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Abstract

Ivy is a multi-user read/write peer-to-peer file system.
Ivy has no centralized or dedicated components, and
it provides useful integrity properties without requiring
users to fully trust either the underlying peer-to-peer stor-
age system or the other users of the file system.

An Ivy file system consists solely of a set of logs, one
log per participant. Ivy stores its logs in the DHash dis-
tributed hash table. Each participant finds data by con-
sulting all logs, but performs modifications by appending
only to its own log. This arrangement allows Ivy to main-
tain meta-data consistency without locking. Ivy users can
choose which other logs to trust, an appropriate arrange-
ment in a semi-open peer-to-peer system.

Ivy presents applications with a conventional file sys-
tem interface. When the underlying network is fully
connected, Ivy provides NFS-like semantics, such as
close-to-open consistency. Ivy detects conflicting modi-
fications made during a partition, and provides relevant
version information to application-specific conflict re-
solvers. Performance measurements on a wide-area net-
work show that Ivy is two to three times slower than
NFS.

1 Introduction

This paper describes Ivy, a distributed read/write net-
work file system. Ivy presents a single file system im-
age that appears much like an NFS [33] file system. In
contrast to NFS, Ivy does not require a dedicated server;
instead, it stores all data and meta-data in the DHash [9]
peer-to-peer block storage system. DHash can distribute
and replicate blocks, giving Ivy the potential to be highly
available. One possible application of Ivy is to support
distributed projects with loosely affiliated participants.

Building a shared read-write peer-to-peer file system
poses a number of challenges. First, multiple distributed
writers make maintenance of consistent file system meta-
data difficult. Second, unreliable participants make lock-
ing an unattractive approach for achieving meta-data
consistency. Third, the participants may not fully trust
each other, or may not trust that the other participants’

machines have not been compromised by outsiders; thus
there should be a way to ignore or un-do some or all
modifications by a participant revealed to be untrustwor-
thy. Finally, distributing file-system data over many hosts
means that the system may have to cope with operation
while partitioned, and may have to help applications re-
pair conflicting updates made during a partition.

Ivy uses logs to solve the problems described above.
Each participant with write access to a file system main-
tains a log of changes they have made to the file sys-
tem. Participants scan all the logs (most recent record
first) to look up file data and meta-data. Each participant
maintains a private snapshot to avoid scanning all but the
most recent log entries. The use of per-participant logs,
instead of shared mutable data structures, allows Ivy to
avoid using locks to protect meta-data. Ivy stores its logs
in DHash, so a participant’s logs are available even when
the participant is not.

Ivy resists attacks from non-participants, and from
corrupt DHash servers, by cryptographically verifying
the data it retrieves from DHash. An Ivy user can cope
with attacks from other Ivy users by choosing which
other logs to read when looking for data, and thus which
other users to trust. Ignoring a log that was once trusted
might discard useful information or critical meta-data;
Ivy provides tools to selectively ignore logs and to fix
broken meta-data.

Ivy provides NFS-like file system semantics when the
underlying network is fully connected. For example, Ivy
provides close-to-open consistency. In the case of net-
work partition, DHash replication may allow participants
to modify files in multiple partitions. Ivy’s logs contain
version vectors that allow it to detect conflicting updates
after partitions merge, and to provide version informa-
tion to application-specific conflict resolvers.

The Ivy implementation uses a local NFS loop-back
server [22] to provide an ordinary file system interface.
Performance is within a factor of two to three of NFS.
The main performance bottlenecks are network latency
and the cost of generating digital signatures on data
stored in DHash.

This paper makes three contributions. It describes a



read/write peer-to-peer storage system; previous peer-
to-peer systems have supported read-only data or data
writeable by a single publisher. It describes how to de-
sign a distributed file system with useful integrity prop-
erties based on a collection of untrusted components. Fi-
nally, it explores the use of distributed hash tables as a
building-block for more sophisticated systems.

Section 2 describes Ivy’s design. Section 3 discusses
the consistency semantics that Ivy presents to applica-
tions. Section 4 presents tools for dealing with malicious
participants. Sections 5 and 6 describe Ivy’s implementa-
tion and performance. Section 7 discusses related work,
and Section 8 concludes.

2 Design

An Ivy file system consists of a set of logs, one log
per participant. A log contains all of one participant’s
changes to file system data and meta-data. Each partic-
ipant appends only to its own log, but reads from all
logs. Participants store log records in the DHash dis-
tributed hash system, which provides per-record repli-
cation and authentication. Each participant maintains a
mutable DHash record (called a log-head) that points to
the participant’s most recent log record. Ivy uses version
vectors [27] to impose a total order on log records when
reading from multiple logs. To avoid the expense of re-
peatedly reading the whole log, each participant main-
tains a private snapshot summarizing the file system state
as of a recent point in time.

The Ivy implementation acts as a local loop-back NFS
v3 [6] server, in cooperation with a host’s in-kernel NFS
client support. Consequently, Ivy presents file system se-
mantics much like those of an NFS v3 file server.

2.1 DHash

Ivy stores all its data in DHash [9]. DHash is a distributed
peer-to-peer hash table mapping keys to arbitrary val-
ues. DHash stores each key/value pair on a set of Internet
hosts determined by hashing the key. This paper refers to
a DHash key/value pair as a DHash block. DHash repli-
cates blocks to avoid losing them if nodes crash.

DHash ensures the integrity of each block with one of
two methods. A content-hash block requires the block’s
key to be the SHA-1 [10] cryptographic hash of the
block’s value; this allows anyone fetching the block to
verify the value by ensuring that its SHA-1 hash matches
the key. A public-key block requires the block’s key to be
a public key, and the value to be signed using the corre-
sponding private key. DHash refuses to store a value that
does not match the key. Ivy checks the authenticity of all
data it retrieves from DHash. These checks prevent a ma-
licious or buggy DHash node from forging data, limiting
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Figure 1: Example Ivy view and logs. White boxes are DHash
content-hash blocks; gray boxes are public-key blocks.

it to denying the existence of a block or producing a stale
copy of a public-key block.

