

Julio Pérez
Distributed Computing Seminar, WS 2003/04 ETH Zurich

Paper

- Labeling Schemes for Flow and Connectivity (extended abstract) M. Katz, N. Katz, A. Korman, D. Peleg

SODA (Symposium of Discrete Algorithms) 2002

Outline

- Problem and Motivation
- Labeling Schemes, Flow and Connectivity
- Flow Labeling Schemes
- Vertex-Connectivity Labeling Schemes
- Discussion

Problem and Motivation

- Network representation
\square Goal: Cheaply store useful information about a network
\square Examples for useful information:
- Vertex adjacency
- Distance
- Tree ancestry
- ..
\square Particularly important for large and geographically dispersed networks
\square Traditional network representations
- Vertices with names that contain no useful information
- Global representation of the network
- Problem and Motivation
- Labeling Schemes, Flow and Connectivity
- Flow Labeling Schemes
- Vertex-Connectivity Labeling Schemes
- Questions and Discussion

Problem and Motivation (2)

- Labeling schemes proposed in this paper
\square Use of more informative labels for network vertices
- Flow
- (Vertex-)Connectivity

Localized labels that allow to infer information directly from the labels of the vertices
\square Relatively short labels, i.e. length polylogarithmic in $n(n=$ number of vertices in graph)

- Probem and Mavivation
- Labeling Schemes, Flow and Connectivity
- Flow Labeling Schemes
- Vertex-Connectivity Labeling Schemes
- Questions and Discussion

Labeling Schemes

- A vertex-labeling of a graph G is a function L assigning a label $L(u)$ to each vertex u of G
- A labeling scheme has two components
\square Marker algorithm M
- Given a graph G, selects a label assignment $L=M(G)$
- Decoder algorithm D
- Given a set $L^{\prime}=\left\{L_{1}, \ldots, L_{K}\right\}$ of labels, returns a value $D\left(L^{\prime}\right)$
- Time complexity is required to be polynomial in input size

L(u)

L(w)
3.2.2004

Labeling Schemes (2)

- f labeling scheme
\square Let f be a function defined on sets of vertices in a graph
\square Given a family \hat{G} of weighted graphs, an f-labeling scheme for \hat{G} is a marker-decoder pair (M_{t}, D_{t}) with following properties:
- Consider $\mathrm{G} \in \hat{\mathrm{G}}$ and let $\mathrm{L}=\mathrm{M}_{\mathrm{t}}(\mathrm{G})$ be the vertex labeling assigned by the marker M_{t} to G
- Then for any set of vertices $W=\left\{v_{1}, \ldots, v_{k}\right\}$ in G, the value returned by the decoder D_{f} on the set of labels $L^{\prime}(W)=\{L(v) \mid v \in W\}$ satisfies $D(L(W))=f(W)$
$\mathrm{G} \longrightarrow$ Marker $\mathrm{M}_{\mathrm{f}} \longrightarrow \mathrm{L}(\mathrm{G}), \quad \mathrm{L}^{\prime}(\mathrm{W}) \longrightarrow$ Decoder $\mathrm{D}_{\mathrm{f}} \longrightarrow \mathrm{f}(\mathrm{W})$

Flow

- Let G be a weighted undirected graph $G=(V, E, w)$
- For every edge $e \in E$, the weight $w(e)$ represents the capacity of the edge (e.g. capacity = bandwidth)
- For two vertices $u, v \in V$, the maximum flow flow(u, v) is defined as follows (paper definition):
\square Maximum flow in a path $p=\left(e_{1}, \ldots, e_{m}\right)$ is the max. value that does not exceed the capacity of any edge e in p, i.e. flow $(p)=\min _{1 \leq i \leq m}\left\{w\left(e_{i}\right)\right\}$
\square A set of paths P in G is edge-disjoint if each edge $\mathrm{e} \in \mathrm{E}$ appears in no more than one path $p \in P$
\square The max. flow in a set P of edge-disjoint paths is flow $(P)=\sum_{p \in P}$ flow (p)
\square flow $(u, v)=\max _{\mathrm{P} \in \mathrm{P}_{\mathrm{us}},}\{$ flow $(\mathrm{P})\}$, where $\mathrm{P}_{\mathrm{u}, \mathrm{v}}$ is the collection of all sets P of edge-disjoint paths between u and v

