
3.2.2004
     1

Labeling Schemes for 
Flow and Connectivity

Julio Pérez
Distributed Computing Seminar, WS 2003/04
ETH Zurich

3.2.2004
            2

Paper

� Labeling Schemes for Flow and Connectivity (extended abstract)
M. Katz, N. Katz, A. Korman, D. Peleg
SODA (Symposium of Discrete Algorithms) 2002

3.2.2004
            3

Outline

� Problem and Motivation

� Labeling Schemes, Flow and Connectivity

� Flow Labeling Schemes

� Vertex-Connectivity Labeling Schemes

� Discussion

3.2.2004
            4

� Problem and Motivation

� Labeling Schemes, Flow and Connectivity

� Flow Labeling Schemes

� Vertex-Connectivity Labeling Schemes

� Questions and Discussion

3.2.2004
            5

Problem and Motivation

� Network representation
� Goal: Cheaply store useful information about a network
� Examples for useful information:

� Vertex adjacency
� Distance
� Tree ancestry
� ...

� Particularly important for large and geographically dispersed networks
� Traditional network representations

� Vertices with names that contain no useful information
� Global representation of the network

3.2.2004
            6

Problem and Motivation (2)

� Labeling schemes proposed in this paper
� Use of more informative labels for network vertices

� Flow
� (Vertex-)Connectivity

� Localized labels that allow to infer information directly from the labels of 
the vertices

� Relatively short labels, i.e. length polylogarithmic in n (n = number of 
vertices in graph)



3.2.2004
            7

� Problem and Motivation

� Labeling Schemes, Flow and Connectivity

� Flow Labeling Schemes

� Vertex-Connectivity Labeling Schemes

� Questions and Discussion

3.2.2004
            8

� A vertex-labeling of a graph G is a function L assigning a label 
L(u) to each vertex u of G

� A labeling scheme has two components
� Marker algorithm M

� Given a graph G, selects a label assignment L = M(G)

� Decoder algorithm D 
� Given a set � = { L1, ..., LK } of labels, returns a value D(�)
� Time complexity is required to be polynomial in input size

Labeling Schemes

Marker Algorithm G L(G) , Decoder Algorithm

L(u)

L(v)

L(w)

D(L(u),L(v),L(w))

3.2.2004
            9

� f labeling scheme
� Let f be a function defined on sets of vertices in a graph
� Given a family � of weighted graphs, an f-labeling scheme for � is a 

marker-decoder pair (Mf, Df) with following properties:

� Consider G ∈ � and let L = Mf(G) be the vertex labeling assigned by the 
marker Mf to G

� Then for any set of vertices W = { v1, ..., vk } in G, the value returned by the 

decoder Df on the set of labels �(W) = { L(v) | v ∈ W } satisfies D(�(W)) = f(W)

Labeling Schemes (2)

Marker Mf G L(G) ,    L'(W) Decoder Df f(W)

3.2.2004
            10

Labeling Schemes (3)

� For a labeling L for the graph G = (V,E) let |L(u)| denote the 
number of bits in the string L(u)

� �M(G) = maxu ∈ V |L(u)| for a given G and a marker algorithm M

� For a finite graph family �, set �M(�) = max { �M(G) | G ∈ � }

� Finally, given a function f and a graph family �, let
�(f, �) = min { �M(�) | ∃D, (M,D) is an f labeling scheme for � } 

3.2.2004
            11

Flow

� Let G be a weighted undirected graph G = (V, E, w)
� For every edge e ∈ E, the weight w(e) represents the capacity of 

the edge (e.g. capacity = bandwidth)
� For two vertices u,v ∈ V, the maximum flow flow(u,v) is defined 

as follows (paper definition):
� Maximum flow in a path p = (e1, ..., em) is the max. value that does not 

exceed the capacity of any edge e in p, i.e. flow(p) = min1 � i � m{ w(ei) }

� A set of paths P in G is edge-disjoint if each edge e ∈ E appears in no 
more than one path p ∈ P

� The max. flow in a set P of edge-disjoint paths is flow(P) = �p ∈ P flow(p)

� flow(u,v) = maxP ∈ Pu,v
{ flow(P) }, where Pu,v is the collection of all sets P of 

edge-disjoint paths between u and v

3.2.2004
            12

Flow (2)