Ivy participants communicate only via DHash stor-
age; they don’t communicate directly with each other ex-
cept when setting up a new file system. Ivy uses DHash
content-hash blocks to store log records. Ivy stores the
DHash key of a participant’s most recent log record
in a DHash block called the log-head; the log-head is
a public-key block, so that the participant can update
its value without changing its key. Each Ivy participant
caches content-hash blocks locally without fear of us-
ing stale data, since content-hash blocks are immutable.
An Ivy participant does not cache other participants’ log-
head blocks, since they may change.

Ivy uses DHash through a simple interface:
put(key, value) and get(key). Ivy assumes
that, within any given network partition, DHash provides
write-read consistency; that is, if put(k, v) com-
pletes, a subsequent get(k) will yield v. The current
DHash implementation does not guarantee write-read
consistency; however, techniques are known which can
provide such a guarantee with high probability [19].
These techniques require that DHash replicate data and
update it carefully, and might significantly decrease
performance. Ivy operates best in a fully connected
network, though it has support for conflict detection
after operating in a partitioned network (see Section 3.4).

Ivy would in principle work with other distributed
hash tables, such as PAST [32], CAN [29], Tapestry [41],
or Kademlia [21].

2.2 Log Data Structure

An Ivy log consists of a linked list of immutable log
records. Each log record is a DHash content-hash block.
Table 1 describes fields common to all log records. The
prev field contains the previous record’s DHash key. A
participant stores the DHash key of its most recent log
record in its log-head block. The log-head is a public-
key block with a fixed DHash key, which makes it easy



Field Use
prev DHash key of next oldest log record
head DHash key of log-head
seq per-log sequence number
timestamp time at which record was created
version version vector

Table 1: Fields present in all Ivy log records.

for other participants to find.
A log record contains information about a single file

system modification, and corresponds roughly to an NFS
operation. Table 2 describes the types of log records and
the type-specific fields each contains.

Log records contain the minimum possible informa-
tion to avoid unnecessary conflicts from concurrent up-
dates by different participants. For example, a Write
log record contains the newly written data, but not the
file’s new length or modification time. These attributes
cannot be computed correctly at the time the Write
record is created, since the true state of the file will only
be known after all concurrent updates are known. Ivy
computes that information incrementally when travers-
ing the logs, rather than storing it explicitly as is done in
UNIX i-nodes [30].

Ivy records file owners and permission modes, but
does not use those attributes to enforce permissions. A
user who wishes to make a file unreadable should instead
encrypt the file’s contents. A user should ignore the logs
of people who should not be allowed to write the user’s
data.

Ivy identifies files and directories using 160-bit i-
numbers. Log records contain the i-number(s) of the files
or directories they affect. Ivy chooses i-numbers ran-
domly to minimize the probability of multiple partici-
pants allocating the same i-number for different files. Ivy
uses the 160-bit i-number as the NFS file handle.

Ivy keeps log records indefinitely, because they may
be needed to help recover from a malicious participant
or from a network partition.

2.3 Using the Log

For the moment, consider an Ivy file system with only
one log. Ivy handles non-updating NFS requests with a
single pass through the log. Requests that cause modifi-
cation use one or more passes, and then append one or
more records to the log. Ivy scans the log starting at the
most recently appended record, pointed to by the log-
head. Ivy stops scanning the log once it has gathered
enough data to handle the request.

Ivy appends a record to a log as follows. First, it cre-
ates a log record containing a description of the update,

typically derived from arguments in the NFS request.
The new record’s prev field is the DHash key of the
most recent log record. Then, it inserts the new record
into DHash, signs a new log-head that points to the new
log record, and updates the log-head in DHash.

The following text describes how Ivy uses the log to
perform selected operations.

File system creation. Ivy builds a new file system by
creating a new log with an End record, an Inode record
with a random i-number for the root directory, and a log-
head. The user then mounts the local Ivy server as an
NFS file system, using the root i-number as the NFS root
file handle.

File creation. When an application creates a new file,
the kernel NFS client code sends the local Ivy server an
NFS CREATE request. The request contains the direc-
tory i-number and a file name. Ivy appends an Inode
log record with a new random i-number and a Link
record that contains the i-number, the file’s name, and the
directory’s i-number. Ivy returns the new file’s i-number
in a file handle to the NFS client. If the application then
writes the file, the NFS client will send a WRITE request
containing the file’s i-number, the written data, and the
file offset; Ivy will append a Write log record contain-
ing the same information.

File name lookup. System calls such as open() that
refer to file names typically generate NFS LOOKUP re-
quests. A LOOKUP request contains a file name and a di-
rectory i-number. Ivy scans the log to find a Link record
with the desired directory i-number and file name, and
returns the file i-number. However, if Ivy first encoun-
ters a Unlink record that mentions the same directory
i-number and name, it returns an NFS error indicating
that the file does not exist.

File read. An NFS READ request contains the file’s i-
number, an offset within the file, and the number of bytes
to read. Ivy scans the log accumulating data from Write
records whose ranges overlap the range of the data to be
read, while ignoring data hidden by SetAttr records
that indicate file truncation.

File attributes. Some NFS requests, including
GETATTR, require Ivy to include file attributes in the
reply. Ivy only fully supports the file length, file mod-
ification time (“mtime”), attribute modification time
(“ctime”), and link count attributes. Ivy computes these
attributes incrementally as it scans the log. A file’s length
is determined by either the write to the highest offset
since the last truncation, or by the last truncation. Mtime
is determined by the timestamp in the most recent rel-
evant log record; Ivy must return correct time attributes
because NFS client cache consistency depends on it. Ivy
computes the number of links to a file by counting the
number of relevant Link records not canceled by Un-
link and Rename records.



Type Fields Meaning
Inode type (file, directory, or symlink), i-number, mode, owner create new inode
Write i-number, offset, data write data to a file
Link i-number, i-number of directory, name create a directory entry
Unlink i-number of directory, name remove a file
Rename i-number of directory, name, i-number of new directory, new file name rename a file
Prepare i-number of directory, file name for exclusive operations
Cancel i-number of directory, file name for exclusive operations
SetAttrs i-number, changed attributes change file attributes
End none end of log

Table 2: Summary of Ivy log record types.

Directory listings. Ivy handles READDIR requests
by accumulating all file names from relevant Link log
records, taking more recent Unlink and Rename log
records into account.