Labeling Schemes (3)

- For a labeling L for the graph $G=(V, E)$ let $|L(u)|$ denote the number of bits in the string $L(u)$
- $\underline{L}_{\mathrm{M}}(\mathrm{G})=\max _{\mathrm{u} \in \mathrm{V}}|\mathrm{L}(\mathrm{u})|$ for a given G and a marker algorithm M
- For a finite graph family \hat{G}, set $\underline{L}_{M}(\hat{G})=\max \left\{\underline{L}_{M}(\mathrm{G}) \mid \mathrm{G} \in \hat{\mathrm{G}}\right\}$
- Finally, given a function f and a graph family \hat{G}, let
$\underline{L}(f, \hat{G})=\min \left\{\underline{L}_{M}(\hat{G}) \mid \exists D,(M, D)\right.$ is an f labeling scheme for $\left.\hat{G}\right\}$

Flow (2)

- Instead of demanding that the paths have to be edge-disjoint, demand that for the flow between two nodes u, v the edge capacities have to be respected, i.e. flow ${ }_{\text {in }}(\mathrm{e}) \leq \mathrm{w}(\mathrm{e})$ (aggregated over all $p_{i} \in P$), for all edges $e \in p_{i}, p_{i} \in P$

Edge-Connectivity

- Edge-connectivity
e-conn $(u, v)=$ flow (u, v) assuming each edge is assigned one capacity unit

- Problem and Motivation
- Labeling Schemes, Flow and Connectivity
- Flow Labeling Schemes
- Vertex-Connectivity Labeling Schemes
- Questions and Discussion

Vertex-Connectivity

- Vertex-connectivity

A set of paths P connecting the vertices u and v in G is vertex-disjoint if each vertex except u and v appears in at most one path $p \in P$
$\square v$-conn(u, v) of two vertices u, v in an unweighted graph equals the cardinality of the largest set P of vertex-disjoint paths connecting them

Equivalence Relations

- We consider the family $\hat{G}(n, \hat{w})$ of undirected, capacitated and connected n-vertex graphs with maximum integral capacity \hat{w}
- Given $G=(V, E, w) \in \hat{G}$ and $1 \leq k \leq \hat{w}$, define the following relation
$\mathrm{R}_{\mathrm{k}}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathrm{V}$, flow $(\mathrm{x}, \mathrm{y}) \geq \mathrm{k}\}$
- R_{k} is an equivalence relation

Reflexive (flow $(x, x) \geq k$)
Symmetric (flow(x, y) $\geq k \leftrightarrow$ flow $(y, x) \geq k$
Transitive (flow(x, y) $\geq k$ and flow $(y, z) \geq k \rightarrow$ flow $(x, z) \geq k)$

- For every $k \geq 1, R_{k}$ induces a collection of equivalence classes on V, $C_{k}=\left\{C_{k}^{1}, \ldots, C_{k}^{m}\right\}$, such that $C_{k}^{i} \cap C_{k}=\varnothing$ and $U_{i} C_{k}^{i}=V$ (equivalence class = subset whose elements are related to each other by an equivalence relation)

Basic Idea (2)

- Corresponding tree T_{G} Level relations
- $k^{\text {th }}$ level of T_{G} corresponds to the relation R_{k}
- Each node at a level k represents an equivalence class
- Nodes representing equivalence classes with one element are leaves

1
2

3
$\mathrm{C}_{4}^{1} \quad 1,5 \quad(2,3,4) \mathrm{C}_{4}^{2}$

$C_{\|}^{l}$ (2) $\quad 3$ (4) C^{3}

If max. capacity of any edge is \hat{w}, then depth of T_{G} cannot exceed $\hat{\mathrm{w}}$ levels?

