
927

Labeling schemes for flow and connectivity
(Extended abstract)

Michal Katz * Nir A. Katz * Amos Korman t David Peleg t

Abstract

This paper studies labeling schemes for flow and connec-
tivity hnct ions . A flow labeling scheme using O(log n .
log D)-bit labels is presented for general n-vertex graphs
with maximum (integral) capacity ~. This is shown to
be asymptotically optimal. For edge-connectivity, this
yields a tight bound of O(log 2 n) bits. A k-vertex con-
nectivity labeling scheme is then given for general n-
vertex graphs using at most 3 log n bits for k -- 2, 5 log n
bits for k = 3 and 2 k logn bits for k :> 3. Finally, a lower
bound of f~(k log n) is established for k-vertex connec-
tivity on n-vertex graphs where k is polylogarithmic in
n.

1 I n t r o d u c t i o n

1.1 P r o b l e m a n d m o t i v a t i o n .
Network representations play an extensive role in

the areas of distributed computing and communication
networks. Their goal is to cheaply store useful informa-
tion about the network and make it readily and conve-
niently accessible. This is particularly significant when
the network is large and geographically dispersed, and
information about its structure must be accessed from
various local points in it.

The current paper deals with a network representa-
tion method based on assigning informative labels to the
vertices of the network. In most traditional network rep-
resentations, the names or identifiers given to the ver-
tices contain no useful information, and they serve only
as pointers to entries in the data structure, which forms
a global representation of the network. In contrast, the
labeling schemes studied here involve using more infor-
mative and localized labels for the network vertices. The
idea is to associate with each vertex a label selected in a
such way, that will allow us to infer information about
any two vertices directly from their labels, without using

~ a r t m e n t of Mathematics, Bar lien University, Ramat
Gan, 52900, Israel. E-maih nir-michal~hotmail.eom.

tDepartment of Computer Science end Applied Mathematics,
The Weizmann Institute of Science, Rehovot, 76100 Israel. F_~
mail: (pandi t ,peleg}gwisdom. weizmann, ac. i l .

~Supported in part by grants from the Israel Science Founda-
tion and the Israel Ministry of Science and Art.

any additional information sources. Hence in essence,
this method bases the entire representation on the set
of labels alone.

Obviously, labels of unrestricted size can be used to
encode any desired information, including in particular
the entire graph structure. Our focus is thus on informa-
tive labeling schemes using relatively 8hortlabels (say, of
length polylogarithmic in n). Labeling schemes of this
type were developed in the past for different graph fam-
ilies and for a variety information types, including ver-
tex adjacency [3, 4, 11, 5], distance [16, 15, 10, 7, 13, 8],
tree ancestry [1, 12, 2], and various other tree functions,
such as center, least common ancestor, separation level
or Steiner weight of a given subset of vertices [17]. See
the survey [9].

The current paper studies informative labeling
schemes for flow and connectivity problems. These
types of information are useful in the decision making
process required for various reservation-based routing
and connection establishment mechanisms in communi-
cation networks, in which it is desirable to have accu-
rate information about the potential capacity of avail-
able routes between any two given endpoints.

1.2 Labe l ing s c h e m e s .
Let us first formalize the notion of informative

labeling schemes. A vertex-labeling of the graph G is
a function L assigning a label L(u) to each vertex u
of G. A labeling scheme is composed of two major
components. The first is a marker algorithm A,t, which
given a graph G, selects a label assignment L -- .M(G)
for G. The second component is a decoder algorithm D,
which given a set of labels L = {L1 , . . . ,Lk} , returns
a value D(L). The time complexity of the decoder is
required to be polynomial in its input size.

Let] be a function defined on sets of vertices in
a graph. Given a family {~ of weighted graphs, an f
labeling scheme for g is a marker-decoder pair (Adf, DI)
with the following property. Consider any graph G E g,
and let L = My(G) be the vertex labeling assigned
by the marker 3d I to G. Then for any set of vertices
W = (v l , . - . , v k } in G, the value returned by the
decoder D 1 on the set of labels L(W) -- {L(v] [v e W}

928

satisfies :Df(L(W)) = f (W) .
It is important to note that the decoder :Dr, respon-

sible of the f-computat ion, is independent of G or of the
number of vertices in it. Thus Z) t can be viewed as a
method for computing f-values in a "distributed" fash-
ion, given any set of labels and knowing that the graph
belongs to some specific family G. In particular, it must
be possible to define :D I as a constant size algorithm. In
contrast, the labels contain some information that can
be precomputed by considering the whole graph struc-
ture.

For a labeling L for the graph G = (V,E),
let tL(u)l denote the number of bits in the (binary)
string L(u). Given a graph G and a marker algo-
rithm .A4 which assigns the labeling L to G, denote
£A4(G) = max~ev IL(u)l. For a finite graph fam-
ily g, set E2¢!(~) --- max{£A4(G) I G e ~}. Finally,
given a function f and a graph family G, let

f -(f , ~) : min{EA4(~) I 3T}, (A4, 2)) is an

f labeling scheme for G }.

1.3 F l o w a n d c o n n e c t i v i t y .
In the current paper we focus on flow and connec-

tivity labeling schemes. Let G be a weighted undirected
graph G = (V,E,w) , where for every edge e E E, the
weight w(e) represents the capacity of the edge. For
two vertices u, v E V, the maximum flow possible be-
tween them (in either direction), denoted f low(u ,v) ,
is defined as follows. The maximum flow in a path
p = (e l ,e%.. . ,e , ,~) is the maximum value that does
not exceed the capacity of any edge in the path, i.e.,
f low(p) ---- minz<~<r~{w(e~)}. A set of paths P in G is
edge-disjoint if each edge e E E appears in no more than
one path p E P . The maximum flow in a set P of edge-
disjoint paths is f l ow(P) -- ~pepf low(p) . Let ~ , , . be
the collection of all sets P of edge-disjoint paths between
u and v. Then f low(u ,v) ---- maxpep~. . { f low(P)} . See
Figure 1.