2.4 User Cooperation: Views

When multiple users write to a single Ivy file system,
each source of potentially concurrent updates must have
its own log; this paper refers to such sources as partici-
pants. A user who uses an Ivy file system from multiple
hosts concurrently must have one log per host.

The participants in an Ivy file system agree on a view:
the set of logs that comprise the file system. Ivy makes
management of shared views convenient by providing
a view block, a DHash content-hash block containing
pointers to all log-heads in the view. A view block also
contains the i-number of the root directory. A view block
is immutable; if a set of users wants to form a file system
with a different set of logs, they create a new view block.

A user names an Ivy file system with the content-hash
key of the view block; this is essentially a self-certifying
pathname [23]. Users creating a new file system must
exchange public keys in advance by some out-of-band
means. Once they know each other’s public keys, one of
them creates a view block and tells the other users the
view block’s DHash key.

Ivy uses the view block key to verify the view block’s
contents; the contents are the public keys that name and
verify the participants’ log-heads. A log-head contains
a content-hash key that names and verifies the most re-
cent log record. It is this reasoning that allows Ivy to ver-
ify it has retrieved correct log records from the untrusted
DHash storage system. This approach requires that users
exercise care when initially using a file system name;
the name should come from a trusted source, or the user
should inspect the view block and verify that the public
keys are those of trusted users. Similarly, when a file sys-
tems’ users decide to accept a new participant, they must
all make a conscious decision to trust the new user and to

adopt the new view block (and newly named file system).
Ivy’s lack of support for automatically adding new users
to a view is intentional.

2.5 Combining Logs

In an Ivy file system with multiple logs, a participant’s
Ivy server consults all the logs to find relevant infor-
mation. This means that Ivy must decide how to order
the records from different logs. The order should obey
causality, and all participants with the same view should
choose the same order. Ivy orders the records using a ver-
sion vector [27] contained in each log record.

When an Ivy participant generates a new log record,
it includes two pieces of information that are later used
to order the record. The seq field contains a numeri-
cally increasing sequence number; each log separately
numbers its records from zero. The version vector field
contains a tuple U:V for each log in the view (including
the participant’s own log), summarizing the participant’s
most recent knowledge of that log. U is the DHash key
of the log-head of the log being described, and V is the
DHash key of that log’s most recent record. In the follow-
ing discussion, a numeric V value refers to the sequence
number contained in the record pointed to by a tuple.

Ivy orders log records by comparing the records’ ver-
sion vectors. For example, Ivy considers a log record
with version vector (A:5 B:7) to be earlier in time than
a record with version vector (A:6 B:7): the latter vec-
tor implies that its creator had seen the record with (A:5
B:7). Two version vectors u and v are comparable if and
only if u < v or v < u or u = v. Otherwise, u and v
are concurrent. For example, (A:5 B:7) and (A:6 B:6) are
concurrent.

Simultaneous operations by different participants will
result in equal or concurrent version vectors. Ivy orders
equal and concurrent vectors by comparing the public
keys of the two logs. If the updates affect the same file,
perhaps due to a partition, the application may need to
take special action to restore consistency; Section 3 ex-
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Figure 2: Snapshot data structure. H(A) is the DHash content-
hash of A.

plores Ivy’s support for application-specific conflict res-
olution.

Ivy could have used a simpler method of ordering log
records, such as a Lamport clock [17]. Version vectors
contain more precise information than Lamport clocks
about causality; Ivy uses that information to help fix con-
flicting updates after a partition. Version vectors help pre-
vent a malicious participant from retroactively changing
its log by pointing its log-head at a newly-constructed
log; other participants’ version vectors will still point to
the old log’s records. Finally, version vectors from one
log could be used to help repair another log that has been
damaged.

2.6 Snapshots

Each Ivy participant periodically constructs a private
snapshot of the file system in order to avoid traversing
the entire log. A snapshot contains the entire state of the
file system. Participants store their snapshots in DHash to
make them persistent. Each participant has its own logi-
cally private snapshot, but the fact that the different snap-
shots have largely identical contents means that DHash
automatically shares their storage.

2.6.1 Snapshot Format

A snapshot consists of a file map, a set of i-nodes, and
some data blocks. Each i-node is stored in its own DHash
block. An i-node contains file attributes as well as a list
of DHash keys of blocks holding the file’s contents; in
the case of a directory, the content blocks hold a list of
name/i-number pairs. The file map records the DHash
key of the i-node associated with each i-number. All
of the blocks that make up a snapshot are content-hash
blocks. Figure 2 illustrates the snapshot data structure.

2.6.2 Building Snapshots

In ordinary operation Ivy builds each new snapshot in-
crementally. It starts by fetching all log records (from all
logs in the view) newer than the previous snapshot. It
traverses these new records in temporal order. For each
i-number that occurs in the new log records, Ivy main-
tains an i-node and a copy of the file contents. Ivy reads
the initial copy of the i-node and file contents from the
previous snapshot, and performs the operation indicated
by each log record on this data.

After processing the new log records, Ivy writes the
accumulated i-nodes and file contents to DHash. Then it
computes a new file map by changing the entries corre-
sponding to changed i-nodes and appending new entries.
Ivy creates a snapshot block that contains the file map
and the following meta-data: a pointer to the view upon
which the snapshot is based, a pointer to the previous
snapshot, and a version vector referring to the most re-
cent record from each log that the snapshot incorporates.
Ivy stores the snapshot block in DHash under its content-
hash, and updates the participant’s log-head to refer to
the new snapshot.

A new user must either build a snapshot from scratch,
starting from the earliest record in each log, or copy an-
other (trusted) user’s snapshot.

2.6.3 Using Snapshots

When handling an NFS request, Ivy first traverses log
records newer than the snapshot; if it cannot accumulate
enough information to fulfill the request, Ivy finds the
missing information in the participant’s latest snapshot.
Ivy finds information in a snapshot based on i-number.

3 Application Semantics

This section describes the file system semantics that Ivy
provides to applications, focusing primarily on the ways
in which Ivy’s semantics differ from those of an ordi-
nary NFS server. Sections 3.1, 3.2, and 3.3 describe Ivy’s
semantics when the network provides full connectivity.
Sections 3.4 and 3.5 describe what happens when the net-
work partitions and then merges.

