* What Can Be Computed Locally?

Michael Kaufmann

Distributed Computing Seminar
ETH Zdrich, 25.11.2003

* Overview of this Presentation
|

= Part 1: Introduction
= What are Local Algorithms?
= General Results

= Part 2: Two local Algorithms
= Weak Coloring
= Formal Dining Philosophers problem

* About the Paper
|

= "What Can Be Computed Locally?"

= By Moni Naor & Larry Stockmeyer (1993)
= Main topic of this presentation

= Follow-up paper:
"Local Computations on Static and Dynamic Graphs"
= By Alain Mayer, Moni Naor & Larry Stockmeyer (1995)
= Simplifies some algorithms of the previous paper

= More "high-level"
= Dynamic network

* Part 1.

]
Introduction
&
General Results

* Introduction

= Locality ...

= ... is important
= [Runtime is independent of the network size: Constant time t
= Fast algorithms (parallel computation)
= Very good scalability
= Fault-tolerance
= A computer crash only affects a small part of the network

* The Model used (1)
|

= Network model:
= At each time unit, a processor may pass messages to each of its

neighbors
= Any computations carried out by individual processors take one
time unit
t=0
t=1
t=2
t=3
= Example:

= If an algorithm takes constant time t=2, the red and the purple
processor will never communicate
= Intime t, every processor can only collect information that lies within
radius t
6

* The Model used (2)
|

= Every processor has a unique ID

= This makes the processors distinguishable
= Processors can tell other processors what neighbors they have
= Examples for IDs:
= IP address (32-bit-number)
= MAC address (48-bit-number)
= Processor serial number (Intel: 96-bit-number)

2 129.132.130.158

129.132.178.197
1
4 193.99.144.71
3 138.15.10.13

* Locally Checkable Labelings (LCLS)
|

= Algorithms produce a labeling of the graph
= InaLCL problem, every node is able to check if the labeling is
locally correct
= Examples of such labelings:
= Vertex/Edge coloring
= Maximal Independent Set

= Maximal Independent Set
= This problem is locally checkable:
= If node v is in the MIS, then no neighbor of v is in the MIS
= If node v is not in the MIS, then at least one neighbor of v is in the MIS

* Decidability / Undecidability
|

= Is it possible to decide if a given LCL problem L can be
solved in constant time t?
= Definition: Let d be the maximum degree of a node in the graph
= Yes,ifd<2.
« Ifd>3:
= Yes, iftis fixed
= No, if tis not fixed

= in practice (we don't know d), it's undecidable.

* Randomized Algorithms
|

= Maybe Randomized Algorithms do a better job than
deterministic algorithms on LCL problems?

= Simple answer: No.

= Don't use randomized algorithms on LCL problems. You
can always find a deterministic algorithm.

10

* Part 2:

Weak Coloring
&

The Formal Dining
Philosophers Problem

* Weak Coloring
|

= Color the nodes of a graph, such that every node has at
least one neighbor with a different color

= Weak 2-coloring:

= Applications:
= French Fries & Ketchup
= Digital Camera & Printer

12

* Proof: Every Graph has a Weak 2-

Coloring * Weak Coloring as an LCL Problem
| |

= Create an MST of the graph = A local algorithm for Weak 2-Coloring exists!
= First (and only?) non-trivial locally solvable LCL problem
= But: Algorithm only works if all nodes have odd degree

= Each node has to color itself with a local algorithm

= Start at one node, walk through the MST in a breadth-first
manner and color the nodes alternately

13

Continued:
* Rank of a Node: r,,(v) * Rank of a Node: r,,(v)
| |
= Letv be anode. N*(v) is the set of all neighbors of v, = r1,(V) is the rank of v among the neighbors of node w
including v itself. (=N*(w))
- rv(v) is the rank of v in the set of its neighbors N*(v) . \l;liga;\,/ asks node w: "What is my rank in your perspective of

N*(v) N*(w)

» N*(w)={2,5,6,9}
s ry(w)=4
= y(v)=3

- N*(v)={1,2,5,6,8,9}
= r(v)=4

15

* Algorithm that generates a Weak

* Local Algorithm for Weak 2-Coloring 2-Coloring (Phase 1)

| |
= Works only if all nodes have odd degrees! = Every node v calculates its color vector C:
= Main idea: Calculate r,(v) for all neighbors w e N*(v) = G =(C[1], C[0], G, ..., C,[deg(v)+1])
= The first component is in the range {1, ..., deg(v)}
= The other components are in the range {1, ..., deg(v)+1}
= Phase 1: Generate a Weak Coloring with d(d+1)d*2 colors = Because of this, there are so many possible colors
= d is the maximum degree of a node in the graph