(
1

,) 1

2
3
4
5
6

2 3 4 5 6
1 1 1 1 1
~ 6 2 2 2

~ 2 2 2
~ 6 5

" 5

~'igure 1: A £apacitated graph G, and the (symmetric) flow
between its vertices.

As a special case of the flow function, the edge-
connectivity e-conn(u ,w) of two vertices u and w in

a graph can he given an alternative definition as the
maximum flow between the two vertices assuming each
edge is assigned one capacity unit.

A set of paths P connecting the vertices u and
w in G is vertex-disjoint if each vertex except u and
w appears in at most one path p E P . The vertex-
connectivity v-cons(u , w) of two vertices u and w in an
unweighted graph equals the cardinality of the largest
set P of vertex-disjoint paths connecting them. By
Menger's theorem (cf. [6]), for nonadjacent u and w,
v-conn(u, w) equals the minimum number of vertices in
G \ {u, ~v} whose removal from G disconnects u from
ay. (When a vertex is removed, all its incident edges are
removed as well.)

1.4 Our results .
In this paper we present a number of results con-

cerning labeling schemes for maximum flow, edge-
connectivity and vertex-connectivity. In Section 2 we
present a flow labeling scheme for general graphs, with
label size O(log n-log D) over n-vertex graphs with max-
imum (integral) capacity ~b. The scheme relies on the
fact that the relation "x and y admit a flow of k or more"
is an equivalence relation. In the full paper [14] we also
establish the optimality of our flow labeling scheme by
proving a tight lower bound of f~(logn, log&) on the
required label size for flow labeling schemes on the class
of n-vertex trees with maximum capacity ~. For edge-
connectivity, this yields a tight bound of O(log 2 n).

In comparison, vertex connectivity seems to require
a more involved labeling scheme whose label size de-
pends on the connectivity parameter k. In Section 3
we present a/c-vertex-connectivity labeling scheme for
general n-vertex graphs. The label sizes we achieve are
logn for k ~ 1, 31ogn for k -- 2, 51ogn for k -- 3
and 2 ~ logn for k ~> 3. In Section 4 we present a lower
bound of f~(k log n) for the required label size for k-
vertex connectivity on general n-vertex graphs, where k
is polylogarithmic in n.

2 F l o w l abe l i ng s c h e m e s fo r g e n e r a l g r a p h s

In this section we consider the family ~(n,&) of undi-
rected capa~itated connected n-vertex graphs with max-
imum (integral) capacity O, and present a flow labeling
scheme for this family with label size O(logn- log&).
Given a graph G = (V, E, w) in this family and an inte-
ger 1 _< k <_ &, let us define the following relation:

We make use of the following easy to prove fact.
(Throughout, some proofs are omitted.)

LEMMA 2.1. The relation Rk is an equivalence relation.

", fl '

929

For every k > 1, the relation R~ induces a collection
of equivalence classes on V, Cl= = {C~, . . . , C ~ k }, such
that C~ N C~ = 0 and Ui C~ = V. Note that for k < k',
the relation Rk, is a refinement of R~, namely, for every
class C~, there is a class C~ such that C~, C C~.

Given G, let us construct a tree Ta corresponding
to its equivalence relations. The k'th level of T corre-
sponds to the relation Rk, i.e., it has ma nodes, marked
by the classes C~ , . . . , C ~ ~. In particular, the root of T
is marked by the unique equivalence class of R1, which
is V. The tree is truncated at a node once the equiva-
lence class associated with it is a singleton. For every
vertex v E G, denote by t(v) the leaf in Tc associated
with the singleton set {v}. Figure 2 describes the tree
TG corresponding to the flow equivalence classes for the
graph G of Figure 1.

T Level
I

2

3

4

5

6

7

Figure 2: The tree TG corresponding to the graph G of Figure i.

For two nodes x, y in a tree T rooted at r, define the
separation level of x and y, denoted SepLovelT(X , y),
as the depth of z -- lca(x,y), the least common
ancestor of x and y. I.e., SepLevelT(X , y) ---- distT(z, r),
the distance of z from the root. As an immediate
consequence of the construction, we have the foIlowing
connection.

LEMMA 2.2. Far every two vertices v ,w E V,
 1o o(v, = SepL, Zr(t(), + 1.

It is proven in [17] that for the class T(n) of n-
node unweighted trees, there exists a SepLevel labeling
scheme with O(log 2 n)-bit labels. (This is also shown
to be optimal, in the sense that any such scheme must
label some node of some n-node unweighted tree with
an N(log 2 n)-bit label.)

Observe that if the maximum capacity of any edge
in the n-vertex graph G is &, then the depth of the

tree TG cannot exceed & levels, and it may have at
most n nodes per level, hence the total number of
nodes in TG is O(n&). We immediately have that

= OClod()).
A more careful design of the tree Ta can improve

the bound on the label size. This is achieved by
canceling all nodes of degree 2 in the tree Ta, and
adding appropriate edge weights. Specifically, a sub-
path (vo , v t , . . . , v k) in Ta such that k > 2, v0 and vk
have degree 3 ot higher, and v l , . . . , v k - 1 have degree
2 (with v l , . . . , v k all marked by the same set C) is
compacted into a single edge (vo,v~) with weight k,
eliminating the nodes v l , . . . , vk-1, and leaving the sets
marking the remaining nodes unchanged. Let To denote
the resulting compacted tree. Figure 3 describes the tree
:TG corresponding to the tree TG of Figure 2.