3.1 Cache Consistency

In general, an update operation that one Ivy participant
has completed is immediately visible to operations that
other participants subsequently start. The exceptions are
that Ivy can’t enforce this notion of consistency during
network partitions (see Section 3.4), and that Ivy pro-
vides close-to-open consistency for file data (see below).
Most Ivy updates are immediately visible because 1) an
Ivy server performing an update waits until DHash has



acknowledged receipt of the new log records and the new
log-head before replying to an NFS request, and 2) Ivy
asks DHash for the latest log-heads at the start of ev-
ery NFS operation. Ivy caches log records, but this cache
never needs to be invalidated because the records are im-
mutable.

For file reads and writes, Ivy provides a modified
form of close-to-open consistency [13]: if application A1

writes data to a file, then closes the file, and after the
close has completed another application A2 opens the
file and reads it, A2 will see the data written by A1. Ivy
may also make written data visible before the close. Most
NFS clients and servers provide this form of consistency.

Close-to-open consistency allows Ivy to avoid fetch-
ing every log-head for each NFS READ operation. Ivy
caches file blocks along with the version vector at the
time each block was cached. When the application opens
a file and causes NFS to send an ACCESS request, Ivy
fetches all the log-heads from DHash. If no other log-
heads have changed since Ivy cached blocks for the file,
Ivy will satisfy subsequent READ requests from cached
blocks without re-fetching log-heads. While the NFS
client’s file data cache often satisfies READs before Ivy
sees them, Ivy’s cache helps when an application has
written a file and then re-reads it; the NFS client can’t de-
cide whether to satisfy the reads from the cached writes
since it doesn’t know whether some other client has con-
currently written the file, whereas Ivy can decide if that
is the case by checking the other log-heads.

Ivy defers writing file data to DHash until NFS tells
it that the application is closing the file. Before allowing
the close() system call to complete, Ivy appends the
written data to the log and then updates the log-head. Ivy
writes the data log records to DHash in parallel to reduce
latency. This arrangement allows Ivy to sign and insert a
new log-head once per file close, rather than once per file
write. We added a new CLOSE RPC to the NFS client
to make this work. Ivy also flushes cached writes if it
receives a synchronous WRITE or a COMMIT.

3.2 Concurrent Updates

Ordinary file systems have simple semantics with respect
to concurrent updates: the results are as if the updates
occurred one at a time in some order. These semantics
are natural and relatively easy to implement in a single
file server, but they are more difficult for a decentralized
file system. As a result, Ivy’s semantics differ slightly
from those of an ordinary file server.

The simplest case is that of updates that don’t affect
the same data or meta-data. For example, two partici-
pants may have created new files with different names in
the same directory, or might have written different bytes
in the same file. In such cases Ivy ensures that both up-
dates take effect.

If different participants simultaneously write the same
bytes in the same file, the writes will likely have equal or
concurrent version vectors. Recall that Ivy orders incom-
parable version vector by comparing the participants’
public keys. When the concurrent writes have completed,
all the participants will agree on their order; in this case
Ivy provides the same semantics as an ordinary file sys-
tem. It may be the case that the applications did not
intend to generate conflicting writes; Ivy provides both
tools to help applications avoid conflicts (Section 3.3)
and tools to help them detect and resolve unavoidable
conflicts (Section 3.4).

Serial semantics for operations that affect directory en-
tries are harder to implement. We believe that applica-
tions rely on the file system to provide serial semantics
on directory operations in order to implement locking.
Ivy supports one type of locking through the use of ex-
clusive creation of directory entries with the same name
(Section 3.3). Applications that use exclusive directory
creation for locking will work on Ivy.

In the following paragraphs, we discuss specific cases
that Ivy differs from a centralized file system due to the
lack of serialization of directory operations.

Ivy does not serialize combinations of creation and
deletion of a directory entry. For example, suppose one
participant calls unlink("a"), and a second partici-
pant calls rename("a", "b"). Only one of these op-
erations can succeed. On one hand, Ivy provides the ex-
pected semantics in the sense that participants who sub-
sequently look at the file system will agree on the or-
der of the concurrent log records, and will thus agree on
which operation succeeded. On the other hand, Ivy will
return a success status to both of the two systems calls,
even though only one takes effect, which would not hap-
pen in an ordinary file system.

There are cases in which an Ivy participant may read
logs that are actively being updated and initially see only
a subset of a set of concurrent updates. A short time
later the remaining concurrent updates might appear, but
be ordered before the first subset. If the updates affect
the same meta-data, observers could see the file system
in states that could not have occured in a serial exe-
cution. For example, suppose application A1 executes
create("x") and link("x","y"), and applica-
tion A2 on a different Ivy host concurrently executes
remove("x"). A third application A3 might first see
just the log records from A1, and thus see files x and
y; if Ivy orders the concurrent remove() between the
create() and link(), then A3 might later observe
that both x and y had disappeared. If the three applica-
tions compare notes they will realize that the system did
not behave like a serial server.



ExclusiveLink(dir-inum, file, file-inum)
append a Prepare(dir-inum, file) log record
if file exists

append a Cancel(dir-inum, file) record
return EXISTS

if another un-canceled Prepare(dir-inum, file) exists
append a Cancel(dir-inum, file) record
backoff()
return ExclusiveLink(dir-inum, file, file-inum)

append Link(dir-inum, file, file-inum) log record
return OK

Figure 3: Ivy’s exclusive directory entry creation algorithm.

3.3 Exclusive Create

Ordinary file system semantics require that most opera-
tions that create directory entries be exclusive. For exam-
ple, trying to create a directory that already exists should
fail, and creating a file that already exists should return
a reference to the existing file. Ivy implements exclusive
creation of directory entries because some applications
use those semantics to implement locks. However, Ivy
only guarantees exclusion when the network provides
full connectivity.

