

Low Diameter Graph Decompositions

N.Linial and M.Saks 1991 Seminar of Distributed Computing ETH Zürich 16. December 2003 Josias Thöny <thoenyj@student.ethz.ch>

Contents

- Introduction
- Sequential algorithm
- Distributed randomized algorithm
- Summary
- Discussion

Introduction

 What is a Graph Decomposition? A decomposition of a graph G=(V,E) is a partition of the vertex set into subsets ("blocks")

Why to decompose Graphs? <

- Problem comes from **Distributed Computing** where networks are modeled as graphs
- Coordinate nodes for efficient distributed algorithms (symmetry breaking)
- How can we do this coordination?

Centralization

- Choose one node to be the master and to manage all other nodes
- Drawbacks:
 - Master node is a bottleneck
 - Long communication paths

Decentralization

- Decompose the graph into regions of nearby nodes ("blocks")
- Take advantage of locality
- Efficient tool for some distributed algorithms like MIS, graph coloring, etc.

Definitions

- Graph G=(V,E), |V|=n
- Number of blocks N: decomposition of the graph into N blocks.
- Diameter D of a block: maximum distance between any two vertices in a connected component of the block
- Diameter D of a decomposition:

maximum diameter of any of its blocks

N = 3D = max(3,2,2) = 3

Sequential Algorithm

- Goal: Find a decomposition of a graph with small number of blocks and small diameter (good trade-off between the two)
- Algorithm iteratively constructs one block at a time
- For each block, there is a growing phase where vertices are added to that block

Balls

- The algorithm uses balls to decompose the graph
- Each ball has a center c and a radius r
- The ball contains all vertices of the graph which are within distance r of the center c (->volume of the ball)
- A vertex v is an inner vertex of a ball if d(v,c)<r
- A vertex v is a border vertex of a ball if d(v,c)=r

Ball of radius 2 Red: Inner vertices Blue: Border vertices Volume = 8

Sequential Algorithm: Example

Sequential Algorithm: Analysis

- Diameter D ≤ 2 log n Follows from construction of balls (can double the volume only log(n) times)
- Number of blocks ≤ log n There are at least as many red vertices as blue ones -> each block takes at least half of all vertices
- Trade-off is optimal
- Polynomial running time

- Goal: same quality of decomposition: diameter and number of blocks are both O(log n)
- How can we use the idea of balls?
- Randomized algorithm
- Problem of overlapping balls if every vertex starts to create a ball at the same time
- Idea: Use IDs and join the ball with highest ID

Distributed Algorithm (2)

- Algorithm is a sequence of stages; in each stage every vertex decides whether to join the current block
- First every vertex v chooses a random radius r_v to create a ball and sends the pair (ID, r_v) to all neighbors within distance r_v
- Then each vertex v chooses the vertex C(v) of highest ID among all received pairs (ID, r) and joins the current block if d(v, C(v)) < r_{C(v)} (v is an inner vertex of the ball around C(v))

Distributed Algorithm: Example

1) Graph with IDs

2) Choose random radius

3) Multicast, then select highest ID

4) Inner vertices join block

Analysis: Diameter

• Probability distribution of the radius:

 $r_{v} = \begin{cases} k \text{ with probability } p^{k}(1-p), \text{ for } k < \log n \\ \log n \text{ with probability } p^{\log n} \end{cases}$ where $p = \frac{1}{2}$

- -> Diameter of one ball ≤ 2log n
- Diameter of a block ≤ 2log n, because: Claim: Every vertex of a connected component in a block has the same center.

Proof by contradiction: Assume there are two neighbor vertices u, v with different centers C(u), C(v). Assume C(u) has a higher ID than C(v). u is an inner vertex of the ball around $C(u) \rightarrow v$ must have received the message

from C(u) and joined that ball -> contradicition

Diameter

• This algorithm uses a slightly different definition of the diameter:

It's allowed to have shortcuts through vertices from a different block. (Necessary because of overlapping balls)

Diameter = 2 (without shortcut: 3)

Number of Blocks (1)

- Overview:
- Estimate the probability that a vertex u is assigned to the current block B: Pr[u ∈ B]
- Estimate the probability that all vertices are assigned to some block after i rounds (algorithm is over)
- Show that this probability is high after a logarithmic number of rounds
 () algorithm creates logarithmic number of blocks)

(-> algorithm creates logarithmic number of blocks)

Number of Blocks (2)

Estimate the probability that vertex u is assigned to the current block B: $Pr[u \in B]$ -> Consider neighborhood of u:

$$\Pr[u \in B] = \sum_{v \mid d(u,v) < \log n} \Pr[u \in B \mid C(u) = v] \Pr[C(u) = v]$$

$$\Pr[u \in B | C(u) = v] = \Pr[d < r_v | d \le r_v] = \frac{\Pr[d < r_v]}{\Pr[d \le r_v]} = \frac{p^{d+1}}{p^d} = p = \frac{1}{2}$$

$$\Rightarrow \Pr[u \in B] = p \sum_{v \mid d(u,v) < \log n} \Pr[C(u) = v] = p \Pr[d(C(u), u) < \log n]$$

$$\geq p \Pr[r_v < \log n, \forall v] = p(1 - p^{\log n})^n = \frac{1}{2}(1 - \frac{1}{n})^n \approx \frac{1}{2e}$$

Number of Blocks (3)

- Pr[vertex u is assigned to a block B] = $Pr[u \in B] = q \approx 1/2e$
- Pr[vertex u is not assigned to some block after i rounds] = (1-q)ⁱ
- Pr[all vertices assigned to some block after i rounds] ≥ 1-n(1-q)ⁱ (algorithm terminates -> number of blocks=i)
- Choose the number of rounds (i) to be logarithmic in n: $i = c \log_Q n$
- Pr[logarithmic number of blocks] $\geq 1 n(1-q)^{c \log_Q n}$

$$\approx 1 - n(1 - \frac{1}{2e})^{c \log_Q n} = 1 - n(\frac{1}{2e(2e-1)})^{c \log_Q n} \stackrel{c=2,Q=2e(2e-1)}{=} 1 - n\frac{1}{n^2} = 1 - \frac{1}{n} \approx 1$$

Distributed Algorithm: Remarks

- Nodes have to know when they've received all messages from their neighbors (can be solved with synchronization techniques)
- All nodes have to start the algorithm at the same time
- Nodes must know n

Summary

- Sequential algorithm:
 - Number of blocks $\leq \log n$
 - Diameter of blocks \leq 2log n
 - Running time: polynomial
- Distributed randomized algorithm:
 - Number of blocks O(log n)
 - Diameter of blocks O(log n)
 - Running time O(log²n)

Discussion

