Peer-to-Peer
File Systems

Hannes Geissbuhler
Seminar of Distributed Computing
WS 03/04

The Papers

e Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications

lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Blakrishnan
MIT Laboratory for Computer Science

e Wide-area cooperative storage with CFS

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Moris, lon Stoica
MIT Laboratory for Computer Science

e Ivy: A Read/Write Peer-to-Peer File System

Athicha Muthitacharoen, Robert Morris, Thomer M. Gil and Benjie Chen
MIT Laboratory for Computer Science

Goal of this Talk

e To show how to build a peer-to-peer file
system based on these three papers

e To explain how the different layers of this
peer-to-peer system work

e Point out the problems of peer-to-peer file
systems

Chord, a Distributed Lookup | i
Protocol - Overview

e Provides support for just one operation:
given a key it maps the key onto a node
(IP-address)

e Chord is a scalable protocol for lookup in a
dynamic peer-to-peer system with frequent
node arrivals and departures

e Chord uses a variant of consistent hashing
to assign keys to Chord nodes

Chord, Runtime Aspects

e Needs routing information about only O(log N)
other nodes

e Resolves lookups via O(log N) messages to
other nodes

e Maintaining routing information as nodes join
and leave results in no more than O(log2 N)
messages

e When an Nt node joins or leaves the network
only an O(1/N) fraction of keys are moved to a
different location

Advantage of Chord compared
to other Systems

e Simple
e Provable correct
e Provable performance

e Robust (in face of partially incorrect routing
information)

e Handles concurrent node joins and failures

System Model

e Load balance: Chord acts as a distributed hash
function ->keys are evenly spread over the nodes

e Decentralization: Chord is fully distributed. No node
is more important than any other ->robustness

e Scalability: The cost of lookup grows as the log of
the number of nodes ->large systems are feasible

e Availability: Chord automatically adjusts its internal
tables -> nodes can always be found even when
major failures in the network occur

What Chord is not responsible |
for

e Authentication

e Caching

e Replication

e User-friendly naming of data

Consistent Hashing

e Assigns each node and key an m-bit identifier

e A node’s identifier is chosen by hashing the
node’s IP address

e A key identifier is produced by hashing the
key

Assigning Keys to Nodes 1

e |dentifiers are ordered in an identifier circle
modulo 2m

e Key k is assigned to the first node whose
identifier is equal to or follows k on the circle.
This node is called the successor node

e In a circle of numbers from 0 to 2m-1,
successor(k) is the first node clockwise from k

Example Identifier Circle

@ successor(1) =1

successor(2) = 3

successor{6) =0

Assigning Keys to Nodes 2

e When a node n joins, certain keys previously assigned to
n’s successor now become assigned to n

e When node n leaves the network, all of its assigned keys
are reassigned to n’s successor

e Having N nodes and K keys following theorems hold:
-Each node is responsible for at most (1+€)K / N keys

-When an (N+1)!" node joins or leaves the network only
responsibility for O(K / N) keys changes
One can prove a bound of € = O(log N)

Key Location (Routing)

e Each node need only be aware of its
successor

->queries can be passed around the circle
->inefficient

e Chord maintains additional routing
information

e Additional information is not essential for
correctness, which is achieved through the
correct successors

Additional Routing Information
- The Finger Table

e Each node maintains a routing table with at
most m entries called the finger table

e The it entry in the table at node n contains
the identity of the first node s that succeeds n
by at least 2! on the circle

e S = successor(n+ 2+1)
e We call node S the it finger

e A finger table entry includes the Chord
identifier and the IP address

Example Finger Table :

f
\ ."l finger table keys
/| [eBd] It
\.5 30:- 4 |45
. N AORT s |5
R 3 7|0

Finger Table and Search

Searching a Node

e Searching recursively the successor of a key
over the finger nodes.

e Every lookup roughly halves the distance on
the circle

e The number of contacted nodes to find a
successor in a N-node network is O(log N)