1

3

45

22

1

 3

5

4

 4

���� � � � � 	

� ∞ � � � �

� ∞ � � �

� ∞ � �

� ∞ �

� ∞

� Instead of demanding that the paths have to be edge-disjoint, 
demand that for the flow between two nodes u,v the edge 
capacities have to be respected, i.e. flowin(e) � w(e) (aggregated 

over all pi ∈ P), for all edges e ∈ pi, pi ∈ P    



3.2.2004
            13

Edge-Connectivity

� Edge-connectivity
� e-conn(u,v) = flow(u,v) assuming each edge is assigned one capacity unit

11

3

45

2

1
 1

1

1

 1


���

 � � � � 	

� ∞ � � � �

� ∞ � � �

� ∞ � �

� ∞ �

� ∞

3.2.2004
            14

Vertex-Connectivity

� Vertex-connectivity
� A set of paths P connecting the vertices u and v in G is vertex-disjoint if 

each vertex except u and v appears in at most one path p ∈ P
� v-conn(u,v) of two vertices u,v in an unweighted graph equals the 

cardinality of the largest set P of vertex-disjoint paths connecting them

1

54

6

32

����

 � � � � 	 �

� − � � � � �

� − � � � �

� − � � �

� − � �

� − �

� −

3.2.2004
            15

� Problem and Motivation

� Labeling Schemes, Flow and Connectivity

� Flow Labeling Schemes

� Vertex-Connectivity Labeling Schemes

� Questions and Discussion

3.2.2004
            16

Equivalence Relations

� We consider the family �(n,�) of undirected, capacitated and 
connected n-vertex graphs with maximum integral capacity �

� Given G = (V,E,w) ∈ � and 1 � k � �, define the following 
relation
� Rk = { (x,y) | x,y ∈ V, flow(x,y) � k }

� Rk is an equivalence relation

� Reflexive (flow(x,x) � k)
� Symmetric (flow(x,y) � k � flow(y,x) � k)
� Transitive (flow(x,y) � k and flow(y,z) � k � flow(x,z) � k)

� For every k � 1, Rk  induces a collection of equivalence classes on V, 
Ck = { C1

k, , ..., C
m

k  }, such that Ci
k 	 Cj

k = Ø and Ui C
i
k = V

(equivalence class = subset whose elements are related to each other by an    
 equivalence relation)

3.2.2004
            17

Basic Idea

� Given G, construct a tree TG corresponding to G's equivalence 
relations

� kth level of TG corresponds to the relation Rk

� Each node at a level k represents an equivalence class
� Nodes representing equivalence classes with one element are 

leaves 

3.2.2004
            18

Basic Idea (2)

� Corresponding tree TG

1,...,5

1,...,5

1,5 2,3,4

R1

C2
4  C1

4

C3 
10

C1
3

C1
2

C1
9

  C1
10

  Level

1

10

9

...

4

3

2

If max. capacity of any edge  is �, 
then depth of TG cannot exceed � 
levels? 

1,...,5

  ...

2,3,4

2 43

1

3

45

22

1

 
3

5

4 
4

���� � � � � 	

� ∞ � � � �

� ∞ � � �

� ∞ � �

� ∞ �

� ∞



3.2.2004
            19

� For two nodes x,y in a tree T with root r, the separation level of x 
and y SepLevelT(x,y)  is defined as the depth of the least 
common ancestor of x and y, lca(x,y)

� Let t(u) be the leaf in TG associated with the singleton set {u}

� Lemma 1: flowG(u,v) = SepLevelTG
(t(u),t(v)) + 1, where u,v in V

Separation Level

y
x

lca(x,y)

 depth

0

2

1 <- SepLevel(x,y)

3

3.2.2004
            20

Separation Level Labeling Scheme

� For the class T(n) of n-node unweighted trees, there exists a 
SepLevel labeling scheme with O(log²n)-bit labels ([1])
� Based on  a given distance labeling scheme (Mdist ,Ddist) for T(n)

� MSepLevel

� Let L be the labeling assigned by Mdist for a T in T(n)

� MSepLevel augments each label L(v) into L'(v) = (L(v),depth(v))

� DSepLevel

� Consider v,w in T with z = lca(v,w), lv = dist(z,v), lw = dist(z,w), lz = depth(z)

� Given the labels L'(v) = (L(v),depth(v)) and L'(w) = (L(w),depth(w)), 
dist(v,w) = Ddist (L(v),L(w)) = lv + lw

