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ABSTRACT
This paper is concerned with compact routing in the name
independent model first introduced by Awerbuch et al. [1]
for adaptive routing in dynamic networks. A compact rout-
ing scheme that uses local routing tables of size Õ(n1/2),
O(log2 n)-sized packet headers, and stretch bounded by 5 is
obtained. Alternative schemes reduce the packet header size
to O(log n) at cost of either increasing the stretch to 7, or

increasing the table size to Õ(n2/3). For smaller table-size
requirements, the ideas in these schemes are generalized to
a scheme that uses O(log2 n)-sized headers, Õ(k2n2/k)-sized

tables, and achieves a stretch of min{1 + (k − 1)(2k/2 −
2), 16k2 + 4k}, improving the best previously-known name-
independent scheme due to Awerbuch and Peleg [3].
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1. INTRODUCTION
Consider an undirected (weighted) n-node network where

nodes are labeled with an arbitrary permutation P of the
labels {0, . . . , n − 1}. A packet labeled i can arrive at any
node in the network, and must then be delivered to the node
that P assigned label i. This is called name-independent
routing, since the labels are unrelated to network topology.
Consider the scheme in which each node stores an entry
for each destination i in its local routing table, containing
the name of the outgoing link for the first edge along the
shortest path from itself to i. This uses O(n log n) space at
every node, and routes along shortest paths.

In this paper, we consider the following question: can we
design a compact routing scheme for this problem? That is,
when the condition that packets route along shortest paths
is relaxed to allow some bounded stretch (where the stretch

of path p(u, v) from node u to node v is defined as |p(u,v)|
d(u,v)

,

where d(u, v) is the length of the shortest u-v path), can
routing tables be constructed that use sublinear space at
every node?

Though the name-independent compact routing problem
was first introduced in 1989 by Awerbuch, Bar-Noy, Linial
and Peleg [1], progress has been slow. Much recent work
[4, 7, 6, 17] has occurred on the easier, but related com-
pact routing problem, where the compact routing scheme
designer may assign his/her own polylogarithmic-sized node
labels (generally O(log n)- or O(log2 n)-bit), dependent on
network topology. That is, when a packet destined for i
arrives, “i” has been renamed, not by some arbitrary per-
mutation P but by the routing scheme designer, in order to
give maximum information about the underlying topology
of the network. (An alternate but equivalent formulation is
that a packet destined for i arrives also with a short (up to)
O(log2 n)-bit address chosen by the compact routing scheme
designer, dependent on network topology.) For example, if
the underlying network was a planar grid in the topology-
dependent (also called the name-dependent) model, then the
algorithm designer could require that a packet destined for a
node comes addressed with its (x, y) coordinates, whereas in
the name-independent model under consideration here, the
packet would come with a destination name, independent of
its (x, y) coordinates, and would have to learn information
about its (x, y) coordinates from its name as it wandered
the network.

In [1], Awerbuch et al. argue that even though topology-
dependent node labels might be fine for static networks,
they make less sense in a dynamic network, where the net-
work topology changes over time. There are serious consis-



tency and continuity issues if the identifying label of a node
changes as network connectivity evolves. In such a model, a
node’s identifying label needs to be decoupled from network
topology. In fact, network nodes should be allowed to choose
arbitrary names (subject to the condition that node names
are unique), and packets destined for a particular node name
enter the network with this name only, with no additional
topological address information.1 Routing information re-
lating this name to the location of the destination node is
distributed in the routing tables of the network, which can
be updated if network topology changes.

The scheme of Awerbuch et al. in [1] showed that, perhaps
surprisingly, the problem of compact routing with name-
independent node names was not impossible. They pre-
sented the first compact routing scheme to achieve all of the
following four properties: (1) Sublinear-space routing tables
at every node, (2) Constant size stretch, (3) Polylogarithmic-
sized routing headers, and (4) Topology-independent node
names.

However, the Awerbuch scheme was of theoretical inter-
est only, because the stretch they achieved was far too large.
While [1] present different tradeoffs of stretch versus space,
the minimum stretch any of their schemes use when achiev-
ing sublinear space, is stretch 486. That is, their schemes
produce paths that are at most 486 times the optimal length
of the shortest path. A paper of Awerbuch and Peleg [3] that
appeared a year later presented an alternate scheme with
a polynomial space/stretch tradeoff that achieves superior

stretch to the [1] construction when space is ≤ Õ(n1/2).
Gavoille and Gengler proved a lower bound of 3 for the

stretch of any compact routing scheme that uses sublinear
space at every node. Their result applies when there are up
to log2 n bits of topology-dependent routing information,
and therefore also to the name independent model [9].

Table Header
Size Size Stretch

[1] Õ
�
n1/2 � O(log n) 2592

[1] Õ
�
n2/3 � O(log n) 486

[3] Õ
�
n1/2 � O(log n) 1088

[3] Õ
�
n2/3 � O(log n) 624

This paper Õ
�
n1/2 � O(log2 n) 5

This paper Õ
�
n1/2 � O(log n) 7

This paper Õ
�
n2/3 � O(log n) 5

Lower Bound [9] o(n) log2 n 3

Figure 1: Minimum stretch achieved with sublin-
ear space for new and known results on name-
independent compact routing. (New results are in
boldface.)

1Notice that this is a slightly stronger condition than hav-
ing the nodes labeled with an arbitrary permutation P ,
since that assumes that the labels are precisely the inte-
gers {0, . . . , n−1} but we talk about how to get around this
in Section 5.

