
Compact Routing with Name
Independence

Henri Dubois-Ferrière

Distributed Computing Seminar
ETHZ 20/1/2004

1. Introduction and Background

About the Paper and Topic

• Paper: “Compact Routing with Name Independence”
– M. Arias, L. Cowen, K. Laing, R. Rajaraman, O. Taka, SPAA

2003
– Several existing proposals.
– This one offers best bounds to date (in a particular setting).

• Topic: Compact Routing
– Reduce size of routing table size, at the cost of suboptimal route

lengths.
– Trade off route lengths for space

• As opposed to approximate all-pairs shortest paths, which trades off
route length for time.

– Several existing proposals

Historical Context

• Early work on compact routing (~ 1985)
– Network specific schemes

• i.e., ring, tree, grid considered in isolation.

• Universal schemes (~ 1989)
– Worked on general graphs
– Bounds on average RT size

• More recent work
– Bounds on maximal RT size
– Name-independent routing

Compact Routing Taxonomy
• Node naming:

– Name Independent (harder): nodes have arbitrary, fixed
names with no topological information.

– Topology Dependent (easier): Nodes can be assigned
topologically relevant addresses (i.e., internet).

• Link naming:
– Fixed-port (harder): outgoing links (ports) at each node have

arbitrary, non-topological names.
– Designer-port (easier): ports can be named by the algorithm

(i.e., label each port with the name of node on other end)
• Re-writable vs. fixed packet headers

– Notion of read-only packet seems somewhat esoteric…
• This work is concerned with name independent,

fixed-port compact routing with rewritable headers.
(the hardest setup)

Quantities of Interest
• CR scheme is

characterized by 3
quantities:
– Stretch:
– Storage: size of routing

tables
– Packet header size

• Example:
Shortest-path routing:

– Stretch 1
– O(nlogn) routing tables.
– O(logn) headers

),(
)|,(|

vud
vup

v
stretch 1

u

stretch 2

• Note: Graph considered is
weighted and undirected.

Performance of Name-Indep. Schemes

• [1] : Awerbuch et al, 1989
• [3] : Awerbuch et al, 1990
• [9] : Gavoille et al, 1997 (any routing scheme using sublinear space

has stretch ≥ 3)

Covered here

2. Name-Independent Compact
Routing with Stretch 5

High-level view
• Select “a few” landmark nodes.
• Keep name-independent shortest-path routes to:

– Subset of “close” nodes
– All landmarks

• Use topology-dependent shortest-path spanning trees
rooted at each landmark, for which there exist small
routing tables

• Reuse parts of prior work
– Result on topology-dep. routing over trees with O(1) tables
– Result on size of a “well-distributed” landmark set
– Result on distribution of nodes for lookup

Topology-dependent CR on a Tree

• For any tree T, there is a routing scheme that provides optimal
(stretch 1) routes, with:

– Õ(1) storage
– O(log2n) headers

• Note: If we require Õ(n½) storage, then we can afford up to Õ(n½)
such trees in our scheme.

• Prior result from
– Fraigniaud et al, 2001
– Thorup et al, 2001

High-level example

• S must route to D
• We have two landmarks
• Nodes have optimal route to

each landmark
• Landmarks have optimal route

to each node
• The hard part is figuring out:

– Which landmark to route
through

– What is the topology-dep.
address of D in chosen
landmark’s tree.

S

D

L

L

S

D

L

L

The Landmark Set

• How many?
– If “too many” (e.g. O(n)), storage requirements grow too large

(remember each node stores one Õ(1) table per tree).
– If “too few”, (e.g. O(1)), then avg distance to landmark grows

with network size and we will not have constant stretch
– Therefore we must have at most Õ(n½) landmarks.

• Where?
– Should be spread out “uniformly” – so that every node pair has a

landmark which is “close” to their optimal route.

Landmark Set as a Hitting Set
• G = (V, E) : undirected graph of size n
• N(v) : set of v’s n½ closest nodes (“neighborhood ball”)
• Thm. (hitting set) : [Lovasz, 1975]

– There exists a set L s.t.

• (all nodes have nearby landmark)
• (sublinear size)

– Exists an algorithm to compute L in polynomial time

• Our CR scheme makes use of any set of landmarks
satisfying this theorem.