Figure 3: The compacted tree Ta corresponding to the tree T G
of Figure 2.

The notion of separation level can be extended to
weighted rooted trees in the natural way, by defining
SepaeveLT(x , y) as the weighted depth of z = Ica(x, y),
i.e., its weighted distance from the root. The upper
and lower bounds presented in [17] regarding SepLevel
labeling schemes for unweighted trees can also be ex-
tended in a straightforward manner to weighted trees,
yielding SepLevel labeling schemes for the class T(fi, D)
of weighted ~-node trees with maximum weight ~ using
O(log fi log 5~ + log 2 ~)-bit labels.

It is also easy to verify that for two nodes x, y in G,
the separation level of the leaves t(x) and t(y) associated
with x and y in the tree ~'a is still related to the flow
between the two vertices as characterized in Lemma 2.2.

Finally, note that as To has exactly n leaves, and
every non-leaf node in it has at least two children, the
total number of nodes in Tc is fi < 2n - 1. Moreover,
the maximum edge weight in Tq is D <_ &.

Combining the above observations, we have the
following.

930

THEOREM 2.1. £(flow,~.7(n, co)) = O(logn • logco +
log 9" n). II

The above theorem immediately yields the following
upper bound for edge-connectivity. Let G(n) denote the
class of n-vertex unweighted graphs.

COROLLARY 2.1. £(e-conn, g(n)) = O(log 2 n). II

Finally we give a lower bound of f l(logn - logo0)
on the label size for flow on the class T(n,CO) of n_
vertex trees with maximum edge capacity CO (which is
assumed to be integral). The proof idea is based on a
modification of the lower bound proof of [10] for distance
labeling schemes, and is omitted from this extended
abstract (see [14]).

THEOREM 2.2. For CO > log(n + 1) -- 1,
£(low, rCn, co)) = n(lognlog,2), i

COROLLARY 2.2. L:(e-conn, Q(n)) ----- O(log 2 n). |

3 V e r t e x - c o n n e c t i v i t y l a b e l i n g schemes for
g e n e r a l g r a p h s

In this section we turn to k-vertex-connectivity, and
present a labeling scheme for general n-vertex graphs.
The label sizes we achieve are log n for k = 1, 3 log n for
k = 2, 51ogn for k = 3 and 2klogn for k > 3.

3.1 P r e l i m i n a r i e s .
We start with some preliminary definitions. In an

undirected graph G, two vertices are called k-connected
if there exist at least k vertex-disjoint paths between
them. A set S C V separates u from v in G = (V, E) if u
and v are not connected in the vertex induced subgraph
G \ S .

THEOREM 3.1. [Menger] (eft [6]) In an undirected
graph G, two nonadjacent vertices u and v are k-
connected iff no set S C a \ {u, v} of k - 1 vertices
can separate u from v in G.

The k-connectivity graph of G = (V, E) is C~(G) =
(V, E ') , where (u, v) 6 E ' iff u and v axe k-connected
in G. A graph G is closed under k-connectivity if it has
the property that if u and v are k-connected in G then
they are neighbors in G. Let C(k) be the family of all
graphs G which are closed under k-connectivity.

OBSERVATION 3.1. 1. /~ G 6 C(k) then each con-
nected component of G belongs to C(k).

9. I IG = H U F where H , F 6 C(k) are vertex-disjoint
subgraphs of G, then G 6 C(k).

A graph G is called k-orientable if there exists an
orientation of the edges such that the out-degree of each
vertex is bounded above by k. The class of k-orientable
graphs is denoted Jo~(k).

OBSERVATION 3.2. I f G = H U F where H, F 6 Jo~(k)
are vertem-disjoint subgraphs of G, then G 6 Jo,(k).

LEMMA 3.1. Let G' = (V,E') ~uhere E' = EU {(u,v)}
for some pair of k-connected vertices u and v. Then
G and G' have the same k-connectivity graph, i.e.,
Ok(G) = Ck(G').

Proof: Use induction on k. For k=l the Lemma is
obvious. Assume the Lemma is true for k - 1. It suffices
to show tha t if two vertices w,w' axe not k-connected in
G then they axe not k-connected in G'. Suppose that
w,w' are not k-connected in G. If w,¢0' are neighbors in
G then let G- = G \ {u,v}. In G - , w and w' are not
k - 1-connected and since u and v are k - 1 connected
in G - , by induction hypothesis w and w' are not k - 1-
connected in G' \ {u, v}. This implies that they are not
k connected in G' as desired. If w,w' axe not neighbors
in G then by Menger's theorem there exists a set of
vertices S = { x x , x ~ , . . . , x ~ - i } that separates w from
w' in G. We claim that S separates w from w' also in
G'. The proof breaks into the following cases.

• C a s e 1: One or more of t h e x ~ ' s i s u o r v. Then
G\S=G'\S.

• C a s e 2: None of the xi 's is u or v. If u and v
belong to the same connectivity component of G \ S
then the connectivity components of G' \ S will be
the same as the connectivity components of G \ S,
implying that S separates w from w' also in G',
which is what we wanted to prove. If u and v belong
to different connectivity components of G \ S then
S separates u from v in G, or in other words, u
and v are not k-connected in G, contradicting our
assumption. |

COROLLARY 3.1. For every graph G, If u and v are k-
connected in C~(G) then they are neighbors in C~(G),
i.e., Ck(G) c(k).

