Concurrent Online
Tracking of Mobile Users

Claudio Munari
Seminar of Distributed
Computing
WS 03/04

The Paper

Concurrent online tracking of mobile users
B. Awerbuch, D. Peleg
SIGCOMM 1991

The ,full paper":
Online Tracking of Mobile Users
B. Awerbuch, D. Peleg
Journal of the ACM, 1995

Outline

1. The Location Problem

2. Model and Main Results of the Paper

3. A Hierarchical, Distributed Directory Structure
4. Handling Concurrent Accesses

5. Questions and Discussion

1. The Location Problem

1. The Location Problem

Key problem of a communication network: location
of entities in order to route traffic

Handled by name servers / distributed directories

How to locate mobile users in (fixed) wireless
networks?

How to deal with mobile entities that travel from one
network site to another?

Need of dynamic mechanism to keep track
of such moving entities

Operations needed for a tracking mechanism

,move" operation

inform system about new address
.find" operation

locate user at his current address

How can the communication overhead of ,move"
and ,find" operations be minimized?

Tracking Strategies
C C

Conventional approaches:
Single, central database

GSM: Current location information of a user is
stored in his home location register (HLR).

Mobile IP: home agent keeps track of current
care-of address

— Not efficient in large, dynamic networks

,Partial-information Strategy

Goal:

Strategy, that will perform well for any
communication/travel pattern, making
the costs of both ,move" and ,find"
operations relatively cheap.

Hierarchy of regional directories

Built of sets of network nodes:
Read and Write sets

Set construction based on graph-theoretic
notion of a regional matching.

+ Low worst-case communication cost

+ Local operations always cost less than
global ones.

The i‘th level regional directory tracks
any user residing within distance 2!
from a searching node

Tracking Strategies (2)

Distributed approaches:
~Full-information™ Strategy
Every node maintains a complete directory

~No-information™ Strategy

No directories. Find users by global search

Alternative: Forwarding pointers

~Partial-information™ Strategy

— Trade-off between overhead, latency and
simplicity overhead

simplicity latency s

,,Partial-information® Strategy

Ideas:

Moves to near-by locations and searches for
near-by users should be cheap

Decomposition of network into regions

Hierarchy of regional directories

- hierarchies are the most general and scalable
solution in large organizational problems

- locality propertiy: exploit the fact that many
moves are local

Why a limitation of 2ip

Limiting the operational range of the i‘th level of a
regional directory to radius 2 allows to:

make the costs of finding a user proportional

to 21

bind the cost of a ,find" operation to a function
of the user's distance from the searcher.

avoid constant updates due to ,move"
operations of users far away.

Organization of a Regional Directory

Organization based on a m-regional matching:

Collection of sets of nodes, consisting of a read set
Read(v) and a write set Write(v) for every v e V.

The collection RW of all pairs of read and write
sets,

RW = {Read(v), Write(v) | v eV},
is an m-regional matching, if

Write(v) n Read(u) # @

for all v, u e V, s.t. dist(u,v) < m.

2. Model and Main Results
of the Paper

The Model

Connected, undirected, weighted graph G = (V,E,w),
VI =n

Weight w(e) represents the length / cost of transmitting
a basic message (of length O(log n) on edge e
Bidirectional communication channels

Assume efficient routing facilities provided by the
system

dist(u,w):

length (weight) of shortest path between u and w
diameter D(G):

maximal distance between any two vertices in G
Operations are performed concurrently and
asynchronously

The Model (2)

Addr(&): current address of user &

Directory Server D: distributed data structure
supporting the operations:

- Find(§,v)

- Move(§,s,t)

What is the ,amortised overhead" of these two
operations, compared to their optimal costs (full
information available for free)?

The Model (3)

Consider mixed sequence ¢ of Move and Find
operations

F(c): subsequence of all Find operations in c.
M(o): subsequence of all Move operations in o.

Cost(n): Sum of communication costs of all
message transmissions performed during
execution of protocol .

_ Cost(F(0))
Stretch],m,(a') = 701” ~ContlF(0))

Move-stretch of D: Sf’e’fhw(”):70[,,sz((z((;)()a))

Find-stretch of D:

The Main Result

The hierarchical directory server D
guarantees:

O(Deg,..,*Rad,..q4)
_ >
StretChﬁnd = O(log ") . O(Degyrite*
_ L
Stretch,oye = 0l0*logn+8* /logn) E

Memory requirement [bits] =

O(N*5*logn+ N *8* +n*5*log’ n)
throughout the network, for handling N
users, where s=[10e0©)] ,

DG) =
Diameter

Is this good or bad?