• Note: If there are Õ(n½) landmarks, then we can afford to
maintain optimal route entries to each of them

, ()v V L N v∀ ∈ ≠ ∅∩
1/ 2| | ()L O n=

Which landmark to route through?
• So far:

– Õ(n½) landmarks
– Nodes have optimal routes to

each landmark
– Nodes have optimal routes to

nodes in neighborhood ball
– Most routes will go through a

landmark

d(l,d)

d(s,l)

D

L

L

S

• Pick landmark which minimizes

d(s,l) + d(l,d) (“best” landmark)

• Remark: Can only store “best” landmark for Õ(n1/2) destinations!

• So we need some assignment of which Õ(n1/2) subset of
destinations each node knows about

Block Set
• Lemma:

– Given G = (V, E), |G| = n
– N(v): set of v’s n½ closest nodes (“neighborhood ball”)
– Blocks: Namespace partitioned into n½ blocks, each of

size n½.

– There exists an assignment of sets of blocks Sv to each
node v such that:

•
•

• Each node v keeps track of the “best” landmark to
reach all nodes in Sv. This takes Õ(n1/2) space.

1/ 2, (0), () :i i jv G B i n j N v B S∀ ∈ ∀ ≤ < ∃ ∈ ∈

B1 …

,| | (log)vv G S O n∀ ∈ =

B2 Bk

Storage Recap & Analysis

SpaceData (at node u)

Õ(n1/2)
(There are Õ(n1/2) landmarks, each
routing tables is Õ(1))

For every landmark l, the routing table
Tab(u) for the tree Tl

Õ(n1/2)
(Su contains O(logn) blocks, each of
size O(n1/2)

For each node j in Su, the triple (j, l, addr(j,l))
where:
•l minimizes d(u,l) + d(l,j) over all landmarks
• addr(j,l) is the address of j in tree rooted at l

Õ(n1/2)
(Because L contains by the hitting
set thm Õ(n1/2) nodes)

Next-hop entries (shortest-path) to all
landmark nodes.

O(n1/2)
(Because N(u) contains by
construction n1/2 closest nodes)

Next-hop entries (shortest-path) to all
nodes in N(u)

Routing Algorithm I

DestinationSource

s d

• Case

• Easy: s can route along stretch-1 path to d
(remember that we keep routing entries for all
nodes in neighborhood)

()d N s∈

Routing Algorithm II

DestinationLandmark
Minimizes d(s,l) + d(l,d) over all
landmarks

Source
s l d

• Case (s knows which landmark to choose)

• Stretch is 3:
*

* *

* *

* *

Call the landmark closest to .
Then (,) (,) (because (), and by assumption ())

(,) (,) (,) (,) (by construction)
(,) (,) (,) 2 (,)

l s
d s l d s d l N s d N s

d s l d l d d s l d l d
d l d d s l d s d d s d

≤ ∈ ∉

+ ≤ +

≤ + ≤

l*

(), sd N s d S∉ ∈

Routing Algorithm II

Landmark
Minimizes d(s,l) + d(l,d)

over all landmarks
Destination

HelperSource

s l d

• Case (s knows which landmark to choose)

• Stretch is 5:
*

* *

* *

Call the landmark closest to .
Then (,) (,) (because (), and by assumption ())

(,) (,) (,) (tri. inequality)
 2 (,)

(,) (,) (,) (tri. inequality)

l s
d s h d s d h N s d N s

d h l d h s d s l
d s d

d l d d l s d s d

≤ ∈ ∉

≤ +
≤

≤ +
 2 (,)

(,) (,) (,) 5 (,)
d s d

d s h d h l d l d d s d
≤
+ + ≤

l*
(), sd N s d S∉ ∉

h

3. Remaining bits, comments,
and conclusion

Bits not covered
• Stretch 7 and other stretch 5 schemes

– Similar flavor to this one

• Above schemes generalized to provide schemes with different
stretch/space tradeoffs
– Õ(k2n2/k) tables
– Õ(log2n) headers
– min{1 + (k – 1) (2k/2 -2), 16k2 + 4k}

• Method to apply these schemes when node names are picked from
an arbitrary namespace (of size larger than n)

Comments and Questions
• Open questions from conclusions

– Bridge gap to lower bound (stretch 3)
– Study problem in dynamic context

• Comments:

– Scheme is flat (non-hierarchical) in terms of storage, but not in
terms of load (landmarks get more traffic)

– After first lookup, can we take shorter route?
– Maybe node names could be considered as data ids, in which

case this problem (and solution) could be cast in a p2p setting?
– Would this work if the name-space is much larger than |G|, ie

each node has many labels attached to it? (we would then be
close to the p2p setup)