Proof: Transform a given graph G into G+ = GUCk(G)
by adding the edges of C~(G) to G, one by one. By
induction on the steps of this process using the previous
Lemma, we get Uk(G +) -- Ck(G). Therefore if u
and v were k-connected in C~(G) then they are k-
connected in G + and therefore they are neighbors in
C~(g +) = Ok(G). |

For a connectivity component C of C~(G), a left-
most BFS tree for C, denoted T(C, k), is a BFS tree

931

spanning C, constructed in the following way. Take
a vertex r from C to be the root of T(C,k). Let
level(r) = 1. Assume we constructed i levels of T(C, k)
and haven't used all vertices of C. Construct the
(i + 1)'st level of T(C, k) as follows. Repeatedly take
a vertex v of level i and connect it to all the vertices
adjacent to it in Ck(G) that haven't been included so
far in the tree construction. For each such new vertex w
let level(w) = i + 1 and let v be w's parent in T(C, k).

When the context is clear we use the notation T
instead of T(C, k).

For T = TiC, k), we make the following definitions.
Let Wi denote the set of vertices of level i in T, and let
Hi = HI(C, k) = (Wi, E~) be the subgraph of C induced
by Wi. For vertices u and v, denote Cs parent in T
by p(u) and let lca(u, v) be the highest level common
ancestor of both u and v in T. Let W/'+I denote the set
of vertices of Wi+l that neighbor at least k vertices of
Wi in C~(G). Let Fi = F~(C, k) be the subgraph of C
induced by Wi u W~+ 1 .

LEMMA 3.2. 1. For T = T (C , k), H~ e C(k - 1).

2. For T = T(C, k), Fi E C(k - 1).

Proof : To prove (1), we show that every two vertices
u,v E Wi that are (k - 1)-connected in Hi, are
neighbors in Ck(G) and therefore in Hi, implying Hi
C (k - 1). Assume, for contradiction, that u and v are
not neighbors in C~(G). By Corollary 3.1 they are
also not k-connected in C~(G), i.e., there exists a set
S --- {x t , . . . ,xk- l} that separates them in Ck(G). Let
S' = S N Wi. Since S t separates u from v in Hi and
since u and v are (k - 1)-connected in Hi we get that
ISq = k - 1 hence S ~ = S, so all the vertices in S must
be of level i. But then, S does not separate u from v
even in T, which is a subgraph of Ca(G), contradicting
our assumption.

Turning to (2), let u and v be (k - 1)-connected
in Fi. As before, it suffices to show that they are
neighbors in C~(G). Assume for contradiction that u
and v are not neighbors in Ck(G) therefore they are
also not k-connected in Ca(G), i.e., there exists a set
S = {x l , . . . ,X~-l} that separates them in Ca(G). Since
S ~ = 5' N Fi separates u from v in Fi and since u and
v are (k - 1)-connected in F~ we get, as before, that all
the vertices of S must belong to F~.

• Case 1: Both u and v are of level i. In this case,
as before, S does not separate u from v even in
T, which is a subgraph of Ck(G), contradicting our
assumption.

• Case 2: Without loss of generality u is of level i,
v is of level i + 1 and v has at least k neighbors

in Ce(G) of level i. In this case, v has at least one
neighbor w of level i in C~ (G)\ S. Since all vertices
of S are in Fi, w and u are connected in C~(G) \ S
via the edges of T. Altogether we get that u and
v are connected in Ck(G) \ S, contradicting our
assumption. |

3.2 O v e r v i e w o f the s cheme .
We rely on the basic observation that labeling k-

connectivity for some graph G is equivalent to labeling
adjacencies for Ck(G). By Corollary 3.1, Ck(G) E C(k).
Therefore, instead of presenting a k-connectivity label-
ing scheme for general graphs, we present an adjacency
labeling scheme for the graphs of C(k).

The general idea used for labeling adjacencies for
some G E C(k), especially for k > 3, is to decompose G
into at most 3 'simpler' graphs. One of these graphs is
a k-orientable graph K, and the other two, called G~,e,
and Goad, belong to C(k- 1). The labeling algorithm for
G E C(k) recursively labels subgraphs of G that belong
to C(t) for t < k. When we are concerned with labeling
some n-vertex graph G E C(k) for k > 1, the first step
in the labeling is to assign each vertex u in G a distinct
identity id(u) from 1 to n. This identity will always
appear as the last log n bits of the label L(G, u). Thus,
when labeling the subgraphs of G in the recursion we
may assume that the id's for the vertices are given.

For graphs G = <V,E} and Gi = (V~,Ei), i > 1, we
say that G can be decomposed into the Gi's if Ui V~ = V,
lJiEi = E and the Ei's are pairwise disjoint.

LEMMA 3.3. Let G, GI andS2 be families of graphs such
that each G ~ G can be decomposed into Gl E Gt and
G2 e ~2. If gl and G2 have adjacency labeling schemes
of sizes ll and 12 respectively, then G has adjacency
labeling scheme of size 11 + 12.

Proof : The general idea in the proof is to use
concatenation of the labels of the decomposed graphs.
Let (A4i, :Di) be adjacency labeling schemes for Gi (i --
1, 2). Let us construct an adjacency labeling scheme
(Ad, ~D) for g as follows.
T h e m a r k e r a l g o r i t h m A4 for G: For a given graph
G 6 ~, decompose G into Gi 6 Gi (i = 1,2). Let
Li = A/ti(Gi) for i=1,2. We construct L = A/I(G) as
follows. For a vertex u in G, let L(u) = (Lt(u),L2(u))
where the first 11 bits of the label L(u) consist of LI (u)
and the next l~ bits give L~(u). Altogether we use ll +12
bits.
T h e d e c o d e r a l g o r i t h m l) for ~: Let G, G1
and G2 be as before. Given the two labels
L(u) = (LI(u),L2(u)) and L(v) "-- (LI(v),L2(v)) let
~(L(u), L(v)) = ~)l (Ll (u), Ll (v)) V Z)2(L2(u), L2(v)).