1.1 Our Results
This paper presents the first practical compact routing

algorithms that achieves all 4 of the criteria presented in
[1] including name-independence. Their resource require-
ments are listed in Figure 1, along with a comparison of our
results with previous results in this model. The principal in-
gredients of our schemes include the following: the O(log n)
greedy approximation to dominating set, used in the same
fashion as in [2, 7, 6, 16] for most of the constructions; the
sparse neighborhood covers of [3] for the construction in
Section 4; a distributed dictionary, as first defined by Pe-
leg [14]; the schemes of [6] and [17, 8] for compact routing
on trees; and a new randomized block assignment of ranges
of addresses.

We remark that our algorithms can be easily modified
to determine the results of a “handshaking scheme” in the
sense of [17]. For example, if there is a whole stream of
packets from a single origin headed for the same destina-
tion, once routing information is learned and the first packet
is sent, an acknowledgment packet can be sent back with
topology-dependent address information so that subsequent
packets can be sent to the destination without the overhead
in stretch incurred due to the name-independent model,
which arises partly from the need to perform lookups.

Stretch 5 and 7 schemes with different resource require-
ments are presented in Section 2. In Sections 3 and 4, we
generalize the ideas in our stretch 5 and 7 constructions to
two separate schemes that produce different stretch/space
tradeoffs parameterized by an integer k. The scheme in Sec-
tion 3 uses space Õ(kn1/k) and achieves stretch bounded
by 1 + (2k − 1)(2k − 2). It achieves our best stretch/space
tradeoff for 3 ≤ k ≤ 8 (For k = 2 use the stretch 5 scheme
of Section 2; for k ≥ 9, use the scheme in Section 4). The

scheme in Section 4 uses space Õ(k2n2/k) for graphs in which
the edge weights are polynomial in n, and has a stretch
bound of 16k2 + 4k. Combining the two bounds together
yields the result given in the abstract, which improves on the
best previously known stretch bounds for all integers k > 1
in the name-independent model. (The previous Awerbuch-

Peleg scheme [3] uses space Õ(k2n2/k) and achieves stretch
bounded by 64k2 + 16k for graphs whose edge weights are
polynomial in n.)

1.2 Remarks on the Model
Before we go into the details of the constructions, we make

a few remarks about the model. We assume the nodes are la-
beled precisely with a permutation of the integers {0, . . . , n−
1}, but see Section 5 for how to extend this to a more ar-
bitrary set of distributively self-chosen node names. Each
node v is also assumed to have a unique name from the set
{1, . . . , deg(v)} assigned to each outgoing edge, but these
names are assumed to be assigned locally with no global
consistency. The model in which the names of the port num-
bers are chosen by the routing algorithm (based on network
topology) is called the designer-port model [8]. When the
names of the port numbers are arbitrarily assigned by the
network, the model is called the fixed-port model [8]. All of
the results in this paper assume the more difficult fixed-port
model.

Second, we point out that all our schemes in the name-
independent model use writable packet headers; packets that
are told only a topology-independent name may, in the course
of their route, discover and then store topology-dependent



routing information (of length at most O(log n), or O(log2 n))
to route to their destination. This is in contrast to some of
the topology-dependent routing schemes, where the fixed-
topology information can be “hardwired in” as the address
of the packet, and need never be changed.

2. NAME-INDEPENDENT ROUTING WITH
STRETCH 5 AND 7

We make use of the following two results in the topology-
dependent model:

Lemma 2.1. [6] There is a routing scheme for any tree T

such that given any pair of nodes u and v in T , the scheme
routes along the optimal path of length d(u, v) in the fixed

port model. The storage costs are Õ(
√

n) per node in the
tree, and the address size is O(log n).

Lemma 2.2. [17, 8]2 There is a routing scheme for any
tree T such that given any pair of nodes u and v in T , the
scheme routes along the optimal path of length d(u, v) in the

fixed port model. The storage costs are Õ(1) per node in the
tree, and the address size is O(log2 n).

2.1 Single-Source Name Independent Compact
Routing

Let T be a (weighted) rooted n-node tree with root r,
whose nodes are labeled {0, . . . , n − 1} according to some
arbitrary permutation P (T could be a shortest path tree in
a general graph, for single-source routing). For simplicity,
we assume that

√
n is an integer. As a warm-up, we first

prove the following.

Lemma 2.3. Given a tree T with a weight function w de-
fined on its edges, there exists a name-independent routing
scheme that

1. Stores at most Õ(
√

n) information at each node.

2. Remembers at most O(log n) bits of state information
in the packet header.

3. Routes a packet from the root r to the node P has
labeled j (for any j ∈ {0, . . . , n − 1}) along a path of
length at most 3d(r, j).

Proof. Let r denote the root of T . For each i and j, let
eij denote the port name of the first edge along the shortest
path from i to j. Denote by N(i) the set of the

√
n closest

nodes to i in T , including i and breaking ties lexicographi-
cally by node name. Furthermore, divide the space of node
labels {0, . . . , n − 1} into blocks of size

√
n, so that block

B0 consists of the addresses from 0 . . .
√

n− 1 and block Bi

consists of the node labels i
√

n to (i + 1)
√

n− 1 (recall that√
n is assumed to be an integer). Let CR(x) denote the

address label that a node x would be assigned under the
tree-routing scheme of Lemma 2.1 and CTab(x) denote the
corresponding routing table stored by node x.

Let vφ(0), vφ(1), . . . , vφ(
√

n−1) be the names assigned to the
nodes in N(r), ordered by distance from the root r, with ties
broken lexicographically. The following is stored at each
node i in T .
2The differences in the [17] and [8] papers are hidden here

in the Õ(1) notation. See their papers for an extensive dis-
cussion of the different constants and log log n factors in the
various models.

• (r, eir), for the root node r.

• If i ∈ N(r), then i = vφ(t) for some unique index t. For
each j ∈ Bt, (j, CR(j)) is stored. Call this the block
table.