Whenever Ivy is about to append a Link log record, it
first ensures exclusion with a variant of two-phase com-
mit shown in Figure 3. Ivy first appends a Prepare
record announcing the intention to create the directory
entry. This intention can be canceled by a Cancel
record, an eventual Link record, or a timeout. Then, Ivy
checks to see whether any other participant has appended
a Prepare that mentions the same directory i-number
and file name. If not, Ivy appends the Link record. If
Ivy sees a different participant’s Prepare, it appends
a Cancel record, waits a random amount of time, and
retries. If Ivy sees a different participant’s Link record,
it appends a Cancel record and indicates a failure.

3.4 Partitioned Updates

Ivy cannot provide the semantics outlined above if the
network has partitioned. In the case of partition, Ivy’s
design maximizes availability at the expense of consis-
tency, by letting updates proceed in all partitions. This
approach is similar to that of Ficus [26].

Ivy is not directly aware of partitions, nor does it di-
rectly ensure that every partition has a complete copy of
all the logs. Instead, Ivy depends on DHash to replicate
data enough times, and in enough distinct locations, that
each partition is likely to have a complete set of data.
Whether this succeeds in practice depends on the sizes
of the partitions, the degree of DHash replication, and
the total number of DHash blocks involved in the file

system. The particular case of a user intentionally dis-
connecting a laptop from the network could be handled
by instructing the laptop’s DHash server to keep replicas
of all the log-heads and the user’s current snapshot; there
is not currently a way to ask DHash to do this.

After a partition heals, the fact that each log-head was
updated from just one host prevents conflicts within in-
dividual logs; it is sufficient for the healed system to use
the newest version of each log-head.

Participants in different partitions may have updated
the file system in ways that conflict; this will result in
concurrent version vectors. Ivy orders such version vec-
tors following the scheme in Section 2.5, so the partici-
pants will agree on the file system contents after the par-
tition heals.

The file system’s meta-data will be internally correct
after the partition heals. What this means is that if a piece
of data was accessible before the partition, and neither it
nor any directory leading to it was deleted in any parti-
tion, then the data will also be accessible after the parti-
tion.

However, if concurrent applications rely on file system
techniques such as atomic directory creation for mutual
exclusion, then applications in different partitions might
update files in ways that cause the application data to be
inconsistent. For example, e-mails might be appended to
the same mailbox file in two partitions; after the parti-
tions heal, this will appear as two concurrent writes to
the same offset in the mailbox file. Ivy knows that the
writes conflict, and automatically orders the log entries
so that all participants see the same file contents after the
partition heals. However, this masks the fact that some
file updates are not visible, and that the user or applica-
tion may have to take special steps to restore them. Ivy
does not currently have an automatic mechanism for sig-
naling such conflicts to the user; instead the user must
run the lc tool described in the next section to discover
conflicts. A better approach might be to borrow Coda’s
technique of making the file inaccessible until the user
fixes the conflict.

3.5 Conflict Resolution

Ivy provides a tool, lc, that detects conflicting appli-
cation updates to files; these may arise from concurrent
writes to the same file by applications that are in different
partitions or which do not perform appropriate locking.
lc scans an Ivy file system’s log for records with concur-
rent version vectors that affect the same file or directory
entry. lc determines the point in the logs at which the
partition must have occurred, and determines which par-
ticipants were in which partition. lc then uses Ivy views
to construct multiple historic views of the file system:
one as of the time of partition, and one for each partition
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just before the partition healed. For example,

% ./lc -v /ivy/BXz4+udjsQm4tX63UR9w71SNP0c
before: +WzW8s7fTEt6pehaB7isSfhkc68
partition1: l3qLDU5icVMRrbLvhxuJ1WkNvWs
partition2: JyCKgcsAjZ4uttbbtIX9or+qEXE
% cat /ivy/+WzW8s7fTEt6pehaB7isSfhkc68/file1
original content of file1
% cat /ivy/l3qLDU5icVMRrbLvhxuJ1WkNvWs/file1
original content of file1, changed
append on first partition
% cat /ivy/JyCKgcsAjZ4uttbbtIX9or+qEXE/file1
original content of file1
append on second partition

In simple cases, a user could simply examine the ver-
sions of the file and merge them by hand in a text edi-
tor. Application-specific resolvers such as those used by
Coda [14, 16] could be used for more complex cases.

4 Security and Integrity

Since Ivy is intended to support distributed users with
arms-length trust relationships, it must be able to recover
from malicious participants. The situation we envision is
that a participant’s bad behavior is discovered after the
fact. Malicious behavior is assumed to consist of the par-
ticipant using ordinary file system operations to modify
or delete data. One form of malice might be that an out-
sider breaks into a legitimate user’s computer and modi-
fies files stored in Ivy.

To cope with a good user turning bad, the other par-
ticipants can either form a new view that excludes the
bad participant’s log, or form a view that only includes
the log records before a certain point in time. In either
case the resulting file system may be missing important
meta-data. Upon user request, Ivy’s ivycheck tool will
detect and fix certain meta-data inconsistencies. ivy-
check inspects an existing file system, finds missing
Link and Inode meta-data, and creates plausible re-
placements in a new fix log. ivycheck can optionally
look in the excluded log in order to find hints about what
the missing meta-data should look like.

5 Implementation

Ivy is written in C++ and runs on FreeBSD. It uses the
SFS tool-kit [22] for event-driven programming and NFS
loop-back server support.

Ivy is implemented as several cooperating parts, illus-
trated in Figure 4. Each participating host runs an Ivy
server which exposes Ivy file systems as locally-mounted
NFS v3 file systems. A file system name encodes the
DHash key of the file system’s view block, for ex-
ample, /ivy/9RYBbWyeDVEQnxeL95LG5jJjwa4.
The Ivy server does not hold private keys; instead, each
participant runs an agent to hold its private key, and the
Ivy server asks the participant’s local agent program to
sign log heads. The Ivy server acts as a client of a local
DHash server, which consults other DHash servers scat-
tered around the network. The Ivy server also keeps a
LRU cache of content-hash blocks (e.g. log records and
snapshot blocks) and log-heads that it recently modified.

6 Evaluation

This section evaluates Ivy’s performance 1) in a purely
local configuration, 2) over a WAN, 3) as a function of
the number of participants, 4) as a function of the num-
ber of DHash nodes, 5) as a function of the number of
concurrent writers, and 6) as a function of the snapshot
interval. The main goal of the evaluation is to understand
the costs of Ivy’s design in terms of network latency and
cryptographic operations.