= Phase 2: Reduce the number of colors to 4 degw) | Largest possible
= Algorithm needs time O(log*(d)) color number
= Works only if graph has bounded degree 3 3072
= Phase 3: 4 colors to 2 colors 5 1399180
= Algorithm needs time O(c), ¢ = number of colors 8 >2
11 > 248

= Could also use this algorithm for phase 2
14 > 264

17

* Local Algorithm for Node v
|

= Preparation:
= Create a list of all neighbors w € N*(v)
= Sort it according to ID(w)
= C[-1] := deg(v)
= Nodes with different degrees are different and get different colors
= C[0]:=r,(v)
= Among the r,(v), r,(v) is special and needs to get stored at a fixed
position
= For every neighbor w do: C,[r,(w)] := r,,(v)

= That's it! Algorithm is completely local: t=2
= Every node asks only its neighbors

19

"

Proof: The Algorithm is correct (1)

= Every node has a neighbor with a different color

= Proof by contradiction: Assume that v and all its neighbors
have the same color.
C, = C, for all neighbors w of v

= We can conclude:
= vand w have the same degree:
C[-1]=C,[-]
= v and w have the same rank among their neighbors:
C,[0] = C,[0] = r,(v) = r,(w) "

Proof (2): The contradiction is complete
* as soon as we can prove that...

|
= ...V has two neighbors a and b that both have v at the
same rank j among their neighborhood.

= Formally: r,(v) = rp(v) =
= Colors of a and b at array index j:
6

= Cylil = Clra(v)] = r(a)
= Cylil = Cylry(v)] = r,(b)

= r,(a) and r,(b) are not equal!
= Thus the colors C, and C, are different!
= This means that v has two neighbors with different colors
= To have the same colors:
s (V) #ry(v) (Rule 1)

21

Proof: The Algorithm is correct (3)

"

= Case 1: There are more neighbors with a higher ID than
with a lower ID
= Formally: x::r\,(v)s%v)+1

= For each such neighbor w:
= r,w) =r(v)=r/v)<r(v) (Rule?2) e

= Fill in this table:

i |[c|v]a|b
— 1o ry(v) # 1y(v)
r:|1/2[3]4 2. 1, (V) <1,(v)
nv:| 412 (1|1
T

22

* Proof: The Algorithm is correct (4)

|
= Case 1, in general (case 2 is similar):

[Neighbors of v v Neighbors of v
r():] 1 2 o | X1 ox | x#l | x+2 | L. | 2x-1| 2X
r(v): X 1 2 | x-1 y

x-1 Nodes > x Nodes,

x-1 smaller ranks than x

1. ra(v) # rp(v)
2. 1y(v) <r(v)

=y # X = two neighbors of v have different colors
= y=X= node has a different color é

23

1

Algorithm that generates a Weak 2-
Coloring (Phase 2)

= Phase 2: Reduce the number from c colors to 4 colors

= Algorithm for node v: o
= Choose the smallest ¢' with [Lc'/zj) >c

= Associate a different subset S; = {1, ..., ¢'} of size [c/2] to every
ief{l, .. c}

= V has at least one neighbor w with a different color
= vrecolors itself to a color thatis in S but not in Sggjor)-

= Such a color exists, because the subsets have the same size and
are not equal.

color(v)’

= But does node v know c?
= c could be calculated if d is bounded

= This is no local algorithm if d is unbounded!
24

Algorithm that generates a Weak 2-
* Coloring (Phase 3)

|
= Phase 3: 4 colors to 2 colors
= Original coloring: ¢ colors {1,2,...,c}
= Recoloring in c rounds/steps
= If cis not fixed, this is no constant-time algorithm (but it is local)
= Each node v waits until it has the smallest color number
among its original-colored neighbors in N*(v).

= Then, v recolors itself according to the following rules:
1. If v has only original-colored neighbors: Recolor to 0
2. If v has recolored neighbors:
If all the recolored neighbors have color 1: Recolor to 0
There are recolored neighbors with color 0: Recolor to 1
= After the recoloring, node v announces its new color to its
neighbors.

25

* Phase 3: Correctness and Example
|

= Correctness at node v:
= If vused rule 2, the node has a different-colored neighbor

= If vused rule 1, it must have a neighbor w with a bigger original
color than v.