• CTab(i)

In addition, the following extra information is stored at
the root node r.

• For each node x in N(r), (x, CR(x)) is stored. Call
this the root table.

• For 0 ≤ k <
√

n, the pair (k, vφ(k)) is stored. Call this
the dictionary table.

Now suppose a packet destined for j arrives at r. If (j, CR(j))
is in the root table, the packet writes CR(j) into its header
and routes optimally to j with stretch 1 using the informa-
tion in the CTab(x) tables. Otherwise, let t be the index
such that j is in Bt, and look up (t, vφ(t)) in the dictio-
nary table, followed by (vφ(t), CR(vφ(t)) in the root table
and write CR(vφ(t)) into the packet header (where we note
that there is guaranteed to be an entry for vφ(t) in the root
table because vφ(t) ∈ N(r)). We route optimally to vφ(t),
look up (j, CR(j)) in its block table, write CR(j) into the
packet header, and route optimally back to the root using
the (r, exr) entries found at intermediate nodes x. Then we
route optimally from the root to j using CR(j) and the in-
formation stored in the CTab(x) tables. Since vφ(t) is among
r’s closest

√
n nodes and j is not; we have d(r, vφ(t)) ≤ d(r, j)

and thus the total route length is ≤ 3d(r, j).

CTab(x) is of size Õ(
√

n) by Lemma 2.1; Since there are
exactly

√
n nodes in N(i) for every n, every block table has√

n entries, each of size O(log n) bits. The additional infor-
mation stored at the root consists of two

√
n-entry tables,

each with O(log n)-bit entries. The maximum space require-

ment is therefore O(
√

n log n) = Õ(
√

n) at every node.

Note that if we substitute a name-dependent tree-routing
scheme that satisfies Lemma 2.2 for the one in Lemma 2.1
in the construction above, we get the same stretch bounds,
but the packet header size increases to O(log2 n).

2.2 General Networks
Given an undirected (weighted) network G, we determine

for each node u, a neighborhood ball N(u) of the n1/2 nodes
closest to u, including u and breaking ties lexicographically
by node name. Next we define a hitting set L of landmarks,
such that for every node v, N(v) contains a node in L. The
following well-known result appears in [13]:

Lemma 2.4. Let G = (V, E) be an undirected graph of

n nodes and m edges. Let N(v) denote the set of v’s n1/2

closest neighbors (with ties broken lexicographically by node

name). There exists a set L ⊂ V such that |L| = O(n1/2 log n)
and ∀v ∈ V, L � N(v) 6= ∅. A greedy algorithm exists that

computes L in Õ(m + n3/2) time.

Let V be labeled with unique addresses {0, . . . , n−1}. We
divide the address space into blocks Bi, for i = 0, . . . ,

√
n−1,

so that block Bi consists of the node labels i
√

n to (i +
1)
√

n−1. A particular set of blocks will be assigned to each
node (see below). Let Si denote the set of blocks assigned
to node i.



Let Tl denote a single source shortest path tree rooted at
l that spans all the nodes of the network. Also, partition the
nodes of G into sets Hl according to their closest landmarks,
so that Hl = {v|v’s closest landmark is l}. Let Tl(H) be a
single source shortest path tree rooted at l spanning just the
nodes of Hl. Let lu denote u’s closest landmark in L.

In what follows, we present three compact routing schemes
A, B, and C in the topology-independent model. Scheme
A uses Õ(n1/2)-sized routing tables, O(log2 n)-sized routing
headers, while achieving a stretch bound of 5, Scheme B uses
Õ(n1/2)-sized routing tables, O(log n)-sized routing headers,
while achieving a stretch bound of 7, and Scheme C uses
Õ(n2/3)-sized routing tables, O(log n)-sized routing headers,
while achieving a stretch bound of 5.

For Schemes A and B, the set L is any set of landmarks
that satisfy the requirements of Lemma 2.4. For Scheme
C, let L be exactly the Õ(n2/3)-size set of landmarks con-
structed by the topology-dependent stretch 3 routing scheme
of [6]. Also let LTab(x) and LR(x) denote the correspond-
ing storage table and address for node x that the scheme
of [6] constructs. Similarly let Tab(x) and R(x) refer to
the storage table and address, respectively of node x un-
der a tree-routing scheme that satisfies the requirements of
Lemma 2.2. Recall that CTab(x) and CR(x) refer to the
same parameters in a scheme that satisfies the requirements
of Lemma 2.1.

All three schemes utilize the sets of blocks Sv, whose prop-
erties are described by the following Lemma, which is a spe-
cial case of Lemma 3.1. The latter is proved in Section 3.

Lemma 2.5. Let G be a graph on n nodes, and let N(v)
denote the set of v’s closest

√
n neighbors (including v itself)

with ties broken lexicographically by node name. Let {Bi|0 ≤
i <
√

n} denote a set of blocks. There exists an assignment
of sets Sv of blocks to nodes v, so that

• ∀v ∈ G, ∀Bi (0 ≤ i <
√

n), there exists a node j ∈
N(v) with Bi ∈ Sj

• ∀v ∈ G, |Sv| = O(log n) �
2.2.1 Storage

Each node u stores the following:

1. For every node v in N(u), (v, euv).

2. For every node l ∈ L, (l, eul).

3. For every i, 0 ≤ i <
√

n, (i, t), where t ∈ N(u) satisfies
Bi ∈ St (such a node t exists by our construction of
Su in Lemma 2.5)

4. Scheme A For every block Bk in Su, and for each
node j in Bk, the triple (j, lg , R(j)), where lg is
a landmark that minimizes, over all landmarks in
L, the quantity d(u, lg) + d(lg, j), and R(j) is the
tree-routing address j in the tree Tlg .