Ivy is configured to construct a snapshot every 20
new log records, or when 60 seconds have elapsed since
the construction of the last snapshot. Unless otherwise
stated, Ivy’s block cache size is 512 blocks. DHash nodes
are PlanetLab [1] nodes, running Linux 2.4.18 on 1.2
GHz Pentium III CPUs, and RON [2] nodes, running
FreeBSD 4.5 on 733 MHz Pentium III CPUs. DHash was
configured with replication turned off, since the replica-
tion implementation is not complete; replication would
probably decrease performance significantly. Unless oth-
erwise stated, this section reports results averaged over
five runs.

The workload used to evaluate Ivy is the Modified An-
drew Benchmark (MAB), which consists of five phases:
(1) create a directory hierarchy, (2) copy files into these
directories, (3) walk the directory hierarchy while read-
ing attributes of each file, (4) read the files, and (5) com-
pile the files into a program. Unless otherwise stated, the
MAB and the Ivy server run on a 1.2 GHz AMD Athlon
computer running FreeBSD 4.5 at MIT.

6.1 Single User MAB

Table 3 shows Ivy’s performance on the phases of the
MAB for a file system with just one log. All the soft-



Phase Ivy (s) NFS (s)
Mkdir 0.6 0.5

Create/Write 6.6 0.8
Stat 0.6 0.2
Read 1.0 0.8

Compile 10.0 5.3
Total 18.8 7.6

Table 3: Real-time in seconds to run the MAB with a single
Ivy log and all software running on a single machine. The NFS
column shows MAB run-time for NFS over a LAN.

Phase Ivy (s) NFS (s)
Mkdir 11.2 4.8

Create/Write 89.2 42.0
Stat 65.6 47.8
Read 65.8 55.6

Compile 144.2 130.2
Total 376.0 280.4

Table 4: MAB run-time with four DHash servers on a WAN.
The file system contains four logs.

ware (the MAB, Ivy, and a single DHash server) ran
on the same computer. To put the Ivy performance in
perspective, Table 3 also shows MAB performance over
NFS; the client and NFS server are connected by a 100
Mbit LAN. Note that this comparison is unfair to NFS,
since NFS involved network communication while the
Ivy benchmark did not.

The following analysis explains Ivy’s 18.8 seconds of
run-time. The MAB produces 386 NFS RPCs that mod-
ify the Ivy log. 118 of these are either MKDIR or CRE-
ATE, which require two log-head writes to achieve atom-
icity. 119 of the 386 RPCs are COMMITs or CLOSEs
that require Ivy to flush written data to the log. Another
133 RPCs are synchronous WRITEs generated by the
linker. Overall, the 386 RPCs caused Ivy to update the
log-head 508 times. Computing a public-key signature
uses about 14.2 milliseconds (ms) of CPU time, for a to-
tal of 7.2 seconds of CPU time.

The remaining time is spent in the Ivy server (4.9 sec-
onds), the DHash server (2.9 seconds), and in the pro-
cesses that MAB invokes (2.6 seconds). Profiling indi-
cates that the most expensive operations in the Ivy and
DHash servers are SHA-1 hashes and memory copies.

The MAB creates a total of 1.6 MBytes of file data.
Ivy, in response, inserts a total of 8.8 MBytes of log and
snapshot data into DHash.

6.2 Performance on a WAN

Table 4 shows the time for a single MAB instance with
four DHash servers on a WAN. One DHash server runs
on the same computer that is running the MAB. The av-
erage network round-trip times to the other three DHash
servers are 9, 16, and 82 ms. The file system contains
four logs. The benchmark only writes one of the logs,
though the other three log-heads are consulted to make
sure operations see the most up-to-date data. The four
log-heads are stored on three DHash servers. The log-
head that is being written to is stored on the DHash
server with a round-trip time of 9 ms from the local ma-
chine. One log-head is stored on the server with a round-
trip time of 82 ms from the local machine. The DHash
servers’ node IDs are chosen so that each is responsible
for roughly the same number of blocks.

A typical NFS request requires Ivy to fetch the three
other log-heads from DHash; this involves just one
DHash network RPC per log-head. Ivy issues the three
RPCs in parallel, so the time for each log-head check is
governed by the largest round-trip time of 82 ms. The
MAB causes Ivy to retrieve log-heads 3,346 times, for a
total of 274 seconds. This latency dominates Ivy’s WAN
performance.

The remaining 102 seconds of MAB run-time are used
in four ways. Running the MAB on a LAN takes 22 sec-
onds, mostly in the form of CPU time. Ivy writes its log-
head to DHash 508 times; each write takes 9 ms of net-
work latency, for a total of 5 seconds. Ivy inserts 1,003
log records, some of them concurrently. The average in-
sertion takes 54 ms (27 ms for the Chord [37] lookup,
then another 27 ms for the DHash node to acknowledge
receipt). This accounts for roughly 54 seconds. Finally,
the local computer sends and receives 7.0 MBytes of data
during the MAB run. This accounts for the remaining run
time. During the experiment Ivy also inserts 358 DHash
blocks while updating its snapshot; because Ivy doesn’t
wait for these inserts, they contribute little to the total run
time.

Table 4 also shows MAB performance over wide-area
NFS. The round-trip time between the NFS client and
server is 79 ms, which is roughly the time it takes Ivy to
fetch all the log-heads. We use NFS over UDP because
it is faster for this benchmark than FreeBSD’s NFS over
TCP implementation. Ivy is slower than NFS because Ivy
operations often require more network round-trips; for
example, some NFS requests require Ivy to both fetch
and update log-heads, requiring two round-trips.

6.3 Many Logs, One Writer

Figure 5 shows how Ivy’s performance changes as the
number of logs increases. Other than the number of logs,
this experiment is identical to the one in the previous sec-
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Figure 5: MAB run-time as a function of the number of logs.
Only one participant is active.
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Figure 6: Average MAB run-time as the number of DHash
servers increases. The error bars indicate standard deviation
over different choices of PlanetLab hosts and different map-
pings of blocks to DHash servers.

tion. The number of logs ranges from 4 to 16, but only
one participant executes the MAB — the other logs never
change. Figure 5 reports results averaged over three runs.