� Moreover depth(v) = Ddist (L(v),L(rootT)) = lv + lz and
depth(w) = Ddist (L(w),L(rootT)) = lw + lz
-> DSepLevel can deduce SepLevel(v,w):

 DSepLevel (L'(v),L'(w)) = depth(z) = (depth(v) + depth(w) - dist(v,w)) / 2

3.2.2004
            21

Separation Level Labeling Scheme (2)

v

w

z
z = lca(v,w), depth(z) = lz

dist(z,w) = lw
  dist(z,v) = lv

rootT

dist(v,w) = Ddist (L(v),L(w)) = lv + lw
depth(v) = Ddist (L(v),L(rootT)) = lv + lz and

depth(w) = Ddist (L(w),L(rootT)) = lw + lz
DSepLevel (L'(v),L'(w)) = depth(z) = 

= (depth(v) + depth(w) - dist(v,w)) / 2

T

from L'(v) from L'(w) from Ddist(L(v),L(w))

3.2.2004
            22

� Problem and Motivation

� Labeling Schemes, Flow and Connectivity

� Flow Labeling Schemes

� Vertex-Connectivity Labeling Schemes

� Questions and Discussion

3.2.2004
            23

K-Connectivity

� Unweighted, undirected n-vertex graphs
� Two vertices are called k-connected if there exist at least k 

vertex-disjoint paths between them
� The k-connectivity graph of G = (V,E) is Ck(G) = (V,E'), where 

(u,v) ∈ E' iff u and v are k-connected in G
� A graph G is closed under k-connectivity if it has the property 

that if u and v are k-connected in G then they are neighbors in 
G, i.e. Ck(G) is a subgraph of G. C(k) denotes the family of 
graphs which are closed under k-connectivity

3.2.2004
            24

1

6 5 2

3

4

G 1

6 5 2

3

4

C2(G) 1

6 5 2

3

4

C3(G)

1

6 5 2

3

4

H ∈C(2)

K-Connectivity (2)



3.2.2004
            25

K-Orientability

� A graph G is called k-orientable if there exists an orientation of 
the edges such that the out-degree of each vertex is bounded 
above by k. ����(k) denotes the class of k-orientable graphs

Orientation

G

-> G ∈ ����(2)

3.2.2004
            26

Basic Idea

� Labeling k-connectivity for some graph G is equivalent to 
labeling adjacencies for Ck(G)
� Labeling k-connectivity / adjacencies means constructing a marker-

decoder pair (M,D), such that D(L(u),L(v)) = 1 iff u and v are 
k-connected / adjacent in G, 0 otherwise
(L is the vertex labeling assigned to G by M)

� Moreover Ck(G) ∈ C(k) (without proof)
-> Instead of presenting a k-connectivity labeling scheme for 
   general graphs, present an adjacency labeling scheme for
   the graphs in C(k) 

3.2.2004
            27

Basic Idea (2)

� General idea for labeling adjacencies for some G in C(k) is to 
decompose G into simpler graphs
� We say that a graph G can be decomposed into the graphs

Gi = (Vi,Ei), i > 1, if UiVi = V, UiEi = E and the Ei's are pairwise disjoint

� Make use of leftmost Breadth-First Search (BFS) trees

5
1

3

2

4

G

5
1

4

G1

5
3

2
G2

Decomposition

3.2.2004
            28

Leftmost BFS tree

� Let C be a connectivity component of Ck(G) for a graph G
(for two vertices u,v in C there exists a path between them)

� A leftmost BFS for C, denoted T(C,k), is a BFS tree spanning C, 
constructed as follows
� Take a vertex r from C as root of T(C,k), set level(r) = 1
� Assuming we constructed i levels of T(C,k) and there are still unused 

vertices of C, repeatedly take a vertex v of level i and connect it to all the 
unused vertices w adjacent to it in Ck(G). Set level(w) = i + 1 (v is the 
parent of w in T(C,k))

3.2.2004
            29

Leftmost BFS tree (2)

� It's easy to see that for k = 2 and a vertex u ∈ G, the only neighbor of u 
that has a strictly lower level than u in T(Ci,2) is the parent of u in T(Ci,k)

1

5

3

64

  G  C2(G)

T(C2,2) 5

2 1

5

3

64

2

1
34

  T(C1,2)

26

3.2.2004
            30

2-Connectivity Labeling Scheme

� As already mentioned, labeling 2-connectivity for a family of 
graphs � is equivalent to labeling adjacencies for the family
C(2)