Node Joins

e 2 invariants have to be preserved
- Each node’s successor is correct
- node successor(k) is responsible for k

e To simplify joins and leaves a predecessor
pointer is maintained

A Node Join

e 1. initialize the predecessor and fingers of
node n

e 2. update the fingers and predecessors of
existing nodes

e 3. move responsibility of keys

Stabilization

e Having failures and concurrent operations the
join algorithm discussed is to aggressive

e Use stabilization protocol to keep nodes’
successors pointers

e Every node runs stabilize periodically

Failures

e Key is to maintain correct successor pointers

e Each Chord node maintains a successor-list
of its r nearest successors

e Good length of successor list is log N

Problems of Chord

e Partitioned rings
e Malicious participants
e Lookup latency

Chord Summary

e Just one operation: maps key onto node
e Simple, correct, scalable

e In simulations all good properties have been
verified

CFS, the Cooperative File :
System - Overview

e Peer-to-peer read only storage system

e Provides distributed hash table for block
storage (DHash)

e Uses replicas and caches blocks

CFS File System

e File system exists as a set of blocks
distributed over available nodes

e CFS client interprets blocks as file system

DHash

e Splits files into blocks and distributes them

e Maintains cached blocks and replicated
copies

e Supports pre-fetching of cached blocks to
decrease latency

Software Structure

CFS Client CFS Server CFS Server

File system format

e Each block is a piece of file or a piece of
meta-data (for example a directory)

e Size of a block is in order of tens of kB

e Publisher inserts root block signed with
private key

e Data is stored during a finite interval
e No explicit delete operation

o0
- o0
File System Structure Example | ®
Himﬁ\lmy I["|Udﬁ data block
H(D) H(F)_ _
public key root-block J D F=d
— H :
. H[B‘Jdm block
: 9
signature

Replication

e DHash replicates each block on k other
servers to increase availability

e Replicas are maintained as peers come and
go

e Replicas are placed on the successor servers
(easy to find through successor list)

Caching

e DHash cashes blocks

e Each server has a fixed amount of disk
storage reserved for cache

e Least recently used replacement

e Each node on the lookup path gets a cache
copy

e While searching each server has to check if
the desired block is cached on the node

Caching Example

Load Balance

e DHash spreads the blocks evenly around the
ID space (hash function)

e To accommodate different server capacities
virtual servers are used

e Virtual servers have direct access to other
servers on the same machine

e Number of servers can dynamically be
adapted

Problems of CFS

e DHash -> saving time is limited
e No explicit delete operation
e Virtual servers -> nodes are not independent

e One small change in a file causes big effort in
rearranging the data structure

e Problems of Chord

Cooperative File System
Summary

e Highly scalable read only file system

o Clients retrieve blocks from servers and
interpret them as a file system

e CFS uses caching and replication

e Experimental results show that CFS is as fast
as FTP

Ivy, a Read / Write Peer-to-Pee
File System - Overview

e lvy provides NFS-like semantics
e lvy consists solely of a set of logs

e Resists attacks from non-participants by
cryptographically verifying the data

Layers of lvy

‘ DHash } } DHash i DHash
bt P
Chord ‘ ‘ Chord i Chord
Ivy Client IvyServer Ivy Server

Design

e lvy consists of a set of logs, one log per
participant

e Each participant appends only its own log but
reads from all logs

e Each participant maintains a private snapshot
to avoid going through all logs

Log Data Structure

e Alog is a linked list of immutable log records

e Each log is a DHash block

e Log-head stores DHash key of most recent
log record

e Log records contain the Inumber(s) of the
file(s) or directory they affect

e Log records contain a version vector to
guarantee causality

Views

e Participants agree on a view

e Users creating or changing a file system must
exchange public keys

¢ View block = pointers to all log-heads & root
Inode

View and Logs

log-head

view block

.................................

log records

Using the Log

e File system creation
-create log(s), log—head(s), root Inode and the view

o File creation
-append Inode log record

e File read
-scans all logs for records concerning the
Inode

Snapshot

directory inode directory inode block
e
i E
: name n | inumber ~
i
snapshot block }
meta-data H
¢
number o [H#04 |-
: file inode
. o
file map = - data block
i-number | HiFy p e
: B2 = data block
£

Application Semantics 1

e vy defers writing file data until the application is
closing the file

->only once per file-write a new log-head is
inserted

e updates can occur in order or at one time
->difficult for a decentralized file system

if version vectors are equal -> comparing
participants public keys

Application Semantics 2

e Combination of deletion and renaming
P1 wants to delete file a
P2 wants to rename file ato b

Ivy will return a success status to both, but
the system agrees on the version vector
order

Problems of lvy

e One has to save the logs forever
e Unsolvable conflicts
e Problems of underlying layers

Summary

e lvy is a peer-to-peer file system which is built
on top of Chord and DHash

e vy can operate a relatively open peer-to-peer
environment

e Experimental results show that Ivy is two to
three times slower than NFS