Schemes B and C For every node j in Bk, where Bk

is a block in Su, the name of the closest landmark
lj to j, and the tree-routing address CR(j) for j
in the tree Tlj (H).

5. Scheme A For every landmark l ∈ L, u stores the
routing table Tab(u) for the tree Tl.

Scheme B If lu is u’s closest landmark, then u stores
its routing table CTab(u) for the tree Tlu .

Scheme C The routing table LTab(u) plus for every
node v ∈ N(u), LR(v).

We claim that each one of these entries takes Õ(n1/2)
space, except in Scheme C, where (2) and (5) each take

Õ(n2/3) space. Since N(u) is of size
√

n, it is clear that (1)

takes Õ(
√

n) space. Since the space of (2) is proportional

to the number of landmarks, clearly (2) takes Õ(
√

n) space

for the set L in Schemes A and B; and takes Õ(n2/3) space

for the set L in Scheme C; (3) takes Õ(1) space for each

of
√

n blocks, for a total of Õ(
√

n) space. (4) takes Õ(
√

n)
space per block times the number of blocks that are stored
at a node (in all three schemes) because we are storing Õ(1)
information for the

√
n nodes in each block. So (4) takes√

n space times the number of blocks in Su, which is Õ(1)

by Lemma 2.5. (5) takes Õ(
√

n) space in Scheme A be-
cause there the number of trees is equal to the number of
landmarks, which is Õ(

√
n), and u stores Õ(1) information

per tree. (5) takes Õ(
√

n) space in Scheme B because the
trees Tl partition the nodes and each node participates in
only one tree, for which it stores up to Õ(

√
n) information.

Finally, in Scheme C, (5) consists of Õ(n2/3)-size tables by
construction.

2.2.2 Routing Algorithms and Stretch Analyses
We present the three routing algorithms with stretch 5

and 7 here, together with their stretch analyses.
Scheme A. Consider two cases for the location of the des-
tination node w relative to the source node u.

1. w ∈ N(u) � L : Then the entry (w, evw) is stored at
every node v on the shortest path from u to w and we
route directly to w with a stretch of 1.

2. w 6∈ N(u) � L: On failing to find (w, euw) stored at u,
it must be that w 6∈ N(u) � L. Compute the index i
for which w ∈ Bi, and look up the node t ∈ N(u) that
stores entries for all nodes in Bi. Next, route optimally
to the node t using (t, ext) information at intermediate
nodes x. At node t, we look up lg, route optimally to
lg, following the (lg, evlg ) entries in the routing tables
in nodes v on the shortest path from t to lg, and then
optimally from lg to w, using the address information
of R(Tlg , w) and the tree routing tables Tab(x) stored
for the tree routed at lg at all nodes in G.

Lemma 2.6. The stretch of Scheme A is bounded by 5.

Proof. If w ∈ N(u) � L, we route optimally with stretch
1. Otherwise, the route taken is of length d(u, t) + d(t, lg) +
d(lg, w). We have d(u, t) + d(t, lg) + d(lg, w) ≤ d(u, t) +
d(t, lu) + d(lu, w), because lg was chosen to minimize pre-
cisely the quantity d(t, l)+d(l, w) for all l ∈ L. Now d(t, lu) ≤
d(t, u) + d(u, lu) by the triangle inequality, and similarly
d(lu, w) ≤ d(lu, u)+d(u, w). Since t ∈ N(u) by construction,
w 6∈ N(u) implies d(u, t) ≤ d(u, w). Similarly, L being a hit-
ting set for N(u) implies lu ∈ N(u), thus d(u, lu) ≤ d(u, w).
Thus the route taken is of length ≤ 2d(u, t) + 2d(u, lu) +
d(u, w) ≤ 5d(u, w).

Scheme B. Again, consider two possible cases on the loca-
tion of the destination node w relative to the source node
u.



1. w ∈ N(u) � L : Then the entry (w, evw) is stored at
every node v on the shortest path from u to w and we
route directly to w with a stretch of 1.

2. w 6∈ N(u) � L: On failing to find (w, euw) stored at
u, it must be that w 6∈ N(u) � L. Compute the index
i for which w ∈ Bi, and let t ∈ N(u) be the node
that stores entries for all nodes in Bi. Use the entries
(t, ext) at intermediate nodes x to route optimally to
the node t. At node t, we look up lw, route optimally
to lw, following the (lw, evlw ) entries in the routing ta-
bles in nodes v on the shortest path from t to lw, and
then optimally from lw to w, using the address infor-
mation of CR(Tlw , w) coupled with the tree routing
tables CTab(x) stored for all nodes x that chose lw as
their closest landmark.

Lemma 2.7. The stretch of Scheme B is bounded by 7.

Proof. If w ∈ N(u) � L, we route optimally with a
stretch of 1. Otherwise, the route taken by the algorithm
is of length d(u, t) + d(t, lw) + d(lw, w). Now d(t, lw) ≤
d(t, w) + d(w, lw) ≤ d(t, u) + d(u, w) + d(w, lw), by repeated
applications of the triangle inequality, so the route taken by
the algorithm is of length ≤ 2d(u, t) + d(u, w) + 2d(lw, w).
But d(u, t) ≤ d(u, w) because t ∈ N(u) and w is not. Also,
d(lw, w) ≤ d(lu, w), since lw is w’s closest landmark. So
d(lw, w) ≤ d(w, lu) ≤ d(w, u) + d(u, lu) ≤ 2d(u, w), where
the second inequality follows from the triangle inequality
and the third from the fact that lu ∈ N(u) (since L is a hit-
ting set), while w is not. So 2d(u, t) + d(u, w) + 2d(lw, w) ≤
7d(u, w) proving the result.