� G ∈ C(2) can be decomposed into a forest F and a graph H of 
disjoint cliques
� Let C1, ..., Cm be the components of G

� Fix i and let T = T(Ci,2), then each subgraph Hj
 i of Ci induced by level j of T 

is in C(1)
-> Hj

 i is a collection of disjoint cliques

� Forest F = { T(Ci,2) | Ci is a component of G }
H = { Hj

 i  | for all i's and j's }
1

34

T(C1,2)

26

->
H1

1

34

 H2
 1

26



3.2.2004
            31

2-Connectivity Labeling Scheme (2)

� Let Cn(2) be the family of n-vertex graphs in C(2)

� Marker algorithm Madjacency,C(2)

� Assume each vertex has a unique identity from 1 to n
� Decompose G into a forest F and a graph H of disjoint cliques
� To each clique C in H give a distinct identity from the range {1, ..., n}, 

id(C)
� For a vertex u in G denote p(u) u's parent in F and C(u) the clique in H 

containing u
� L(u) = ( id(C(u)), id(p(u)), id(u) ), where each id is log(n)-bit long

-> 3log(n)-bit labels

3.2.2004
            32

2-Connectivity Labeling Scheme (3)

� Decoder algorithm Dadjacency,C(2)

� Given L(u) and L(v) for u,v in V(G), compare id(p(u)) with id(v) and 
id(p(v)) with id(u) to check whether one is the parent of the other in F

� Furthermore we compare id(C(u)) and id(C(v)) to see whether u and v are 
neighbors in H

� D(L(u),L(v)) = 1 iff one of the cases above applies, 0 otherwise
� Correctness: u and v are neighbors in G iff they are neighbors in F or H

3.2.2004
            33

3-Connectivity Labeling Scheme

� Idea similar to 2-connectivity labeling scheme
� Labeling 3-connectivity for a family of graphs � is equivalent to 

labeling adjacencies for the family C(3)
� Consider a graph G in C(3), and let C1, ..., Cm be its connected 

components. It is clear that Ci is in C(3) for all i

� Let T(Ci,3) for a certain i

� Lemma 2: Each vertex u in T(Ci,3) has at most one neighbor of 
G which has a strictly lower level than u in T(Ci,3) apart from 
p(u) (see construction of leftmost BFS tree)

3.2.2004
            34

3-Connectivity Labeling Scheme (2)

� Decompose G element of C(3) into a graph H ∈ C(2) and a 2-
orientable graph 
� Proof for H ∈ C(2) similar to the proof of the decomposition of G for 2-

connectivity labeling scheme
� Let U be the graph C after deleting the edges of H (H = union of all 

subgraphs Hj of C induced by the vertices of level j in T(G,3))
� By Lemma 2 each vertex u of U has at most 2 neighbors of a strictly lower 

level
-> Direct the edges of U from higher level to lower level vertices
-> Each u has out-degree at most 2
-> U is 2-orientable

3.2.2004
            35

3-Connectivity Labeling Scheme (3)

� Assuming we have (M1,D1) =  (Madjacency,C(2), Dadjacency,C(2))
and (M2,D2) = (Madjacency,�2(2), Dadjacency,�2(2))
� Marker algorithm Madjacency,C(3)

� L(u) = (L1(u),L2(u))

� Decoder algorithm Dadjacency,C(3)

� Given the two labels L(u) = (L1(u),L2(u)) and L(v) = (L1(v),L2(v)) let
D(L(u),L(v)) = D1(L1(u),L1(v)) or D2(L2(u),L2(v))

3.2.2004
            36

K-Connectivity Labeling Scheme

� Not shown in this presentation
� Idea

� Again labeling k-connectivity for a family of graphs � is equivalent to 
labeling adjacencies for the family C(k)

� Each G in C(k) can be decomposed into two graphs in C(k -1) and a 
(k -1)-orientable graph



3.2.2004
            37

Conclusion

� Some labeling schemes for flow and vertex-connectivity
� Quite a lot of definitions, lemmas and theorems
� Various labeling schemes not presented
� A few mistakes 
� Few figures!

3.2.2004
            38

References

� [1] David Peleg, Informative labeling schemes for graphs, in
    Proc. 25th Symp. on Mathematical Foundations of Computer 
    Science, vol. LNCS-1893, Springer-Verlag, Aug. 2000, pp. 
    579-588


