Compact Routing with Name Independence

Henri Dubois-Ferrière Distributed Computing Seminar ETHZ 20/1/2004

1. Introduction and Background

About the Paper and Topic

- Paper: "Compact Routing with Name Independence"
 - M. Arias, L. Cowen, K. Laing, R. Rajaraman, O. Taka, SPAA 2003
 - Several existing proposals.
 - This one offers best bounds to date (in a particular setting).
- Topic: Compact Routing
 - Reduce size of routing table size, at the cost of suboptimal route lengths.
 - Trade off route lengths for space
 - As opposed to approximate all-pairs shortest paths, which trades off route length for time.
 - Several existing proposals

Historical Context

- Early work on compact routing (~ 1985)
 - Network specific schemes
 - i.e., ring, tree, grid considered in isolation.
- Universal schemes (~ 1989)
 - Worked on general graphs
 - Bounds on average RT size
- More recent work
 - Bounds on *maximal* RT size
 - Name-independent routing

Compact Routing Taxonomy

- Node naming:
 - Name Independent (harder): nodes have arbitrary, fixed names with no topological information.
 - Topology Dependent (easier): Nodes can be assigned topologically relevant addresses (i.e., internet).
- Link naming:
 - Fixed-port (harder): outgoing links (ports) at each node have arbitrary, non-topological names.
 - Designer-port *(easier)*: ports can be named by the algorithm (i.e., label each port with the name of node on other end)
- Re-writable vs. fixed packet headers
 - Notion of read-only packet seems somewhat esoteric...
- This work is concerned with *name independent, fixed-port compact routing with rewritable headers*. (the hardest setup)

Quantities of Interest

- CR scheme is characterized by 3 quantities:
 - Stretch: $\frac{|p(u,v)|}{d(u,v)}$
 - Storage: size of routing tables
 - Packet header size
- Example:
 - Shortest-path routing:
 - Stretch 1
 - O(nlogn) routing tables.
 - O(logn) headers

• Note: Graph considered is weighted and undirected.

Performance of Name-Indep. Schemes

	Table	Header	
	Size	Size	Stretch
[1]	$\tilde{O}\left(n^{1/2}\right)$	$O(\log n)$	2592
[1]	$\tilde{O}\left(n^{2/3}\right)$	$O(\log n)$	486
[3]	$\tilde{O}\left(n^{1/2}\right)$	$O(\log n)$	1088
[3]	$\tilde{O}\left(n^{2/3}\right)$	$O(\log n)$	624
This paper	$\tilde{O}\left(n^{1/2}\right)$	$O(\log^2 n)$	5
This paper	$\tilde{O}\left(n^{1/2}\right)$	$O(\log n)$	7
This paper	$\tilde{O}\left(n^{2/3}\right)$	$O(\log n)$	5
Lower Bound [9]	o(n)	$\log_2 n$	3

Covered here

- [1] : Awerbuch et al, 1989
- [3] : Awerbuch et al, 1990
- [9] : Gavoille et al, 1997 (any routing scheme using sublinear space has stretch ≥ 3)

2. Name-Independent Compact Routing with Stretch 5

High-level view

- Select "a few" landmark nodes.
- Keep name-independent shortest-path routes to:
 - Subset of "close" nodes
 - All landmarks
- Use topology-dependent shortest-path spanning trees rooted at each landmark, for which there exist small routing tables
- Reuse parts of prior work
 - Result on topology-dep. routing over trees with O(1) tables
 - Result on size of a "well-distributed" landmark set
 - Result on distribution of nodes for lookup

Topology-dependent CR on a Tree

- For any tree T, there is a routing scheme that provides optimal (stretch 1) routes, with:
 - Õ(1) storage
 - O(log²n) headers
- Note: If we require $\tilde{O}(n^{\frac{1}{2}})$ storage, then we can afford up to $\tilde{O}(n^{\frac{1}{2}})$ such trees in our scheme.
- Prior result from
 - Fraigniaud et al, 2001
 - Thorup et al, 2001

High-level example

- S must route to D
- We have two landmarks
- Nodes have optimal route to each landmark
- Landmarks have optimal route to each node
- The hard part is figuring out:
 - Which landmark to route through
 - What is the topology-dep. address of D in chosen landmark's tree.

The Landmark Set

- How many?
 - If "too many" (e.g. O(n)), storage requirements grow too large (remember each node stores one Õ(1) table per tree).
 - If "too few", (e.g. O(1)), then avg distance to landmark grows with network size and we will not have constant stretch
 - Therefore we must have at most $\tilde{O}(n^{\frac{1}{2}})$ landmarks.
- Where?
 - Should be spread out "uniformly" so that every node pair has a landmark which is "close" to their optimal route.