932

Since G was decomposed into G1, G2 the vertices u
and v axe neighbors in G iff they axe neighbors in G1 or
in G2, hence the decoding algorithm is correct. II

COROLLARY 3.2. Let ~,~1, ...,~,n be families of graph
such that each G E ~ can be decomposed into G1, ..., G,~
were Gi E ~ for i = 1 to m. If the ~ 's have adjacency
labeling schemes of sizes li respectively, then ~ has an
adjacency labeling scheme of size ~ li.

LEMMA 3.4. Let fin(k) be the family of n-vertex graphs
in ffo~(k). Assuming id's are given,
/ : (ad jacency , Jn(k)) <__ k logn .

P r o o f : Suppose G e fin(k) then G is a k-orientable
graph with n vertices. Hence there exists an orientation
to the edges of G such that the out-degree of each
vertex is bounded above by k. In this orientation,
for each u there exist at most k outgoing edges, say
(u, vl),(u,v~),..., (u, vt), for t < k.
T h e m a r k e r a l g o r i t h m A4 for Jn(k) : Label u by
L(u) = (id(Vl), id(vg), ..., id(vt)), i.e., use the first log n
bits to write id(vl), the second logn bits to write id(vv),
etc. Hence, for every u's, the size of L(u) is at most
k log n bits.
T h e d e c o d e r a l g o r i t h m :D for fin(k): Given L(u)
and L(v), check whether u 's id appears in L(v), by
inspecting each block of log n bits in L(v) separately.
Analogously, check if o's id appears in L(u).
As u and v are neighbors in G iff one of the two cases
applies, the decoding algorithm is correct. |

To illustrate the approach, we precede the treat-
ment of the general case with a discussion of the cases
k = 1,2,3, for which slightly bet ter schemes are avail-
able. The simple case of k = 1 is handled in Section
3.2.1. For k = 2 we show in Section 3.2.2 that a con-
nected graph G e C(2) can be decomposed into a tree
and disjoint graphs in C(1). Graphs in C(1) axe collec-
tions of cliques. It follows that each G E C(2) can be
decomposed into a forest (which is a 1-orientable graph)
and a graph made of disjoint cliques. For k = 3 we show
in Section 3.2.3 that a connected graph G E C(3) can
be decomposed into a graph in C(2) and a 2-orientable
graph.

3.2,1 A 1-connectivity labeling scheme.
Let us give a labeling scheme for l-connecti'dty for

~n, the family of all n-vertex graphs.
The marker algorithm J~4 for Gn: Fix G =
iV, E) E Go- To each connected component C of G as-
sign a distinct identity id(C) from the range { 1 , . . . , n}.
For a vertex ~ E V, let C~ be the connected compo-
nent of G that u belongs to. The marker algorithm sets
L(u) = id(C,,).

T h e D e c o d e r 7) for g , : Let D(L(u),L(v)) = 1 iff
L(u) = L(v).

Clearly u and v axe 1-connected in G iff they are
in the same connected component, hence the decoder's
response is correct. The size of the label is bounded
above by log n.

THEOREM 3.2. /~(1 - v - c o n n , ~ ,) _< logn. II

3.2.2 A 2 -connec t iv i ty labe l ing scheme .
As explained earlier, labeling 2-connectivity for a

family of graphs G is equivalent to labeling adjacencies
for the family {C2(G) : G E G} _C C(2). In this section
we present an efficient adjacency labeling scheme for
C(2).

Consider a graph G E C(2) mad let Ct, . . . ,Cm
be its connected components. By Observation 3.1(1/
C~ E C(2) for every i. Fix i and let T = T(Gi, 21.

CLAIM 3.1. The only neighbor of u in G which has a
strictly lower level than u in T is p(u).

Proof ' . Suppose, for contradiction, tha t there exist
neighbors v and w such that level(w) > level(v) but
v is not p(w) in T. In this case, w and z = Ice(v, w)
are 2-connected in T D {(% w)}, which is a subgraph of
G. Since G e C(2), v must be a neighbor of w. Since
level(w) < level(u) - 1 we get a contradiction to the
way T was constructed. |

CLAIM 3.2. G ~ C(2) can be decomposed into a forest
F and a graph H of disjoint cliques.

P r o o f : Fix a connected component C/ of G and let
T = T(Ci ,2) . Since, by Lemma 3.2(I), each Hi ,
subgraph of Ci induced by level j of T, is in C(1), i t
follows that H j is a collection of disjoint cliques. Hence
G can be decomposed into a forest F and a graph of
disjoint cliques, H composed of the collection of all the
H j from all i 's and j ' s . |

Let Cn(2) be the family n-vertex graphs in C(2). Let
us now give an adjacency labeling scheme for the graphs
of c.(2).
T h e m a r k e r a l g o r i t h m Ad for C,~(2): Decompose G
into F and H as in Claim 3.2. Fix a vertex u of G. Let
p(u) be u's parent in F . To each clique C in H give a
distinct identity from the range {1 , . . . ,n}, id(C). Let
C(u) be the clique in H that contains u.

The marker algorithm for G assigns L(u) =
(id(c(u), id(p(u)), id(u)). As before we use the first log n
bits for id(c(u)) the second logn bits for id(p(u)) etc.
The label size is bounded above by 31ogn.
T h e D e c o d e r T) for Cn(2): Given L(u) and L(v) we
compare id(p(u)) with id(v) and id(p(v)) with id(u) to

933

check whether one is the parent of the other in the forest
F. We also check if id(C(u)) = id(C(v)) to see whether
u and v are neighbors in H. We do this by looking at the
corresponding bits in the label, for example, id(p(u))
is written in the second block of log n bits of L(u).
Let D(L(u),LCv)) -- 1 iff either id(C(u)) = id(C(v)),

= id() i d (p (v)) = i d (u) .
Clearly, u and v are neighbors in G iff they axe

neighbors in F or in H, hence the decoder's response is
correct. We get the following.