Separation Level

- For two nodes x, y in a tree T with root r, the separation level of x and $y \operatorname{SepLevel}_{T}(x, y)$ is defined as the depth of the least common ancestor of x and y, Ica(x, y)

- Let $t(u)$ be the leaf in T_{G} associated with the singleton set $\{u\}$
- Lemma 1: flow $_{G}(u, v)=$ SepLevel $_{T \mathrm{G}}(\mathrm{t}(\mathrm{u}), \mathrm{t}(\mathrm{v}))+1$, where u, v in V
3.2.2004

Separation Level Labeling Scheme (2)

Separation Level Labeling Scheme

- For the class $T(n)$ of n-node unweighted trees, there exists a SepLevel labeling scheme with O($\log ^{2} n$)-bit labels ([1])
\square Based on a given distance labeling scheme ($\left.\mathrm{M}_{\text {dist }}, \mathrm{D}_{\text {dist }}\right)$ for $\mathrm{T}(\mathrm{n})$
$\square \mathrm{M}_{\text {Seplevel }}$
- Let L be the labeling assigned by $\mathrm{M}_{\text {dist }}$ for a T in $\mathrm{T}(\mathrm{n})$
- $M_{\text {seplevel }}$ augments each label $L(v)$ into $L^{\prime}(v)=(L(v)$,depth $(v))$
$\square D_{\text {Seplevel }}$
- Consider v, w in T with $\mathrm{z}=\mathrm{Ica}(\mathrm{v}, \mathrm{w}), \mathrm{I}_{\mathrm{v}}=\operatorname{dist}(\mathrm{z}, \mathrm{v}), \mathrm{I}_{\mathrm{w}}=\operatorname{dist}(\mathrm{z}, \mathrm{w}), \mathrm{I}_{\mathrm{z}}=\operatorname{depth}(\mathrm{z})$
- Given the labels $L^{\prime}(v)=(L(v)$,depth $(v))$ and $L^{\prime}(w)=(L(w)$,depth $(w))$, $\operatorname{dist}(\mathrm{v}, \mathrm{w})=\mathrm{D}_{\text {dist }}(\mathrm{L}(\mathrm{v}), \mathrm{L}(\mathrm{w}))=\mathrm{I}_{\mathrm{v}}+\mathrm{I}_{\mathrm{w}}$
- Moreover depth $(\mathrm{v})=\mathrm{D}_{\text {dist }}\left(\mathrm{L}(\mathrm{v}), \mathrm{L}\left(\right.\right.$ root $\left.\left._{\mathrm{T}}\right)\right)=\mathrm{I}_{\mathrm{v}}+\mathrm{I}_{\mathrm{z}}$ and $\operatorname{depth}(w)=D_{\text {dist }}\left(L(w), L\left(\right.\right.$ root $\left.\left._{T}\right)\right)=I_{w}+I_{z}$
$\rightarrow \mathrm{D}_{\text {senelevel }}$ can deduce SepLevel (v, w) :
$D_{\text {sepelevel }}\left(L^{\prime}(v), L^{\prime}(w)\right)=\operatorname{depth}(z)=(\operatorname{depth}(v)+\operatorname{depth}(w)-\operatorname{dist}(v, w)) / 2$
3.2.2004
- Problem and Motivation
- Labeling Schemes, Flow and Connectivity
- Flow Labeling Schemes
- Vertex-Connectivity Labeling Schemes
- Questions and Discussion

K-Connectivity

- Unweighted, undirected n-vertex graphs
- Two vertices are called k-connected if there exist at least k vertex-disjoint paths between them
- The k-connectivity graph of $G=(V, E)$ is $C_{k}(G)=\left(V, E^{\prime}\right)$, where $(u, v) \in E^{\prime}$ iff u and v are k-connected in G
- A graph G is closed under k-connectivity if it has the property that if u and v are k-connected in G then they are neighbors in G, i.e. $C_{k}(G)$ is a subgraph of G. $C(k)$ denotes the family of graphs which are closed under k-connectivity

K-Connectivity (2)

$$
\begin{aligned}
& \mathrm{H} \in \mathrm{C}(2) \\
& (6-5)-4 \\
& 3
\end{aligned}
$$

K-Orientability

- A graph G is called k-orientable if there exists an orientation of the edges such that the out-degree of each vertex is bounded above by k. $\mathrm{J}_{\text {or }}(\mathrm{k})$ denotes the class of k -orientable graphs
G

Basic Idea

- Labeling k-connectivity for some graph G is equivalent to labeling adjacencies for $\mathrm{C}_{\mathrm{k}}(\mathrm{G})$
\square Labeling k-connectivity / adjacencies means constructing a markerdecoder pair (M,D), such that $D(L(u), L(v))=1$ iff u and v are k-connected / adjacent in G, 0 otherwise (L is the vertex labeling assigned to G by M)
- Moreover $\mathrm{C}_{\mathrm{k}}(\mathrm{G}) \in \mathrm{C}(\mathrm{k})$ (without proof)
-> Instead of presenting a k-connectivity labeling scheme for general graphs, present an adjacency labeling scheme for the graphs in $\mathrm{C}(\mathrm{k})$