Landmark Set as a Hitting Set

- G = (V, E) : undirected graph of size n
- N(v) : set of v's n^{1/2} closest nodes ("neighborhood ball")
- Thm. (hitting set) : [Lovasz, 1975]
 - There exists a set L s.t.
 - $\forall v \in V, L \bigcap N(v) \neq \emptyset$ (all nodes have nearby landmark)
 - $|L| = \tilde{O}(n^{1/2})$ (sublinear size)
 - Exists an algorithm to compute L in polynomial time
- Our CR scheme makes use of any set of landmarks satisfying this theorem.
- Note: If there are Õ(n^{1/2}) landmarks, then we can afford to maintain optimal route entries to each of them

Which landmark to route through?

- So far:
 - $\tilde{O}(n^{\frac{1}{2}})$ landmarks
 - Nodes have optimal routes to each landmark
 - Nodes have optimal routes to nodes in neighborhood ball
 - Most routes will go through a landmark

• Pick landmark which minimizes

d(s,I) + d(I,d) ("best" landmark)

- Remark: Can only store "best" landmark for $\tilde{O}(n^{1/2})$ destinations!
- So we need some assignment of which Õ(n^{1/2}) subset of destinations each node knows about

Block Set

- Lemma:
 - Given G = (V, E), |G| = n
 - N(v): set of v's $n^{\frac{1}{2}}$ closest nodes ("neighborhood ball")
 - **Blocks**: Namespace partitioned into $n^{\frac{1}{2}}$ blocks, each of size $n^{\frac{1}{2}}$. $B_1 \mid B_2 \mid \dots \mid B_k$
 - There exists an assignment of sets of blocks S_{ν} to each node ν such that:
 - $\forall v \in G, \forall B_i (0 \le i < n^{1/2}), \exists j \in N(v) : B_i \in S_j$
 - $\forall v \in G, |S_v| = O(\log n)$
- Each node v keeps track of the "best" landmark to reach all nodes in S_v . This takes $\tilde{O}(n^{1/2})$ space.

Storage Recap & Analysis

Data (at node u)	Space	
Next-hop entries (shortest-path) to all nodes in N(u)	O(n ^{1/2}) (Because N(u) contains by construction n ^{1/2} closest nodes)	
Next-hop entries (shortest-path) to all landmark nodes.	$\tilde{O}(n^{1/2})$ (Because L contains by the hitting set thm $\tilde{O}(n^{1/2})$ nodes)	
 For each node j in S_u, the triple (j, l, addr(j,l)) where: I minimizes d(u,l) + d(l,j) over all landmarks addr(j,l) is the address of j in tree rooted at l 	$ ilde{O}(n^{1/2})$ (S _u contains O(logn) blocks, each of size O(n ^{1/2})	
For every landmark I, the routing table Tab(u) for the tree T _I	$\tilde{O}(n^{1/2})$ (There are $\tilde{O}(n^{1/2})$ landmarks, each routing tables is $\tilde{O}(1)$)	

Routing Algorithm I

- Case $d \in N(s)$
- Easy: s can route along stretch-1 path to d (remember that we keep routing entries for all nodes in neighborhood)

Routing Algorithm II

• Case $d \notin N(s), d \in S_s$ (s knows which landmark to choose)

• Stretch is 3:

Call l^* the landmark closest to *s*.

Then $d(s,l^*) \le d(s,d)$ (because $l^* \in N(s)$, and by assumption $d \notin N(s)$) $d(s,l) + d(l,d) \le d(s,l^*) + d(l^*,d)$ (by construction) $d(l^*,d) \le d(s,l^*) + d(s,d) \le 2d(s,d)$

Routing Algorithm II

• Case $d \notin N(s), d \notin S_s$ (s knows which landmark to choose)

• Stretch is 5:

Call l^* the landmark closest to *s*. Then $d(s,h) \le d(s,d)$ (because $h \in N(s)$, and by assumption $d \notin N(s)$) $d(h,l^*) \le d(h,s) + d(s,l^*)$ (tri. inequality) $\le 2d(s,d)$ $d(l^*,d) \le d(l^*,s) + d(s,d)$ (tri. inequality) $\le 2d(s,d)$ $d(s,h) + d(h,l) + d(l,d) \le 5d(s,d)$

3. Remaining bits, comments, and conclusion

Bits not covered

- Stretch 7 and other stretch 5 schemes
 - Similar flavor to this one
- Above schemes generalized to provide schemes with different stretch/space tradeoffs
 - Õ(k²n^{2/k}) tables
 - Õ(log²n) headers
 - $\min\{1 + (k 1) (2^{k/2} 2), 16k^2 + 4k\}$
- Method to apply these schemes when node names are picked from an arbitrary namespace (of size larger than n)

Comments and Questions

- Open questions from conclusions
 - Bridge gap to lower bound (stretch 3)
 - Study problem in dynamic context
- Comments:
 - Scheme is flat (non-hierarchical) in terms of storage, but not in terms of load (landmarks get more traffic)
 - After first lookup, can we take shorter route?
 - Maybe node names could be considered as data ids, in which case this problem (and solution) could be cast in a p2p setting?
 - Would this work if the name-space is much larger than |G|, ie each node has many labels attached to it? (we would then be close to the p2p setup)