THEOREM 3.3. Let ~ , be the .family o] n-vertex graphs
then £(2 - v-corm, g,~) < 31ogn bits.

3.2.3 A 3-connec t lv i ty label ing scheme.
Again, labeling 3-connectivity for a family Q

is equivalent to labeling adjacencies for the family
{C3 (G) : G E G} C C(3). In this section we show how
to label adjacencies for C(3).

Consider a graph G E C(3), and let C~,...,C,~
be its connected components. By observation 3.1(1),
C, E C(3) for all i. Fix i and let T : T(C~, 3).

LEMMA 3.5. Each vertex u has at most one neighbor
of G ~hich has a strictly Zoner ~evel than u in T apart
o r e p(u) .

Proof : Assume, for contradiction, that there exist a
vertex u with two neighbors in G, v and w, both with
a strictly lower level than u and both different from
p(u). In this case, u must be 3-connected in G to
either lca(u,v), lca(u,w) or lca(v,w). However, the
levels of lca(u,v), Ica(u,w), lca(v,w) are all smaller
than level(u) - 1, and since G e C(3), u is adjacent to
one of them, contradicting the way T was constructed.
(See Fig. 4.) II

Figure 4: An illustration to the contradiction in the proof of Lemma
3.5.

LEMMA 3.6. E a c h G G C(3) can be decomposed into a
graph H E C(2) and a 2-orientable graph.

Proofi First, it suffices to show the lemma for con-
nected graphs C E C(3), since by Observations 3.1(2)
and 3.2 C(2) and Jot(2) are closed under vertex-disjoint
unions. Consider a connected graph C E (:(3) and let
T = T(C,3). By Lemma 3.2(1), each subgraph Hj of
C induced by the vertices of level j in T, is in (:(2). All
the subgraphs Hj are vertex-disjoint, hence by letting
H be the union of all the Hj , we get H E C(2). Let
U be the graph C after deleting the edges of H. By
Lemma 3.5, each vertex u of U has at most 2 neighbors
of a strictly lower level Cone of which is u's parent in
T). Hence directing the edges of U from higher level
vertices to lower level vertices, each u has out-degree at
most 2, i.e., U is 2-orientable. |

By Lemmas 3.3 and 3.4 and from Theorem 3.3 we
get the following theorem.

THEOREM 3.4. Let G, be the]amily o] n-vertex graphs,
then L (3 - v-cona,~,,) < 51ogn bits.

3.3 A k -connec t iv i ty l abe l ing scheme .
Finally, labeling k-connectivity for a family

is equivalent to labeling adjacencies for the family
{Ck(G) : G e G} • C(k). In this section we show how
to label adjacencies for C(k).

Consider a graph G E C(k), and let C1, ..., C,,
be its connected components. By observation 3.1(1),
C~ e C(k) for all i. Fix i and let T --- T(C~, k).

LEMMA 3.7. Each G E C(k) can be decomposed into
two graphs in C(k - 1) and a (k - 1)-orientable graph.

Proof : Again, it suffices to prove the lemma for con-
nected graphs C E C(k) since by Observations 3.1(2)
and 3.2 both C(k-1) and Jot(k) are closed under vertex-
disjoint unions. Consider a connected graph C E C(k)
and let T --- T(C, k).

All the Fi's for odd i's axe vertex-disjoint, and
Fi E C(k - 1) for all i's by Lemma 3.2(2). Therefore, by
letting Godd be the union of all the F~'s for odd i's, we
get Godd E C(k - 1). For the same reasoning, by letting
G ~ , , be the union of all the F~'s for even i's, we get
Ge~e, e C(k - 1).

Let K be the graph C after omitting the edges of
Goaa and Ge~, (or equivalently, omitting all edges of
all the Fi's). The proof is completed once we show
that K is (k - 1)-orientable. Since all edges (u, v) of
C such that level(u) = level(v) = i for some i axe in
Fi for the appropriate i, if (u, v) is an edge of K then
level(u) ~ level(v). By the way T was constructed, the
difference between the levels is 1.

Let us direct the edges of K from higher level ver-
tices to lower level vertices. Assume, for contradiction,
that for some u and some i, level(u) = i + 1 and the

934

out-degree of u in K is at least k. Then u must have
at least k neighbors of level i in C, in which case all
edges (u, v) for v such that level(v) = i appear in Fi
and therefore not in K. Therefore, the out-degree of u
in K is 0, contradicting our assumption. |

Before stating and proving the next theorem, let us
remark that we can get a weaker upper bound of 36 log n
label size for £ (a d j acency, C.(k)) in the following way.
Use induction on k. For k - 1 ,2,3 our remark holds.
For k > 3 fix k and assume that the remark holds for
k - 1. The remaxk fo~ k follows from Lemmas 3.4 and
3.7 and Corollary 3.2.

To prove the next theorem, we show that instead of
concatenating u's labels in the three decomposed graphs
(Godd, G~ven, I¢;), it sui]~ees to give u its label in only two
of the three decomposed graphs. This yields the desired
26 log n bits bound on £ (a d j acency, C,(k)).

THEOREM 3.5. Let C,(k) be the family of n-vertex
graphs in C(k), then

/ : (ad jacency , Cn(]~)) _< 2 6 logn.