Basic Idea (2)

- General idea for labeling adjacencies for some G in $C(k)$ is to decompose G into simpler graphs
\square We say that a graph G can be decomposed into the graphs $G_{i}=\left(V_{i}, E_{i}\right), i>1$, if $\bigcup_{i} V_{i}=V, \bigcup_{i} E_{i}=E$ and the E_{i} 's are pairwise disjoint G

Leftmost BFS tree

- Let C be a connectivity component of $C_{k}(G)$ for a graph G (for two vertices u, v in C there exists a path between them)
- A leftmost BFS for C , denoted $T(\mathrm{C}, \mathrm{k})$, is a BFS tree spanning C , constructed as follows
\square Take a vertex r from C as root of $T(\mathrm{C}, \mathrm{k})$, set level(r$)=1$
\square Assuming we constructed i levels of $T(\mathrm{C}, \mathrm{k})$ and there are still unused vertices of C , repeatedly take a vertex v of level i and connect it to all the unused vertices w adjacent to it in $C_{k}(G)$. Set level $(w)=i+1$ (v is the parent of w in $T(\mathrm{C}, \mathrm{k})$)

Leftmost BFS tree (2)

\square It's easy to see that for $k=2$ and a vertex $u \in G$, the only neighbor of u that has a strictly lower level than u in $T\left(\mathrm{C}_{\mathrm{i}}, 2\right)$ is the parent of u in $T\left(\mathrm{C}_{\mathrm{i}}, \mathrm{k}\right)$

2-Connectivity Labeling Scheme

- As already mentioned, labeling 2-connectivity for a family of graphs \hat{G} is equivalent to labeling adjacencies for the family C(2)
- $G \in C(2)$ can be decomposed into a forest F and a graph H of disjoint cliques
\square Let $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{m}}$ be the components of G
\square Fix i and let $T=T\left(\mathrm{C}_{\mathrm{i}}, 2\right)$, then each subgraph H_{i} of C_{i} induced by level j of T is in $\mathrm{C}(1)$
$->\mathrm{H}_{j}^{\prime}$ is a collection of disjoint cliques
\square Forest $\mathrm{F}=\left\{T\left(\mathrm{C}_{\mathrm{i}}, 2\right) \mid \mathrm{C}_{\mathrm{i}}\right.$ is a component of G$\}$
$\mathrm{H}=\left\{\mathrm{H}_{\mathrm{j}} \mid\right.$ for all i's and j 's $\}$

$$
T\left(\mathrm{C}_{1}, 2\right) \int_{6}^{1} \int_{0}^{3}
$$

3.2.2004

2-Connectivity Labeling Scheme (2)

- Let $\mathrm{C}_{\mathrm{n}}(2)$ be the family of n -vertex graphs in $\mathrm{C}(2)$
- Marker algorithm $\mathrm{M}_{\text {adjacency,C(2) }}$
\square Assume each vertex has a unique identity from 1 to n
\square Decompose G into a forest F and a graph H of disjoint cliques
\square To each clique C in H give a distinct identity from the range $\{1, \ldots, \mathrm{n}\}$, id(C)
\square For a vertex u in G denote $p(u) u$'s parent in F and $C(u)$ the clique in H containing u
$\square \mathrm{L}(\mathrm{u})=(\mathrm{id}(\mathrm{C}(u))$, $\mathrm{id}(\mathrm{p}(u))$, id $(u))$, where each id is $\log (n)$-bit long $\rightarrow 3 \log (\mathrm{n})$-bit labels

2-Connectivity Labeling Scheme (3)