Scheme C. If u has stored an entry for w that gives w’s
address LR(w), we use Cowen’s compact routing scheme to
route directly to w, with stretch bounded by 3. So suppose
u has no address LR(w) stored for w in its local table. It
must be that w 6∈ N(u) � L. Compute the index i for which
w ∈ Bi.

• If u ∈ L, look up the node t ∈ N(u) that stores entries
for all nodes in Bi, use (t, ext) to route optimally to t.
At t, write LR(w) into the packet header, and then use
the landmark pointers in the routing tables to route
optimally back from t to u. Then, use LR(w) and
Cowen’s compact routing scheme (see [6]) to route to
w with stretch bounded by 3. The cost of the roundtrip
to t and back is less than 2d(u, w), because t ∈ N(u)
and w 6∈ N(u) implies d(u, t) < d(u, w) so the total
stretch is bounded by 5.

• If u 6∈ L, by Cowen’s construction, if u has no address
LR(w) stored for w in its local table, it must be that
d(lw, w) < d(u, w). In this case, we look up (t, ext)
to route optimally to the node t ∈ N(u) that stores
entries for all nodes in Bi. We determine the identity
of lw, and the address of w in the tree routed at lw
from t’s entry for w in its local table. Then we route
optimally from t to lw, and then from lw to w.

Lemma 2.8. The stretch of Scheme C is bounded by 5.

Proof. It remains to analyze the case when w 6∈ N(u) � L
and u 6∈ L. Then, as remarked above, the absence of an en-
try for w in Cowen’s scheme implies d(lw, w) ≤ d(u, w), and
the route taken is of length d(u, t)+d(t, lw)+d(lw, w). Now

d(t, lw) ≤ d(t, u)+d(u, lw), and d(u, lw) ≤ d(u, w)+d(w, lw)
So the route is of length ≤ 2d(u, t) + d(u, w) + 2d(w, lw) ≤
5d(u, w), since w 6∈ N(u) and t ∈ N(u) implies d(u, t) ≤
d(u, w).

3. A GENERALIZED ROUTING SCHEME
FOR Õ(n1/k) SPACE

3.1 Preliminaries
Given a graph G with V = {0, . . . , n − 1}, we assume for

simplicity that n1/k is an integer, and define the alphabet
Σ = {0, . . . , n1/k − 1}. For each 0 ≤ i ≤ k, Σi is the set
of words over Σ of length i. Let 〈u〉 ∈ Σk be the base

n1/k representation of u, padded with leading zeros so it is
of length exactly k. For each 0 ≤ i ≤ k, we also define
functions σi : Σk −→ Σi , such that σi((a0, . . . , ak−1)) =
(a0, . . . , ai−1). That is, σi extracts the prefix of length i

from a string α ∈ Σk.
For each α ∈ Σk−1, define a set Bα = {u ∈ V |σk−1(〈u〉) =

α}. We will call these sets blocks. Clearly ∀α ∈ Σk−1, |Bα| =
n1/k. We abuse notation slightly by defining σi(Bα) =
σi(α0), where α0 is the word in Σk obtained by appending a
0 to α. Note that by this definition, σk−1(Bα) = σk−1(〈u〉)
whenever u ∈ Bα.

For every node u, we define the neighborhoods N i(u) as

the set of ni/k nodes closest to u including u itself, break-
ing ties lexicographically by node name. We first prove the
following:

Lemma 3.1. Given a graph G, there exists an assignment
of sets of blocks Sv to nodes v, so that

• ∀v ∈ G, ∀ 0 ≤ i < k, ∀τ ∈ Σi, there exists a node
w ∈ N i(v) with Bα ∈ Sw such that σi(Bα) = τ

• ∀v ∈ G, |Sv| = O(log n)

Proof. The proof is by the probabilistic method. Let n
be the number of nodes in the graph G. Consider a ran-
dom assignment of blocks, constructed as follows: in each of
f(n, k) rounds, a block is assigned to each node uniformly
at random. The function f(n, k) will be defined at the end
of this proof to ensure the result.

Note that for every i, |Σi| = |N i(u)| = ni/k. Let Xi,u,τ,r

be the event that in the rth round of random block assign-
ments, N i(u) does not contain a node w such that Sw con-
tains a block Bα for which σi(Bα) = τ .

Then our result holds if we can show that

� 0≤i<k � u∈V � τ∈Σi � f(n,k)
r=1 Xi,u,τ,r 6= ∅

Clearly for fixed i, u, τ and r,

Pr[Xi,u,τ,r] =
�
1 − 1

ni/k
� ni/k

≤ e−1.

Therefore for i, u and τ , we have

Pr � � f(n,k)
r=1 Xi,u,τ,r � ≤ e−f(n,k).

It follows that for fixed i and u,

Pr � � τ∈Σi � f(n,k)
r=1 Xi,u,τ,r � ≤ ni/ke−f(n,k),

and for fixed i,

Pr � � u∈V � τ∈Σi � f(n,k)
r=1 Xi,u,τ,r � ≤ n1+i/ke−f(n,k)

≤ n2e−f(n,k).



Clearly

Pr � � 0≤i<k � u∈V � τ∈Σi � f(n,k)
r=1 Xi,u,τ,r � ≤ kn2e−f(n,k),

and our result holds if kn2e−f(n,k) < 1. We ensure this
by choosing ef(n,k) = 2kn2, which requires that f(n, k) =
ln 2 + ln k + 2 ln n = O(log n).

Note that the proof of the lemma also yields a simple ran-
domized procedure for generating the desired assignments
of sets of blocks to nodes. Lemma 2.5, used in Section 2, is
a special case of the preceding lemma, given by k = 2.