P r o o f i Use induction on k. For k = l , 2 or 3 the theorem
holds as seen in Theorems 3.2, 3.3 and 3.4. For k :> 3,
fix k and assume that the Theorem holds for k - 1.
Consider a graph G q C~(k). For a vertex u in G, let C
be its connected component in G, let T --- T(C, k) and
let ~ = level(u). Let us now give a labeling scheme for
adjacency on G 6 C(k).
T h e m a r k e r a l g o r i t h m J%46 for C(k): For t < k,
G 6 C~(t) and u, a vertex of G, denote the adjacency
labeling on G by Lt(G) and u's label by L~(G, u). Let
G 6 C,(k) and let u be a vertex in G. we define State(u)
according to the following three cases:

C a s e 1: u participates in both Goad and G~ ,n .
Let State(u) = Dual.

Note that in this case the out-degree of u in K
is 0. The marker algorithm assigns to u the
label Lk(G,u) = (Lk-l(Godd,U),Lk-l(G~,~n,u))
where the first 2~-~logn bits axe ~ese~ved for
L6-,(Goaa, u) and the last 26-* logn bits are re~
served for L~_~ (G~,,,,, u).

C a s e 2: u doesn't paxticipate in Goad,
i.e., u participates only in G~e,, and in
K . Let State(u) = Even. Let Lk(G,u) =
(0 ~ log , , 10, L(u, K) , 00...000, L6-, (G . ~ , . , u))
where the two bits in the second field, 10, indicate
that State(u) -- Even. the next k logn bits axe
reserved for L(u, K) and the last 2 k-1 log n bits
are reserved for L6-1 (G¢~¢,, u).

• C a s e 3: u doesn' t participate in G~.e,,
i.e., u participates only in Goad and in K.
Let State(u) -- Odd. Let Lk(G,u) =
(0 al°g", 11, L(u, K), 00...00, LK-l(Godd, u)) where
the two bits in the second field, 11, indicate that
State(u) - Odd, the next k log n bits axe reserved
for L(u, K) and the last 2 k-1 log n bits are reserved
for LK-I(Godd,U).

By the definition of K , it is clear that the out-degree
of some u in K is higher than 0 iff State(u) = Even or
Odd.
T h e D e c o d e r /)k fo r C(k): For t _< k denote the
decoder for C(t) by /)~ . Denote the decoder for ffo~(k)
(from Lemma 3.4) by :Do~. Given Lk(G, u) and L~(G,v)
we will first want to know the states of u and v. Take for
example L6(G,u). For k > 3, the first k l o g n bits are 0
iff State(u) ~ Dual. So by looking at the first k l o g n + 2
bits of L~(G,u) and L6(G,v) we know the states of u
and v. Consider the following cases:

• C a s e a: State(u) = State(v) : Dual: Then I)6 for
G u s e s ~)k--I On G¢ue. and Goad as follows.

96(Lk(G, u), Lk(G, v)) =

(Z)k-1 (L6-1 (Goad, U), Lk-1 (Goad, V))) V

(l)k_I(L6_l(G,,~,,,, u), Lk-I(G,,,,,,, v)))

• C a s e b: State(u) = State(v) = Even: Then :D6 for
G uses D6- , on Gcv~,~ and T>o~ for K as follows.

D~(Lk.(G, u), Lk (O, v)) =

z)o~(L(u, ~), L(~, ~)) v
'/:)~-I (Lk-1 (G ~ e , , u), Lk-1 (Ge,,.,.,, v))

• C a s e c: State(u) = State(v) = Odd: Then :Dk for
G uses ~)6-1 o n Goad and 7)o~ for K a.s follows.

7)k(Lk(G, u),Lk(G, v)) =
l)o,(L(u, K), L(v, K)) V
T)k-x (Lk- l (Godd, U), L6-l (Goda, V))

• C a s e d: S t a t e (u) = Dual, State(v) -- Even:
Then let 79k(L~(G,u),Lk(G,v)) = 1 f f and only i f
D ~ - ~ (L k - l (G . . . ~ , u) , L k - l (G . ~ . . , v)) = I or id(u)
appears in L(v , K) .

• C a s e e: S t a t e (u) = Dua l , S ta te (v) = Odd:
Then let I~k(Lj,(G,u),L~(G,v)) = 1 if and only
if ~)1~-1 (Lk-I (Goad, U), Lk-1 (Goad, v)) ---- 1 or id(u)
appears ia L(v, K).

• C a s e f: S t a t e (u) = Even, S t a t e (v) = Odd: Then

:Dk(Lk(G, u), Lk(G, v)) - :Do~(L(u, K), L(v, K))

935

To prove correctness, use induction on k. If u and
v are neighbors of level i then the edge (u, v) appears
in Fi and therefore u and v participate both in either
Goad or in G~,~ depending on the parity of i. Thus,
by comparing the appropriate labels, say Lk-l(Goda, u)
and Lk-t(G,,ad, v), we can deduce that u and v are
indeed neighbors by the induction hypothesis.

If u and v are neighbors, u is of level i and v of
level i + 1, then the edge (u, v) either appears in Fi and
State(v) = Dual or it appears in K and State(v) = Even
or Odd. Thus, if (v, u) is in F, then if i is even then
both vertices participate in G ~ , , and if i is odd then
both vertices participate in Goda. By comparing the
appropriate labels o fu and v (either their L (k - 1 , G,~, ,)
label or their L(k - 1,Goda) label and by induction
hypothesis we are able to deduce that u and v are indeed
neighbors.

If State(v) = Even or Odd, then the edge (v, u) is in
K so by looking at L (v , K) in Lk(G,v) and detecting
id(u) appearing there we conclude that u and v are
indeed neighbors.

It is clear that if u and v are not neighbors in
G then they are not neighbors in either one of the
decomposed subgraphs, and therefore, by induction
hypothesis we can never deduce that they are neighbors
by our procedure.

