 
is 0. The marker algorithm assigns to u the 
label Lk(G,u) = (Lk-l(Godd,U),Lk-l(G~,~n,u)) 
where the first 2~-~logn bits axe ~ese~ved for 
L6-,(Goaa, u) and the last 26-* logn  bits are re~ 
served for L~_~ (G~,,,,, u). 

C a s e  2: u doesn't  paxticipate in Goad, 
i.e., u participates only in G~e,, and in 
K .  Let State(u) = Even. Let Lk(G,u) = 
(0 ~ log , ,  10, L(  u,  K )  , 00...000, L6-, ( G . ~ , .  , u ) ) 
where the two bits in the second field, 10, indicate 
that  State(u) -- Even. the next k logn bits axe 
reserved for L(u, K)  and the last 2 k-1 log n bits 
are reserved for L6-1 (G¢~¢,, u). 

• C a s e  3: u doesn' t  participate in G~.e,,  
i.e., u participates only in Goad and in K.  
Let State(u) -- Odd. Let Lk(G,u) = 
(0 al°g", 11, L(u, K), 00...00, LK-l(Godd, u)) where 
the two bits in the second field, 11, indicate that  
State(u) - Odd, the next k log n bits axe reserved 
for L(u, K) and the last 2 k-1 log n bits are reserved 
for LK-I(Godd,U). 

By the definition of K ,  it is clear that  the out-degree 
of some u in K is higher than 0 iff State(u) = Even or 
Odd. 
T h e  D e c o d e r  /)k fo r  C(k): For t _< k denote the 
decoder for C(t) by / )~ .  Denote  the decoder for ffo~(k) 
(from Lemma 3.4) by :Do~. Given Lk(G, u) and L~(G,v) 
we will first want to know the states of u and v. Take for 
example L6(G,u). For k > 3, the first k l o g n  bits are 0 
iff State(u) ~ Dual. So by looking at the first k l o g n + 2  
bits of L~(G,u) and L6(G,v) we know the states of u 
and v. Consider the following cases: 

• C a s e  a: State(u) = State(v) : Dual: Then I)6 for 
G u s e s  ~)k--I On G¢ue. and Goad as follows. 

96(Lk(G, u), Lk(G, v)) = 

(Z)k-1 (L6-1 (Goad, U), Lk-1 (Goad, V))) V 

(l)k_I(L6_l(G,,~,,,, u), Lk-I(G,,,,,,, v) )) 

• C a s e  b: State(u) = State(v) = Even: Then :D6 for 
G uses D6- ,  on Gcv~,~ and T>o~ for K as follows. 

D~(Lk.(G, u), Lk (O, v)) = 

z)o~(L(u, ~), L(~, ~)) v 
'/:)~-I (Lk-1 ( G ~ e , ,  u), Lk-1 (Ge,,.,.,, v)) 

• C a s e  c: State(u) = State(v) = Odd: Then :Dk for 
G uses ~)6-1 o n  Goad and 7)o~ for K a.s follows. 

7)k(Lk(G, u),Lk(G, v) ) = 
l)o,(L(u, K), L(v, K)) V 
T)k-x ( Lk- l  ( Godd, U), L6-l ( Goda, V) ) 

• C a s e  d:  S t a t e ( u )  = Dual, State(v) -- Even: 
Then let 79k(L~(G,u),Lk(G,v)) = 1 f f  and only i f  
D ~ - ~ ( L k - l ( G . . . ~ , u ) , L k - l ( G . ~ . . , v ) )  = I or id(u)  
appears in L(v ,  K ) .  

• C a s e  e: S t a t e ( u )  = Dua l ,  S ta te (v )  = Odd: 
Then let I~k(Lj,(G,u),L~(G,v)) = 1 if and only 
if ~)1~-1 (Lk-I  (Goad, U), Lk-1 (Goad, v)) ---- 1 or id(u) 
appears ia L(v, K). 