3.2 Storage
A component of the algorithm is the name-dependent

routing algorithm of Thorup and Zwick which uses Õ(n1/k)
space per node, O(log2 n)-sized headers and which delivers
messages with stretch 2k − 1 [16]. We note that this is the
version of their algorithm which requires handshaking, but
our scheme stores the precomputed handshake information
with the destination address. Let TZR(u, v) denote the ad-
dress required for routing from u to v, (including the extra
O(log2 n) bits Thorup and Zwick determine from u and v as
a result of the handshaking protocol), and TZTab(u) denote
the routing table their algorithm stores at node u.

Let {Su|u ∈ V } be a collection of sets of blocks that satis-
fies Lemma 3.1. For each node u, let S′

u = Su � {Bβ}, where
u ∈ Bβ (that is, each node always stores the block its own
address belongs to). Each node u stores the following:

1. TZTab(u)

2. For every v ∈ N1(u), the pair (v, euv), where euv is
the first edge on a shortest path from u to v.

3. The set S′
u of O(log n) blocks Bα, and for each block

Bα ∈ S′
u, the following:

(a) For every 0 ≤ i < k − 1, and for every τ ∈ Σ, let
v be the nearest node containing a block Bβ such
that σi(Bβ) = σi(Bα) and the (i+1)st symbol of
σk−1(Bβ) is τ . If i = 0 we store the node name
v, else we store the routing address TZR(u, v).

(b) Corresponding to i = k − 1, for every τ ∈ Σ,
we store the routing address TZR(u, v), where
〈v〉 = ατ . Note that consistently with the previ-
ous bullet, the node v satisfies σk−1(Bα) = α =
σk−1(〈v〉) and the kth symbol of σk(〈v〉) is τ .

Lemma 3.2. The storage requirement of our algorithm is
Õ(n1/k) for fixed constant k.

Proof. We need Õ(n1/k) space for (1). Since |N1(u)| =
n1/k for all u, it is clear that (2) uses Õ(n1/k) space. For
(3) we note that |S′

u| = O(log n) blocks. For each block, we

store kn1/k values TZR(u, v), where the size of TZR(u, v)

in bits is Õ(1). Therefore the space requirement for (3)

is Õ(kn1/k). The total of all these space requirements is

Õ(n1/k) for fixed constant k.

3.3 Routing Algorithm
We denote by Hop(u, v) the Thorup Zwick route from

a node u that stores the routing information TZR(u, v),
to the node v. For source node s and destination node t,

our algorithm routes a packet through a sequence of nodes
s = v0, v1, . . . , vk = t. For any two successive nodes vi and
vi+1 in this sequence that are distinct (except for v0 and
v1), the transition between them is made through the path
Hop(vi, vi+1). The sequence s = v0, v1, . . . , vk = t has the
property that each vi (except vk) contains a block Bβi for
which σi(Bβi) = σi(〈t〉). The case when vi = vi+1 occurs
when node vi coincidentally contains a block that matches
the destination in at least i + 1 digits.

Figure 2 diagrams an example sequence of nodes vi, and
it is followed by the pseudocode for the algorithm.
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Figure 2: A schematic of how the prefix-matching al-

gorithm of Theorem 3.7 works. The figure only includes

the sequence of nodes where the distributed dictionary

is read – the other nodes in the path are not shown. For

illustration purposes each node contains only 3 blocks,

and the contents of each block are illustrated in the mag-

nified table. Asterisks stand for arbitrary digits in block

labels. Notice that the blocks that are actually consulted

(shown labeled) have prefixes that increasingly match

the destination 1482.

Algorithm 3.3.
if (t ∈ N1(s)):

route to t using shortest path pointers eut.
else:

i← 0
while (i 6= k):

τ ← σi+1(〈t〉)
if (i+1 < k):

vi+1← closest v ∈ N i+1(vi) such that
∃Bβ ∈ Sv, σi+1(Bβ) = τ

else:
vk ← t

if (vi 6= vi+1):
if (i = 0):

route to v1 by shortest path pointers euv1

else: (i ≥ 1)
route to vi+1 along Hop(vi, vi+1)

using TZR(vi, vi+1)
i← i + 1



Lemma 3.4. Algorithm 3.3 always delivers a given packet
successfully from a source node s to a destination t.

Proof. At each vi we have sufficient routing information
to route to node vi+1 and delivery to node vi+1 is guaranteed
by the Thorup Zwick algorithm. The algorithm terminates
on finding t, because in the worst case we have stored infor-
mation for routing to a node v in Nk(vk−1) = V such that
σk(〈v〉) = σk(〈t〉), and the latter condition implies v = t.

We note that the idea of matching increasing prefixes of
node names appears in the parallel algorithms literature for
multidimensional array routing (see [12]); it has also been
cleverly used in recent schemes proposed in context of lo-
cating replicated objects in peer-to-peer systems [18, 11, 15,
10].

3.4 Stretch Analysis
In this section we complete the analysis of Algorithm 3.3

by analyzing the stretch.

Lemma 3.5. For 0 ≤ i ≤ k − 1, d(vi, vi+1) ≤ 2id(s, t).

Proof. Recall that vi is the first node that is found to
match ith prefix of the destination t by the routing algo-
rithm, as defined above. For each 0 ≤ i ≤ k, let v∗

i be the
closest node to node s such that σi(〈v∗

i 〉) = σi(〈t〉). The
proof is by induction.

For the basis case, we note that based on the algorithm
d(s, v1) = d(v0, v1) ≤ 20d(s, t), since t itself is a candidate
to be v1. If d(s, t) < d(s, v1), then t would have been cho-
sen to be node v1, because t contains a block Bβ such that
σ1(Bβ) = σ1(〈t〉).