= wwill recolor itself after v and use rule 2.
= Because v has color 0, w will recolor itself to 1.

26

* Nodes with even Degrees
|

= Now we see why this algorithm doesn't work with even
degreed nodes

)) . deg(v)
= Every pigeon can find a hole if r (v) = T+1

= How difficult is it to find an example where the algorithm
fails?
= Node v is not properly colored if...
= The degree d of v is even
« Its rank in its neighborhood is 5+1 d
= Every neighbor w of v has degree d and rank r,(w) = 2 +1
as well

27

Nodes with even Degrees:
* Example where the Algorithm fails

6 @ 10
7 9 4
3
1 5
4
3
5 4 12 13 2
8 1
3 5 11 14

28

The Formal Dining Philosophers Problem:
* Introduction

|
= Variant of the Dining Philosophers Problem
= Formal dining:

f |
\

e

A philosopher must wear two cuff links (Manschetten-
knopfe) while eating!

29

The Formal Dining Philosophers Problem:
* Definition

|
= Each node represents a processor and each edge a
resource (or "cuff link").
= A processor needs any two cuff links to eat

= Two processors share one resource and are therefore in a conflict
= Example:
= Storage server farm

= Find a local algorithm
= Safety?
= Liveness?

Formal DPP Dijkstra's DPP

30

Finding an Algorithm for the Formal
* Dining Philosophers Problem

|

= Generate a Weak 2-Coloring
= Colors: {0, 1, *}
= We assume that the minimum degree of a node is 3.
= All nodes where the algorithm fails recolor itself to color *.

= Assign two cuff links permanently to nodes colored *.
= Are there enough cuff links left for the other nodes?

= Nodes colored {0,1} run a dynamic algorithm to get two

cuff links

= Length of the "waiting chain"?

31

Permanent Assignment of Cuff Links to
Nodes colored *

"

= The algorithm fails at node v only if...
= Vv has even degree
= half of its neighbors have lower and half have higher ranks

= A node colored * grabs the two cuff links that lie on the
edges to two nodes with lower IDs

= Are there enough cuff links left?
= If wis a neighbor of v (v is colored *), then...
= w has the same degree as v (at least 4)
= The rank of w among its neighbors is half the degree plus 1
= In the "worst case", only half of the adjacent edges are
grabbed permanently

32

* Nodes colored {0,1}
|

= Nodes colored {0,1} must run this algorithm to get a cuff
link:
1. Request cuff link from the first neighbor
2. Request cuff link from the second neighbor
3. Eat
4. Release cuff links
= "Request” means: Grab the culff link, or wait until it's ready

= First and second neighbor need to be defined carefully to
prevent deadlocks

= Bad choice of 13
and 2" neighbors:

33

gl

How to choose the Second and First
Neighbor

= Trick: Choose the second neighbor first
= Deadlock only occurs if a node can't grab its second resource
= Ifviscolored 1:
= Choose any neighbor colored 0 as second neighbor
= Announce this to all neighbors
= Ifvis colored O:
= Wait if v has been chosen as a second neighbor by neighbor w
= If yes: Choose w as second neighbor to match the choice of w
= If no: Choose any neighbor colored 1 as second neighbor
= Then choose an arbitrary first neighbor (other than the
second neighbor)
= Never choose a neighbor colored * as first neighbor

34

Deadlock? — Proof about the Length of
* the Waiting Chain

|
= Given any assignment of first and second neighbors, the
maximum length of a waiting chain is at most 4
= Can this happen?

No, because w, would choose w; as its second neighbor
to match the choice of w;

35

gl

Proof: Maximum Length of the Waiting
Chain (1)

= Try to build a very long waiting chain:
First First First First First

. Waits for e@@@e@@ Waits for °

Uo

Second Second ' second 2 second 8 second

= The rules were violated. If we obey the rules, we get this

(c=1):
First Second First Second First
First Y second First Y2 second First

= It's impossible to build a waiting chain of arbitrary length!

36

il

Proof: Maximum Length of the Waiting
Chain (2)

= The longest possible waiting chain has length 4

37

Summary of this Presentation

= Local algorithms & LCL problems

= |t's undecidable if a local algorithm for a given LCL
problem exists

= Randomized local algorithms: Don't use them

= Weak 2-Coloring:
= Local algorithm that works if all nodes have odd degree
= Color Generation & Color Reduction
= Fails only in very rare cases

= Formal Dining Philosophers Problem:
= Efficient algorithm based on Weak Coloring
= Static "cuff link" allocation for nodes where Weak Coloring fails

38