Communication overhead of this tracking
mechanism is within a polylogarithmic
factor of the lower bound.

Guaranteed overheads which are
polylogarithmic in the size and
diameter of the network.

Main strength compared to conventional
schemes: consideration of locality of Find
and Move operations.

3. A Hierarchical, Distributed
Directory Structure

A Distributed Data Structure

Stores pointers to locations of each user in
various nodes

Pointers need to be updated as users move
Allow some pointers to be inaccurate

»Intuitively, pointers at locations nearby to the
user, whose update by the user is relatively
cheap , are required to be more accurate,
whereas pointers at distant locations are updated
less often."

The Hierarchical Directory Server D

composed of a hierarchy of §=[logD(G)]
regional directories RD; (1gi<9)

RD; at level i of the hierarchy enables a
searcher to track any user & within distance 2/
from it.

The address stored for user & at RD,; is called

the user's i‘th level regional address:
R_addr;(§).

It stores the address where & is currently
expected to be. 2

Implementation of a Regional
Directory RD,

Based on two sets:
Write;(v):
A node v reports every user it hosts to all
nodes in some specified write set,
Write;(v)
Read;(w):
A searching node w queries all nodes in
some specified read set, Read;(w)

2i-Regional Matchings

Read;(w) and Write;(v) are guaranteed to intersect
whenever v and w are within distance 2' of each other.

Ex:i=2 N . .
Read sets of node w Write sets of node v

Level 1
(RD))

I

2i-Regional Matchings (2)

Find operation invoked at node w is
guaranteed to succeed only if
dist(w,R_Addr(§)) < m.

Highest level RDg always succeeds!

2'-reg(ional matching
29— logD(G)] > D(G)

What if diameter grows?
What if R_Addr(§) is out of date?
R_Addr(¢) = Addr(§)

(m < zﬁngmuﬂ)

,JForwarding Addresses*

Whenever user & moves, it should update its
regional directory RD; on all levels.

Too expensive!
Use ,Forwarding Addresses/Pointers"

Update only log d lowest levels

— the lower the level, the more up-to-date is the regional
address.

Low communication complexity, but

R_Addr;(§) might now point to an old address of ¢

,2JLorwarding Addresses® (2)

Where is
user £?

[]
S

Level (log d)

Level 1

,2JLorwarding Addresses* (3)

A forwarding address points at some more
recent address of user &.

But the user might have moved further!

Define A(&)=(R_Addx(¢)....R_ Addrs(£))
as the tuple of regional addresses of
user &.

R_Addr, (&) = Addr(&)

The Reachability Invariant

The tuple of regional addresses A(¢)
satisfies the reachability invariant if for
every level 1 <i< 3§, at any time,
R_Addr,(¢) stores a pointer Forward(&)
pointing to the vertex R_Addr;_;(&).

The proximity invariant

How can long chains of forwarding
pointers be avoided?

Need update mechanism which updates
the regional addresses frequently enough

Migrate;(£):

actual migration path traversed by & in its
migration from R_Addr;(&) to its current
location, Addr(g).

The proximity invariant (2)

The regional addresses R_Addr;(§) satisfy
the proximity invariant if for every level
1 <i< 3§, at any time, the distance
travelled by & since the last time
R_Addr,(§) was updated in RD; satisfies

|Migrate, (f){ <27 -1

Updating regional addresses

Whenever user moves from a node s to a node t:
Increase all migration counters C; by dist(s,t).

If the highest level counter C; reaches its upper
limit (24-1)T" proximity invariant
Update the regional directory at levels 1 to J:
Set R_Addr(¢) = t.
Set forwarding pointer at R_Addr,,,(§)
leading to t.
Relocate user & together with its tuples A(¢)
and ¢(¢)

How are regional matchings

constructed after all?

Based on the concept of sparse graph covers:

cover a graph by low-radius clusters with little overlap
A matching can be constructed out of a cover with same
degree and radius.