The size of the label Lk(G,u) is, by induction, at
most 2~logn since by Lemma 3.4, the size of L (v , K)
is at most k logn and both sizes of Lk-l(Godd,U) and
Lk-l(Ge~,~,u) axe at most 2 a-1 logn. |

We get the following corollary.

COROLLARY 3.3. Let ~,~ be the family of n-vertex
graphs, then £.(k - v-coma, G~) _< 2 k logn.

4 A lower b o u n d for ve r t ex connec t i v i t y on
genera l g raphs

In this section we establish a lower bound of f~(k log n)
on the required label size for k-vertex connectivity on
the class of n-vertex graphs where k is polylogaxithmic
in n. Fix a constant integer c :> 1, assume that
k < logan and let ~7,~ be the class of all m = 2 - ~ "

vertex graphs (V,E) with fixed id's {e l , . . . ,v,,~} and
degree at most k - 1. Transform a given graph G E G,~
into a graph T(G) = H with n vertices in the following
way. Replace each edge ei,j = (vi, vi) in G by k vertices
w .x . through w~,j and connect all the w! .'s to both v~

%.7 %3
and v i . Since G has at most ~ edges, H has at most n
vertices. If necessary, add arbitrary isolated vertices to
H so that it has precisely n vertices.

OBSERVATION 4.1. Two vertices vi ,vj are adjacent in
G iff u and v are k-vertex-connected in T(G) = H.

Assume we have a labeling scheme (.M, 79) for k-vertex
connectivity on n-vertex graphs.

OBSERVATION 4.2. Consider two distinct graphs
GI , G2 E ~,n , and let L~ = .lvl (T (G i)) for i = 1, 2. Then
there exists a vertex v i in V such that Ll (vj) ¢ L2(vj),
i.e., #

t m)a(km) Since the number of graphs in ~,, is ~-~
which is rn n(k'0 for k polylogarithmic in n, we get the
following corollary.

COROLLARY 4.1. There exists a graph G 6 g(k)
such that {L (v t) , . . . , L (v ,~) } consists of at least
log m n(~'~) - ~ (k m log m) bits where L = A4(G).

We get the following theorem.

THEOREM 4.1. £ (k - v-conn,~.) = ~2(klogm) =
D(klogn) for k polylogarithmic in n.

References

[1] S. ABITEBOUL, H. KAPLAN, AND T. M1LO, Compact
labeling schemes for" ancestor queries, in Proc. 12th
ACM-SIAM Syrup. on Discrete Algorithms, Jan. 2001.

[2] S. ALSTRUP, C. GAVOILLE, H. KAPLAN, AND
T. RAUHE, Identifying nearest common ancestors in a
distributed environment, Technical Report IT-C Series
2001-6, The IT University of Copenhagen, Aug. 2001.

[3] M. A. BREUER, Coding the vertexes of a graph, IEEE
Trans. on Information Theory, IT-12 (1966), pp. 148-
153.

[4] M. A. BREUER AND J. FOLKMAN, An unexpected result
on coding the wrticcs of a graph, J. of Mathematical
Analysis mad Applications, 20 (1967), pp. 583-600.

[5] M. CHROBAK AND D. EPPSTEIN, Planar orientations
with low out-degree and compaction of adjacency ma-
trices, Theoret. Computer Sci., 86 (1991), pp. 243-266.

[61 S. EVEN, Graph Algorithms, Computer Science Press,
1979.

[7"] C. GAVOILLE, M. KATZ, N. A. KATZ, C. PAUL,
AND D. PELEO, Approximate distance labeling schemes,
in Proc. 9th Europea~ Syrup. on Algorithms, F. M.
auf der Heide, ed., vol. 2161 of Lecture Notes in
Computer Science, Springer, Aug. 2001, pp. 476-488.

[8] C. GAVOILLB AND C. PAUL, Split decompoaition and
distance labelling: an optimal scheme [or distance
hereditary graphs, in European Conf. on Combina-
torics, Graph Theory and Applications, Sept. 2001.

[9] C. GAVOILLE AND D. PELEG, Compact and localized
distributed data st~ctures, Reseaxch Report RR-1261-
01, LaBRI, University of Bordeaux, 351, cours de la
Lib6ration, 33405 Talence Cedex, France, Aug. 2001.

936

[i0] C. GAVOILLE, D. PELEG, S. PI~RENNES, AND R. I{AZ,
Distance labeling in graphs, in Proc. 12th ACM-SIAM
Syrup. on Discrete Algorithms, ACM-SIAM, Jam. 2001,
pp. 210-219.

Ill] S. KANNAN, M. NAOR, AND S. KUDICH, Implicit
representation of graphs, in Proc. 20th ACM Syrup.
on Theory of Computing, May 1988, pp. 334-343.

[12] H. KAPLAN AND T. MILO, Parent and ancestor queries
using a compact indez, in Proc. 20th ACM Syrup. on
Principles of Database Systems, May 2001.

[13] ~ , Short and simple labels for small distances and
other functions, in Proc. Workshop on Algorithms a~ad
Data Structures, Aug. 2001.

[14] M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG,
Labeling schemes for flow and connectivity, Technical
Report MCS01-10, The Weizmann Institute of Science,
2001.

[15] M. KATZ, N. A. KATZ, AND D. PELEG, Distance
labeling schemes for well-separated graph classes, in
Proc. 17th Syrup. on Theoretical Aspects of Computer
Science, Feb. 2000, pp. 516-528.

[16] D. PELEG, Prozimity-preserving labeling schemes and
their applications, in Proc. 25th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, June
1999, pp. 30-41.

[17] - , Informative labeling schemes for graphs, in
Proc. 25th Syrup. on Mathematical Foundations of
Computer Science, vol. LNCS-1893, Springer-Verlag,
Aug. 2000, pp. 579-588.

3