The inductive hypothesis is that for all i such that 0 ≤
i ≤ r− 1 < k− 1, we have d(vi, vi+1) ≤ 2id(s, t). We bound
d(vr, vr+1) as follows:

d(vr, vr+1) ≤ d(vr, v
∗
r+1) (1)

≤ d(vr, s) + d(s, v∗
r+1) (2)

≤ d(s, t) + d(vr, s) (3)
≤ d(s, t) + d(s, vr) (4)

≤ d(s, t) + � r−1
i=0 d(vi, vi+1) (5)

≤ d(s, t) � 1 + � r−1
i=0 2i � (6)

≤ 2rd(s, t)

(1) follows by definition of vr+1 and v∗
r+1 and (2) follows

since d(vr, v
∗
r+1) is a shortest distance. We obtain (3) by

commutativity, and since t is a candidate to be the node
v∗

r+1. By symmetry we get (4), and (5) follows since d(s, vr)
is a shortest distance. Finally (6) is obtained by applying
the inductive hypothesis, and the result follows.

In this context let p′(s, t) be the path obtained by rout-
ing from s to t, using a shortest path between each pair of
distinct vi and vi+1.

Corollary 3.6. For all s, t, p′(s, t) ≤ (2k − 1)d(s, t).

Proof. p′(s, t) = � k−1
i=0 d(vi, vi+1) ≤ � k−1

i=0 2id(s, t) ≤
(2k − 1)d(s, t).

Theorem 3.7. For fixed constant k ≥ 2, Algorithm 3.3
uses space Õ(n1/k), and delivers packets correctly with stretch
1 + (2k − 1)(2k − 2).

Proof. The space bound and termination are established
in Lemma 3.2 and Lemma 3.4 respectively.

While routing from s = v0 to v1, we do not use the name-
dependent algorithm, since we have shortest path pointers
within each ball of size n1/k so the stretch for that segment
is 1. The stretch for the remaining segments, based on the
previous corollary, is (2k − 2), times the stretch factor of
2k−1 from the Thorup-Zwick name-dependent scheme.

We note that for the special case when k = 2, our earlier
specialized algorithm with a stretch of 5 is better than the
generalized algorithm of this section, which has stretch 7
when k = 2.

4. A GENERALIZED ROUTING SCHEME
WITH A POLYNOMIAL TRADEOFF

In this section we present a universal name-independent
compact routing scheme that, for every k ≥ 2, uses space

Õ(k2n
2

k log n) and achieves a stretch of 16k2 + 4k, with
O(log2 n)-bit headers, on any undirected graph with edge
weights whose size is polynomial in n. The scheme is very
similar to Awerbuch and Peleg’s scheme [3]. Like [3], we
use an underlying topology-dependent routing scheme with
low stretch and build on top of that a dictionary to retrieve
topology-dependent information. Our dictionary is based on
the prefix matching idea of Section 3.

4.1 Preliminaries
Given an undirected network G = (V, E) with n nodes and

polynomial-sized edge weights; we define N̂m(v) as the set of
nodes in V that are within distance m from v ∈ V ; Diam(G)
is the maximum distance between any pair of nodes in G;
Rad(v,G) is the maximum distance between any node in G
and v; Rad(G) is min{Rad(v, G)|v ∈ V }; and Center(G) is
any vertex v ∈ V such that Rad(v,G) = Rad(G).

We use the same hierarchy of covers as in [3]. For every
i = 1, . . . , dlog(Diam(G))e, [3] construct a cover such that

(1) there exists a cluster in the cover that includes N̂2i

(v)

for every v ∈ V , (2) every vertex is in no more than kn
1

k

clusters and (3) the diameter of a shortest path tree rooted
at the center of such a cluster is at most (4k+1)2i; call such
a tree TCi . At every level i = 1, . . . , dlog(Diam(G))e, every
node v in the network chooses a cluster Ci that contains

N̂2i

(v). Following [3]’s terminology, we refer to that cluster
as v’s home cluster at level i.

We use a name-dependent tree routing scheme that sat-
isfies Lemma 2.2 to route within clusters in the covers. Let
Tab(TC, x) denote the local storage table for x in the short-
est path tree TC rooted at the center of cluster C, and
R(TC , x) denote x’s topology dependent address for that
tree.

4.2 Storage
Let Σ and the set of functions σ be defined as in Section 3.

For every level i = 1, . . . , dlog(Diam(G))e, every vertex u
stores the following:

1. An identifier for u’s home cluster at level i.

2. For every cluster Ci in the i-th level cover that vertex
u is in, u stores:

(a) Tab(TCi , u)



(b) For every τ ∈ Σ (notice there are n
1

k choices) and
for every j ∈ {0, . . . , k−1} (k choices), R(TCi , v),
where v ∈ Ci is the nearest node such that σj(〈u〉)
= σj(〈v〉) and the (j + 1)st symbol of 〈v〉 is τ , if
such a node v exists. It also stores the center of
Ci (the root of the tree TCi spanning Ci).

The total storage requirement for any node in the graph, is

dlog(Diam(G))e×(poly-log(n)+kn
1

k ×(poly-log(n)+kn
1

k )),
where dlog(Diam(G))e accounts for all the levels in the hi-

erarchy, kn
1

k accounts for the maximum number of clusters

a vertex appears in, (poly-log(n) + kn
1

k ) is the combined
storage requirement of every node within a single cluster,

and the term kn
1

k accounts for the tree routing addresses of
prefix-matching closest nodes. Notice also that poly-log(n)
bits are sufficient to identify a cluster in a given level since

there are at most kn1+ 1

k such clusters. The total is therefore
Õ(k2n

2

k log(Diam(G))). Note that the assumption above
that weights on edges are polynomial-sized, is necessary for
dlog(Diam(G))e to be O(log n).