The construction of a hierarchy of regional matchings
amounts to a global communication cost of

O(E log®n)

Construction of a regional matching:
Start with m-neighbourhood cover N, (V) of the graph
Construct a coarsening cover C for N (V)
Select a centre I(T) in each cluster Te C.
Select for every node v one cluster T, and set
Write(v) = {I(T,)} and Read(v) = {I(T) | ve T}

The proximity invariant (3)

A node currently hosting user & has to maintain
two data structures in order to guarantee the
invariant:

Tuple of regional addresses: A()
Tuple of migration counters: C(§)=(C/(£)...C;(£))

Each C;(&) counts distance travelled by & since
last update of R_Addr,(&)

— Enables to decide which regional addresses
need to be updated after each move of &.

Example

Reads(v) Reads(v) Reads(v) Readav) Reads(v)

-

dist(x;.x5) = 1

Wiites(£1)

A(E)= (x40 X0 X3 X0, X5, ;) A(E)= (x50 X0 X0 X0 X0 ;)

TE)=(0,03%5.5.25) XSO ()= (0.0.0.6.6.26)

x4 stores:

Important parameters of a regional matching

radius: maximal distance from a node to any
other node in its read or write set.

degree: maximal number of vertices in any read
or write set.

Communication overhead of performing find and
move operations in a RD; grows as the product of
the degree and the radius of the related 2i-
regional matching.

Trade-off between these two parameters

(simultaneous minimization of radius and degree
are a nontrivial task)

36

Handling concurrent accesses

Move and Find operations take some time.
One cannot assume that there is enough
time for system to complete an operation
before getting a new request.

What if someone attempts to contact a
user while he is moving?

What if this user repeatedly moves while
he is being searched?

Modifications in the model

In the concurrent case, the two stages of
the Find procedure cause problems:

First stage: Retrieval of regional address
search for address can fail

Second stage: Tracing the user
~endless chases™

Changing the Find operation

Have to guarantee the retrieval of
R_Addr,(€) of user & even while this
address is being changed.

Is there a problem at all?

A typical ,,atomicity problem® of

asynchronous systems

Example scenario:
Consider node v invoking a Find(§,v) while R_Addr(§) is
changed from s to t'.
Assume read requests from v to nodes
u e Read;(v) n Write(s') to be very slow and hence
reach u only after it has erased its pointer to s'.
Assume read requests from v to nodes
u e Read;(v) n Write(t') to be very fast and hence reach
u before it made a pointer to t'.

= All read operations of node v fail to detect a
pointer to &!

Possible solution

Strengthen the definition of m-regional
matchings by an additional requirement:

For every v and u, if dist(v,u) < m then
Read(v) c Write(u)

Every node in Read(v) that pointed to s' is
guaranteed to point to either s® or t* at any
time during the move operation.

Preventing endless chases along
forwarding pointers

Idea: Searcher is allowed to ,miss" the user
while searching for him on level i only if the
user is currently on transition to a new location
farther away than distance 2.

This implies:
Searcher should retrieve a (old) regional
address of the user at level i.

This address should allow a ,short™ chase to the
user.

Preventing endless chases along
forwarding pointers (2)

The ,clean move™ requirement:

User & is not allowed to finish a new move
which involves updating regional
directories up to level /, before it is found
by a searcher that has already received
some R_Addr;(§),

fori</+ 1.

Can be implemented with a locking
mechanism.

General problems

Insertion/Deletion of a new user results in
high initialization costs of

O(D(©) 08 1)~ toerm v
Presented paper assumes a static

network which does not tolerate
failures

— a mechanism is necessary to adapt the
tracking structure to current topology.
Proposed architecture is relatively
complex

Experimental results

Over 800 randomly generated networks of
sizes 16 to 1024 nodes were analyzed.

Read set size much smaller than theoretical
upper bound of 4 log,n.

- Linear networks:
read set size at any level at most 3.

- Grid networks (deg 4, equal distances):
max. read set size achievable is 9.

= Communication complexities:

FIND: oM

MOVE: o0(s+6110g,n)

Summary

Proposed strategy based on hierarchy of regional directories
— m-regional matchings

Main strength: considers locality of FIND and MOVES

Communication overhead within a polylogarithmic
factor of the lower bound.

Alternative to centralized approaches used in cellular
networks?

Not suitable for architectures with no preexisting fixed-
network infrastructure where node-connectivity is sporadic
and databases are unstable (ad-hoc networks).

— quorum systems

Questions and Discussion
I