The number of logs has relatively little impact on run-
time because Ivy fetches the log-heads in parallel. There
is a slight increase caused by the fact that the version
vector in each log record has one 44-byte entry per par-
ticipant.

6.4 Many DHash Servers

Figure 6 shows the averages and standard deviations of
Ivy’s MAB performance as the number of DHash servers
increases from 8 to 32. For each number of servers we
perform ten experimental runs. For each run, all but one
of the DHash servers are placed on randomly chosen
PlanetLab hosts (from a pool of 32 hosts); new log-head
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Figure 7: Average run-time of MAB when several MABs are
running concurrently on different hosts on the Internet. The er-
ror bars indicate standard deviation over all the MAB runs.

public keys are also used to ensure the log-heads are
placed on random DHash servers. One DHash server,
the Ivy server, and the MAB always execute on a host
at MIT. The round-trip times from the host at MIT to the
PlanetLab hosts average 32 ms, with a minimum of 1 ms,
a maximum of 78 ms, and a standard deviation of 27 ms.
There are four logs in total; only one of them changes.

The run-time in Figure 6 grows because more Chord
messages are required to find each log record block in
DHash. An average of 2.3, 2.9, 3.3, and 3.8 RPCs are re-
quired for 8, 16, 24, and 32 DHash servers, respectively.
These numbers include the final DHash RPC as well as
Chord lookup RPCs.

The high standard deviation in Figure 6 is due to the
fact that the run-time is dominated by the round-trip
times to the four particular DHash servers that store the
log-heads. This means that adding more DHash servers
doesn’t reduce the variation.

6.5 Many Writers

Figure 7 shows the effect of multiple active writers. We
perform three experiments for each number N of partic-
ipants; each experiment involves one MAB running con-
currently on each of N different Ivy hosts on the Internet,
a file system with four logs, new log-head public keys,
and 32 DHash servers. Each MAB run uses its own di-
rectory in the Ivy file system. Each data point shows the
average and standard deviation of MAB run-time over
the 3N MAB executions.

The run-time increases with the number of active par-
ticipants because each has to fetch the others’ newly ap-
pended log records from DHash. The run-time increases
relatively slowly because Ivy fetches records from the
different logs in parallel. The deviation in run-times is
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is 80 blocks.

Phase Ivy (s) NFS (s) ssh (s)
Commit 420.8 224.6 3.4
Update 284.2 135.2 2.3

Table 5: Run-times for the CVS experiment phases. DHash is
running on 32 nodes on a wide-area network.

due to each participant having different network round-
trip latencies to the DHash servers.

6.6 Snapshot Interval

Figure 8 shows the effect on MAB run-time of the in-
terval between snapshots. The experiments involve one
MAB instance, four logs, and 32 DHash servers. The x-
axis represents the number of new log records inserted
before Ivy builds each a new snapshot. For these exper-
iments, the size of Ivy’s block cache is 80 blocks. The
reason the run-time increases when the interval is greater
than 80 is that not all the records needed to build each
snapshot can fit in the cache.

6.7 Wide-area CVS on Ivy

To evaluate Ivy’s performance as a source-code or doc-
ument repository, we show the run-time of some oper-
ations on a CVS [4] repository stored in Ivy. The Ivy
file system has four logs stored on 32 wide-area DHash
servers. The round-trip times from the Ivy host to the
DHash servers storing the log-heads are 17, 36, 70, and
77 ms. The CVS repository contains 251 files and 3.3
MBytes. Before the experiment starts, two Ivy partici-
pants, X and Y , check out a copy of the repository to
their local disks, and both create an Ivy snapshot of the
file system. Each participant then reboots its host to en-

sure that no data is cached. The experiment consists of
two phases. First, X commits changes to 38 files, a total
of 4333 lines. Second, Y updates its local copy to re-
flect X’s changes. Table 5 shows the run-times for the
two phases. For comparison, Table 5 shows the time to
perform the same CVS operations over NFS and ssh;
in both cases the client to server round-trip latency is 77
ms.

Ivy’s performance with CVS is disappointing. During
a commit or update, CVS looks at every file in the repos-
itory; for each file access, Ivy checks whether some other
participant has recently changed the file. CVS has locked
the repository, so no such changes are possible; but Ivy
doesn’t know that. During a CVS commit, Ivy waits for
the DHash insert of new log records and an updated log-
head for each file modified; again, since CVS has locked
the repository, Ivy could have written all the log records
in parallel and just a single updated log-head for the
whole CVS commit. A transactional interface between
application and file system would help performance in
this situation.

7 Related Work

Ivy was motivated by recent work on peer-to-peer stor-
age, particularly FreeNet [8], PAST [32], and CFS [9].
The data authentication mechanisms in these systems
limit them to read-only or single-publisher data, in the
sense that only the original publisher of each piece of
data can modify it. CFS builds a file-system on top of
peer-to-peer storage, using ideas from SFSRO [11]; how-
ever, each file system is read-only. Ivy’s primary contri-
bution relative to these systems is that it uses peer-to-
peer storage to build a read/write file system that multiple
users can share.

7.1 Log-structured File System

Sprite LFS [31] represents a file system as a log of op-
erations, along with a snapshot of i-number to i-node lo-
cation mappings. LFS uses a single log managed by a
single server in order to to speed up small write perfor-
mance. Ivy uses multiple logs to let multiple participants
update the file system without a central file server or lock
server; Ivy does not gain any performance by use of logs.

7.2 Distributed Storage Systems

Zebra [12] maintains a per-client log of file contents,
striped across multiple network nodes. Zebra serializes
meta-data operations through a single meta-data server.
Ivy borrows the idea of per-client logs, but extends them
to meta-data as well as file contents. This allows Ivy to
avoid Zebra’s single meta-data server, and thus poten-
tially achieve higher availability.



xFS [3], the Serverless Network File System, dis-
tributes both data and meta-data across participating
hosts. For every piece of meta-data (e.g. an i-node) there
is a host that is responsible for serializing updates to
that meta-data to maintain consistency. Ivy avoids any
meta-data centralization, and is therefore more suitable
for wide-area use in which participants cannot be trusted
to run reliable servers. However, Ivy has lower perfor-
mance than xFS and adheres less strictly to serial seman-
tics.