4.3 Routing Algorithm
To route from u to v we do the following. For increasing

values of i = 1 up to dlog(Diam(G))e, u attempts to route
to v in cluster Ci, where Ci is the home cluster of u at
level i, until the destination is reached. Notice that success
is guaranteed because in level i = dlog(Diam(G))e clusters
span the entire network.

To route a message from u to v within cluster Ci we go
through a series of nodes in Ci. The message always carries
the tree routing label of the origin u and an identifier of
the current cluster Ci. From any intermediate node, say
w, in this series (u is the first such node), it is routed to a
node in Ci that matches the largest prefix of the name of
the destination v. If no such node exists in Ci, then the
message is returned to u by using the tree routing label of u
(this is when failure to deliver is detected). Otherwise, the
message reaches the destination after at most k such trips.
Notice that while node w might appear in different clusters,
we retrieve the information corresponding to the appropriate
cluster (in this case Ci); we can do this because an identifier
for the current cluster Ci is included in the message.

4.4 Stretch Analysis
Let the distance between u and v be d. There exists a

level i ≤ log(2d) such that u’s home cluster Ci contains v.
When routing within cluster Ci there are at most k nodes
visited, and the distance between nodes is no more than
the diameter of TCi . The total distance traveled within Ci

is at most Diam(TCi) × k = (4k + 1)2ik = 2d(4k + 1)k,
that is 8k2d + 2kd. The total distance traveled in the whole
process is at most twice the distance in the last level visited,
hence the distance is 16k2d + 4kd. The stretch is therefore
16k2 + 4k.

Thus we have proved the following theorem:

Theorem 4.1. For every k ≥ 2, there is a universal name-

independent compact routing scheme that uses Õ(k2n
2

k log D)
space, and achieves stretch 16k2 + 4k, where D is the diam-
eter of the network. 2

5. A REMARK ON NODE NAMES
We have thus far assumed that the node names form an

arbitrary permutation of {0, . . . , n−1}. We argue here that
this assumption can be made without loss of generality. Sup-
pose we have a set of n nodes, each having a unique name
from an arbitrary universe U . We use a hash function h that
maps U to the set {0, . . . , p − 1}, where p ≥ n is a prime.
The hash function is chosen such that (1) it can be com-
puted fast; (2) it requires small storage; and (3) the proba-
bility of collision is small. A natural candidate for this hash
function is from the class proposed by Carter and Wegman.
We draw a polynomial H from a class of integer polyno-
mials H of degree O(log n). For any node u, we rename u
to name(u) = H(int(u)) mod p, where int(u) is the integer
representation in Zp. The following lemma, that directly
follows from [5], guarantees low collision probabilities.

Lemma 5.1 (Carter and Wegman [5]). Let m ∈ [p]
be an integer. For every collection of ` nodes u1 through u`,
we have

Pr [name(u1) = name(u2) = . . . = name(u`) = m] ≤ � 2

p � `

.

By setting p = Θ(n), we ensure that the number of bits
in the new name is log n + O(1), and that the probabil-
ity of Ω(log n) nodes mapping to the same name is inverse-
polynomial. Furthermore, the representation of the hash
function H only requires storing O(log n) words of O(log n)
bits each at a node, amounting to O(log2 n) bits at each
node.

We now describe how the routing schemes proposed in
the paper can be modified to handle two consequences of
the above hashing mechanism: (1) the node names are cho-
sen from [0, Θ(n)) rather than [0, n); and (2) there may be
Θ(log n) collisions for a given name. We first note that all
of our routing schemes easily adapt to the case where the
unique names are drawn from the integers in the interval
[0, Θ(n)). In the new schemes, there will be no routing ta-
ble entries containing names from the interval [0, Θ(n)) that
do not exist. The adapted schemes yield the same respec-
tive stretch factors at the cost of a constant-factor increase
in space.

In order to accommodate the event that the hashed names
of two nodes are the same, a small modification to the rout-
ing tables suffices. Suppose, in our original scheme with
unique names, the table at a node contains an entry for a
node with name X, satisfying a property (e.g., lying within
a certain neighborhood). In the new scheme, the table will
contain an entry for all nodes with hashed name X that sat-
isfy the property; the entries may be distinguished by also
storing the original names of the nodes, or by comparing
the result of applying another hash function (or a series of
hash functions, for increasing confidence) to the node names.
Specifically, for Schemes A, B, and C, the primary change
will be that a block may have more than

√
n nodes (but

O(
√

n) with high probability), thus increasing the space at
each node by at most a constant factor with high probabil-
ity. For the schemes of Section 3 and 4, the primary change
will be owing to the following: for a node u and a given
k-bit sequence µ, there may be multiple nodes whose prefix
matches that of u in all but the last k bits and has µ in the
last k bits. Thus in step 3(b) of Section 3.2 and in the stor-
age algorithm of Section 4, the modified scheme will store



the hashed names and the original name (for resolving con-
flicts) of all such nodes, rather than the unique node under
the earlier uniqueness assumption. Note that the increase
in size of the namespace and the collisions result in the in-
crease in storage of O(log n) per node with high probability,
while maintaining the same stretch factor.

6. OPEN PROBLEMS
What is the minimum achievable stretch for name inde-

pendent compact routing schemes with sublinear storage at
every node? The remaining gap between the Gavoille and
Gengler lower bound of 3 [9] and this paper’s upper bound
of 5 may be able to be narrowed.

Finally, while this paper takes an important step in pro-
ducing low-stretch schemes that decouple node names from
network topology, the next step is to study this problem on
fully dynamic networks, where routing tables must be up-
dated online as nodes and edges arrive and depart from the
network.
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