- Decoder algorithm $D_{\text {adiacency,C(2) }}$
\square Given $L(u)$ and $L(v)$ for u, v in $V(G)$, compare id $(p(u))$ with id(v) and $\mathrm{id}(\mathrm{p}(\mathrm{v}))$ with $\mathrm{id}(\mathrm{u})$ to check whether one is the parent of the other in F
\square Furthermore we compare $\mathrm{id}(\mathrm{C}(\mathrm{u})$) and $\mathrm{id}(\mathrm{C}(\mathrm{v}))$ to see whether u and v are neighbors in H
$\square \mathrm{D}(\mathrm{L}(\mathrm{u}), \mathrm{L}(\mathrm{v}))=1 \mathrm{iff}$ one of the cases above applies, 0 otherwise
Correctness: u and v are neighbors in G iff they are neighbors in F or H

3-Connectivity Labeling Scheme

- Idea similar to 2-connectivity labeling scheme
- Labeling 3-connectivity for a family of graphs \hat{G} is equivalent to labeling adjacencies for the family $\mathrm{C}(3)$
- Consider a graph G in $C(3)$, and let C_{1}, \ldots, C_{m} be its connected components. It is clear that C_{i} is in $\mathrm{C}(3)$ for all i
- Let $T\left(\mathrm{C}_{\mathrm{i}}, 3\right)$ for a certain i
- Lemma 2: Each vertex u in $T\left(\mathrm{C}_{\mathrm{i}}, 3\right)$ has at most one neighbor of G which has a strictly lower level than u in $T\left(\mathrm{C}_{\mathrm{i}}, 3\right)$ apart from $p(u)$ (see construction of leftmost BFS tree)

3-Connectivity Labeling Scheme (2)

- Decompose G element of $C(3)$ into a graph $H \in C(2)$ and a 2orientable graph
\square Proof for $\mathrm{H} \in \mathrm{C}(2)$ similar to the proof of the decomposition of G for 2connectivity labeling scheme
\square Let U be the graph C after deleting the edges of $\mathrm{H}(\mathrm{H}=$ union of all subgraphs H_{j} of C induced by the vertices of level j in $T(\mathrm{G}, 3)$)
- By Lemma 2 each vertex u of U has at most 2 neighbors of a strictly lower level
-> Direct the edges of U from higher level to lower level vertices
-> Each u has out-degree at most 2
$->\mathrm{U}$ is 2-orientable

3-Connectivity Labeling Scheme (3)

- Assuming we have $\left(M_{1}, D_{1}\right)=\left(M_{\text {adiacency, },(2)}, D_{\text {adiacency, } \mathrm{C}(2)}\right)$ and $\left(M_{2}, D_{2}\right)=\left(M_{\text {adjacency }, \mathrm{J}(2)}, D_{\text {adjacency }, \mathrm{J}(2)}\right)$
\square Marker algorithm $\mathrm{M}_{\text {adjacency, } \mathrm{C}(3)}$
- $\mathrm{L}(\mathrm{u})=\left(\mathrm{L}_{1}(\mathrm{u}), \mathrm{L}_{2}(\mathrm{u})\right)$
\square Decoder algorithm $D_{\text {adjacency,C(3) }}$
- Given the two labels $\mathrm{L}(\mathrm{u})=\left(\mathrm{L}_{1}(\mathrm{u}), \mathrm{L}_{2}(\mathrm{u})\right)$ and $\mathrm{L}(\mathrm{v})=\left(\mathrm{L}_{1}(\mathrm{v}), \mathrm{L}_{2}(\mathrm{v})\right)$ let $D(L(u), L(v))=D_{1}\left(L_{1}(u), L_{1}(v)\right)$ or $D_{2}\left(L_{2}(u), L_{2}(v)\right)$

K-Connectivity Labeling Scheme

- Not shown in this presentation
- Idea
\square Again labeling k -connectivity for a family of graphs $\hat{\mathrm{G}}$ is equivalent to labeling adjacencies for the family $\mathrm{C}(\mathrm{k})$
\square Each G in $\mathrm{C}(\mathrm{k})$ can be decomposed into two graphs in $\mathrm{C}(\mathrm{k}-1)$ and a (k-1)-orientable graph

Conclusion

- Some labeling schemes for flow and vertex-connectivity
- Quite a lot of definitions, lemmas and theorems
- Various labeling schemes not presented
- A few mistakes
- Few figures!

References

- [1] David Peleg, Informative labeling schemes for graphs, in Proc. $25^{\text {th }}$ Symp. on Mathematical Foundations of Computer Science, vol. LNCS-1893, Springer-Verlag, Aug. 2000, pp. 579-588