• C a s e  f: S t a t e ( u )  = Even, S t a t e ( v )  = Odd: Then 

:Dk(Lk(G, u), Lk(G, v)) - :Do~(L(u, K), L(v, K)) 
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To prove correctness, use induction on k. If u and 
v are neighbors of level i then the edge (u, v) appears 
in Fi and therefore u and v participate both in either 
Goad or in G~,~  depending on the parity of i. Thus, 
by comparing the appropriate labels, say Lk-l(Goda, u) 
and Lk-t(G,,ad, v), we can deduce that u and v are 
indeed neighbors by the induction hypothesis. 

If u and v are neighbors, u is of level i and v of 
level i + 1, then the edge (u, v) either appears in Fi and 
State(v) = Dual or it appears in K and State(v) = Even 
or Odd. Thus, if (v, u) is in F, then if i is even then 
both vertices participate in G ~ , ,  and if i is odd then 
both vertices participate in Goda. By comparing the 
appropriate labels o fu  and v (either their L ( k - 1 ,  G,~, ,)  
label or their L(k  - 1,Goda) label and by induction 
hypothesis we are able to deduce that u and v are indeed 
neighbors. 

If State(v) = Even or Odd, then the edge (v, u) is in 
K so by looking at L ( v , K )  in Lk(G,v)  and detecting 
id(u) appearing there we conclude that u and v are 
indeed neighbors. 

It is clear that if u and v are not neighbors in 
G then they are not neighbors in either one of the 
decomposed subgraphs, and therefore, by induction 
hypothesis we can never deduce that they are neighbors 
by our procedure. 

The size of the label Lk(G,u)  is, by induction, at 
most 2~logn since by Lemma 3.4, the size of L ( v , K )  
is at most k logn  and both sizes of Lk-l(Godd,U) and 
Lk-l(Ge~,~,u)  axe at most 2 a-1 logn. | 

We get the following corollary. 

COROLLARY 3.3. Let ~,~ be the family of n-vertex 
graphs, then £.(k - v-coma, G~) _< 2 k logn. 

4 A lower b o u n d  for ve r t ex  connec t i v i t y  on 
genera l  g raphs  

In this section we establish a lower bound of f~(k log n) 
on the required label size for k-vertex connectivity on 
the class of n-vertex graphs where k is polylogaxithmic 
in n. Fix a constant integer c :> 1, assume that  
k < logan and let ~7,~ be the class of all m = 2 - ~ "  

vertex graphs (V,E)  with fixed id's {e l , . . .  ,v,,~} and 
degree at most k - 1. Transform a given graph G E G,~ 
into a graph T(G)  = H with n vertices in the following 
way. Replace each edge ei,j = (vi, vi) in G by k vertices 
w .x . through w~,j and connect all the w! .'s to both v~ 

%.7 %3 
and v i .  Since G has at most ~ edges, H has at most n 
vertices. If necessary, add arbitrary isolated vertices to 
H so that it has precisely n vertices. 

OBSERVATION 4.1. Two vertices vi ,vj  are adjacent in 
G iff u and v are k-vertex-connected in T(G)  = H. 

Assume we have a labeling scheme (.M, 79) for k-vertex 
connectivity on n-vertex graphs. 

OBSERVATION 4.2. Consider two distinct graphs 
GI , G2 E ~,n , and let L~ = .lvl ( T (  G i ) ) for i = 1, 2. Then 
there exists a vertex v i in V such that Ll  (vj) ¢ L2(vj), 
i.e., # 

t m )a(km) Since the number of graphs in ~,, is ~-~ 
which is rn n(k'0 for k polylogarithmic in n, we get the 
following corollary. 

COROLLARY 4.1. There exists a graph G 6 g(k)  
such that {L (v t ) , . . . , L ( v ,~ ) }  consists of at least 
log m n(~'~) - ~ ( k m  log m) bits where L = A4( G). 

We get the following theorem. 

THEOREM 4.1. £ ( k -  v-conn,~.) = ~2(klogm) = 
D(klogn) for k polylogarithmic in n. 
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