Frangipani [40] is a distributed file system with two
layers: a distributed storage service that acts as a virtual
disk and a set of symmetric file servers. Frangipani main-
tains fairly conventional on-disk file system structures,
with small, per-server meta-data logs to improve perfor-
mance and recoverability. Frangipani servers use locks
to serialize updates to meta-data. This approach requires
reliable and trustworthy servers.

Harp [18] uses a primary copy scheme to maintain
identical replicas of the entire file system. Clients send
all NFS requests to the current primary server, which se-
rializes them. A Harp system consists of a small clus-
ter of well managed servers, probably physically co-
located. Ivy does without any central cluster of dedicated
servers—at the expense of strict serial consistency.

7.3 Reclaiming Storage

The Elephant file system [34] allows all file system op-
erations to be undone for a period defined by the user,
after which the change becomes permanent. While Ivy
does not currently reclaim log storage, perhaps it could
adopt Elephant’s version retention policies; the main ob-
stacle is that discarding log entries would hurt Ivy’s abil-
ity to recover from malicious participants. Experience
with Venti [28] suggests that retaining old versions of
files indefinitely may not be too expensive.

7.4 Consistency and Conflict Resolution

Coda [14, 16] allows a disconnected client to modify its
own local copy of a file system, which is merged into
the main replica when the client re-connects. A Coda
client keeps a replay log that records modifications to
the client’s local copies while the client is in discon-
nected mode. When the client reconnects with the server,
Coda propagates client’s changes to the server by replay-
ing the log on the server. Coda detects changes that con-
flict with changes made by other users, and presents the
details of the changes to application-specific conflict re-
solvers. Ivy’s behavior after a partition heals is similar
to Coda’s conflict resolution: Ivy automatically merges
non-conflicting updates in the logs and lets application-
specific tools handle conflicts.

Ficus [26] is a distributed file system in which any
replica can be updated. Ficus automatically merges non-
conflicting updates from different replicas, and uses ver-
sion vectors to detect conflicting updates and to signal
them to the user. Ivy also faces the problem of conflicting
updates performed in different network partitions, and
uses similar techniques to handle them. However, Ivy’s
main focus is connected operation; in this mode it pro-
vides close-to-open consistency, which Ficus does not,
and (in cooperation with DHash) does a better job of au-
tomatically distributing storage over a wide-area system.

Bayou [39] represents changes to a database as a log
of updates. Each update includes an application-specific
merge procedure to resolve conflicts. Each node main-
tains a local log of all the updates it knows about, both
its own and those by other nodes. Nodes operate pri-
marily in a disconnected mode, and merge logs pairwise
when they talk to each other. The log and the merge
procedures allow a Bayou node to re-build its database
after adding updates made in the past by other nodes.
As updates reach a special primary node, the primary
node decides the final and permanent order of log en-
tries. Ivy differs from Bayou in a number of ways. Ivy’s
per-client logs allow nodes to trust each other less than
they have to in Bayou. Ivy uses a distributed algorithm to
order the logs, which avoids Bayou’s potentially unreli-
able primary node. Ivy implements a single coherent data
structure (the file system), rather than a database of inde-
pendent entries; Ivy must ensure that updates leave the
file system consistent, while Bayou shifts much of this
burden to application-supplied merge procedures. Ivy’s
design focuses on providing serial semantics to con-
nected clients, while Bayou focuses on managing con-
flicts caused by updates from disconnected clients.

7.5 Storing Data on Untrusted Servers

BFS [7], OceanStore [15], and Farsite [5] all store data
on untrusted servers using Castro and Liskov’s practical
Byzantine agreement algorithm [7]. Multiple clients are
allowed to modify a given data item; they do this by send-
ing update operations to a small group of servers holding
replicas of the data. These servers agree on which opera-
tions to apply, and in what order, using Byzantine agree-
ment. The reason Byzantine agreement is needed is that
clients cannot directly validate the data they fetch from
the servers, since the data may be the result of incremen-
tal operations that no one client is aware of. In contrast,
Ivy exposes the whole operation history to every client.
Each Ivy client signs the head of a Merkle hash-tree [25]
of its log. This allows other clients to verify that the log
is correct when they retrieve it from DHash; thus Ivy
clients do not need to trust the DHash servers to main-
tain the correctness or order of the logs. Ivy is vulnerable



to DHash returning stale copies of signed log-heads; Ivy
could detect stale data using techniques introduced by
SUNDR [24]. Ivy’s use of logs makes it slow, although
this inefficiency is partially offset by its snapshot mech-
anism.

TDB [20], S4 [38], and PFS [36] use logging and (for
TDB and PFS) collision-resistant hashes to allow modi-
fications by malicious users or corrupted storage devices
to be detected and (with S4) undone; Ivy uses similar
techniques in a distributed file system context.

Spreitzer et al. [35] suggest ways to use cryptograph-
ically signed log entries to prevent servers from tam-
pering with client updates or producing inconsistent log
orderings; this is in the context of Bayou-like systems.
Ivy’s logs are simpler than Bayou’s, since only one client
writes any given log. This allows Ivy to protect log in-
tegrity, despite untrusted DHash servers, by relatively
simple per-client use of cryptographic hashes and pub-
lic key signatures.

8 Conclusion

This paper presents Ivy, a multi-user read/write peer-to-
peer file system. Ivy is suitable for small groups of coop-
erating participants who do not have (or do not want) a
single central server. Ivy can operate in a relatively open
peer-to-peer environment because it does not require par-
ticipants to trust each other.

An Ivy file system consists solely of a set of logs, one
log per participant. This arrangement avoids the need
for locking to maintain integrity of Ivy meta-data. Par-
ticipants periodically take snapshots of the file system
to minimize time spent reading the logs. Use of per-
participant logs allows Ivy users to choose which other
participants to trust.

Due to its decentralized design, Ivy provides slightly
non-traditional file system semantics; concurrent updates
can generate conflicting log records. Ivy provides several
tools to automate conflict resolution. More work is under
way to improve them.

Experimental results show that the Ivy prototype is
two to three times slower than NFS. Ivy is available from
http://www.pdos.lcs.mit.edu/ivy/.
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