Peer-to-Peer File Systems

Seminar of Distributed Computing

DCG ETH Ziirich

Hannes Geissbuehler (hannesg@student.ethz.ch)
November 2003

1 Summary of Ivy, a peer-to-peer file system

The paper describing Ivy [ivy] introduces a multi user read/write peer-to-peer file system with
NFS-like semantics. Ivy was developed at the MIT and is based on a DHash and a Chord layer
which both were also developed at MIT and published in the papers [cfs] and [chord].

The Ivy file system consists solely of a set of logs. A log is a linked list of immutable log
records where each log record describes a change on the file system. Ivy’s logs contain version
vectors that allow it to detect and resolve conflicts. Each user has it’s own log-head which points
to the most recent own log record. The log-head of each user is signed with it’s private key to
provide authentication. When many participants want to build a file system together, they have
to agree on a corporate view. A view block therefore contains pointers to all log-heads and the
root Inode. To get access to other users log, users must exchange their public keys. From time to
time each participant constructs or updates it’s private snapshot. A snapshot is the actual state of
the distributed file system on which one take part. While building this snapshots file and directory
Inodes will be produced out of the log records and stored in the system.

To store log records, snapshots and Inodes, Ivy uses DHash which is the software layer directly
underneath Ivy. DHash was first developed as part of the CFS read only storage system (in this
system only the creator can change and create files, all other users have read access only). DHash
take files, splits them into blocks (in order of tens of kB) and distributes them using the underlying
Chord layer. To assign a key to each block DHash hashes the entire content of each block except
for log-heads for which DHash uses the public key of the block as key. DHash is a kind of service
layer therefore it implements replication of blocks, caching of blocks during lookup and load balance
through the hash function and the use of virtual servers. DHash provides no explicit delete operation
but stores data only during a finite time interval.

On the bottom of the layers we have Chord distributing and locating the blocks over all available
nodes. Chord is a distributed lookup protocol, which is designed to efficiently locate a particular
node in a large dynamic peer-to-peer system with [requent node arrivals and departures. Basically,
Chord provides support for just one single operation: given a key, Chord maps it onto a specific
node (in fact it returns the IP-address of the node). Chord uses a variant of consistent hashing
to assign each node an 160-bit identifier by hashing the node’s TP address and virtual server 1D.
A key identifier is produced by hashing the key itself. The identifiers are ordered in an identifier
circle on which every key K is assigned to the first node whose identifier is equal to or follows k on
the circle. This node is called successor node. Every node has a list of its r nearest successor nodes
and additional routing information stored in a so called finger table to handle queries in a efficient
way. This design results in a simple, robust and good scalable protocol with provable correctness
and provable performance.

2 Analysis

Now as we have with Ivy an implemented peer-to-peer read/write peer-to-peer system following
question arises: are the problems of Ivy negligible in practical use and do we really need such a file
system and if yes who will use it then? In my eyes, Ivy has three major problems, which are not
negligible: waste of disk space, security issues and unresolvable conflicts.

e Waste of disk space:

In all 3 papers they just assume that disk space is cheap therefore we have enough disk space.
This assumption may be not so wrong, disk space has become in fact very cheap, but to waste



it and use it as a write once data media is just unacceptable. The problem is: in Ivy you
cannot modify existing blocks. Every time you change only one little thing you have to create
a completely new block and you can’t even delete the old one, because you have to store each
log forever. This storing is necessary because in case of conflicts you may need old log records.
And even if you wanted to delete one of the block you couldn’t because no delete operation
is supported. The only way to delete something is not do refresh the time interval for which
DHash stores certain block. This indirect delete operation brings new troubles along: one
need something like a daemon, which updates your blocks from time to time. This is very
time consuming and error prone. A solution might be to implement a delete operation or to
provide something like a garbage collector for unused blocks.

e Security issues:

Because Ivy is based on Chord and DHash it naturally inherits all problems of this two layers.
And T see a big security problem in the fact, that Chord trusts in every node. Therefore a
few malicious participants running many virtual servers can present an incorrect view of the
Chord ring. And an incorrect Chord ring brings along conflicts in the DHash and Ivy layers.
I think in a system which is designed for [requent node arrivals and departures (for example
mobile devices) the security mechanism should already be implemented on the Chord layer
and not only in the Ivy layer. So one solution could be to use public key authentification
already on the Chord layer or that every node has to register itself first. Maybe in the future
one could use the security function of TCPA to authentificate each node in a easy way.

e Unresolvable conflicts:

In Tvy it is possible that unresolvable conflicts can occur (for example if the underlying Chord
ring is partitioned). For this case, Ivy provides tools to manually repair the conflicts. I think
every system-administrator or manager who is in charge to decide which system is to be used
will instantly decide against Ivy when he first reads about unresolvable conflicts. One solution
might be to cut down the file system semantics that no more unresolvable conflicts can occur.
Having banned unresolvable conflicts we would have solved also a big part of the disk space
problem because we then could delete unused old blocks.

Including this three problems we have to discuss where Ivy could be used. One big area for Ivy
could be to replace servers and backups system or distributed network file system like the AFS. In
this domain I see other problems for Ivy. First we have the three mayor problems of Ivy discussed
before, which are in most situation counterarguments enough. Then server systems are nowadays
not that expensive anymore and one knows more ore less how to administrate them. On the other
side, Ivy means that you have to install an Ivy instance on every client and that you are using
experimental infrastructure. Not to forget the performance handicap of Ivy (Ivy is two to three
times slower than NFS).

In the years of Napster, Kazaa and E-donkey one should consider Ivy as a future file sharing
tool. Although Ivy scales very good I think Ivy is inoperative for file-sharing purpose. First every
user must have the public-keys of every other user he wants to share with, then users don’t want
to have replicas on their computer. The need of a powerful search makes it necessary to have up
to date snapshots. Thus means that we have to go trough the logs of all participants what is not
feasible in the big file-sharing community. This shows that traditional file-sharing clients have other
requirements than to have full file system semantics.

To summarize, I think that although Ivy is already implemented and has interesting new ideas
it will never be used in a commercial way. I see Ivy as a typically scientific implementation to test
new ideas and collecting experience. Fixing the actual problems, peer-to-peer file system eventually
will become more important in the future, when data has to be available everywhere in every time.
Also the growing sector of embedded systems and sensor networks is a potential application area.
They are highly connected but have small memory so they could store their data over a peer-to-peer
file system.

References

[ivy] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, Benjie Chen: Ivy: A
Read/Write Peer-to-Peer File System;

[cfs] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris, Ion Stoica: Wide-area

cooperative storage with CFS; SOSP’01

[chord] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan :
A Scalable Peer-to-peer Lookup Service for Internet Applications; SIGCOMM’01



