Compact Routing with Name Independence

Henri Dubois-Ferrière

Distributed Computing Seminar
ETHZ 20/1/2004

1. Introduction and Background

About the Paper and Topic

- Paper: "Compact Routing with Name Independence"
- M. Arias, L. Cowen, K. Laing, R. Rajaraman, O. Taka, SPAA 2003
- Several existing proposals.
- This one offers best bounds to date (in a particular setting).
- Topic: Compact Routing
- Reduce size of routing table size, at the cost of suboptimal route lengths.
- Trade off route lengths for space
- As opposed to approximate all-pairs shortest paths, which trades off route length for time.
- Several existing proposals

Historical Context

- Early work on compact routing (~1985)
- Network specific schemes
- i.e., ring, tree, grid considered in isolation.
- Universal schemes (~1989)
- Worked on general graphs
- Bounds on average RT size
- More recent work
- Bounds on maximal RT size
- Name-independent routing

connorat pouting taxononny

- Node naming:
- Name Independent (harder): nodes have arbitrary, fixed names with no topological information.
- Topology Dependent (easier): Nodes can be assigned topologically relevant addresses (i.e., internet).
- Link naming:
- Fixed-port (harder): outgoing links (ports) at each node have arbitrary, non-topological names.
- Designer-port (easier): ports can be named by the algorithm (i.e., label each port with the name of node on other end)
- Re-writable vs. fixed packet headers
- Notion of read-only packet seems somewhat esoteric...
- This work is concerned with name independent, fixed-port compact routing with rewritable headers. (the hardest setup)

Quantities of Interest

- CR scheme is characterized by 3 quantities:
- Stretch: $\frac{|p(u, v)|}{d(u, v)}$
- Storage: size of routing tables
- Packet header size
- Example:

Shortest-path routing:

- Note: Graph considered is weighted and undirected.
- Stretch 1
- O(nlogn) routing tables.
- O(logn) headers

Performance of Name-Indep. Schemes

	Table Size	Header Size	Stretch
$[1]$	$\tilde{O}\left(n^{1 / 2}\right)$	$O(\log n)$	2592
$[1]$	$\tilde{O}\left(n^{2 / 3}\right)$	$O(\log n)$	486
$[3]$	$\tilde{O}\left(n^{1 / 2}\right)$	$O(\log n)$	1088
$[3]$	$\tilde{O}\left(n^{2 / 3}\right)$	$O(\log n)$	624
This paper	$\tilde{O}\left(n^{1 / 2}\right)$	$O\left(\log ^{2} n\right)$	$\mathbf{5}$
This paper	$\tilde{O}\left(n^{1 / 2}\right)$	$O(\log n)$	$\mathbf{7}$
This paper	$\tilde{O}\left(n^{2 / 3}\right)$	$O(\log n)$	$\mathbf{5}$
Lower Bound $[9]$	$o(n)$	$\log _{2} n$	3

Covered here

- [1] : Awerbuch et al, 1989
- [3] : Awerbuch et al, 1990
- [9] : Gavoille et al, 1997 (any routing scheme using sublinear space has stretch ≥ 3)

2. Name-Independent Compact Routing with Stretch 5

High-level view

- Select "a few" landmark nodes.
- Keep name-independent shortest-path routes to:
- Subset of "close" nodes
- All landmarks
- Use topology-dependent shortest-path spanning trees rooted at each landmark, for which there exist small routing tables
- Reuse parts of prior work
- Result on topology-dep. routing over trees with O(1) tables
- Result on size of a "well-distributed" landmark set
- Result on distribution of nodes for lookup

Topology-dependent CR on a Tree

- For any tree T , there is a routing scheme that provides optimal (stretch 1) routes, with:
- Õ(1) storage
- $O\left(\log ^{2} n\right)$ headers
- Note: If we require Õ($\mathrm{n}^{1 / 2}$) storage, then we can afford up to $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$ such trees in our scheme.
- Prior result from
- Fraigniaud et al, 2001
- Thorup et al, 2001

High-level example

- S must route to D
- We have two landmarks
- Nodes have optimal route to each landmark
- Landmarks have optimal route to each node
- The hard part is figuring out:
- Which landmark to route through
- What is the topology-dep. address of D in chosen landmark's tree.

The Landmark Set

- How many?
- If "too many" (e.g. O(n)), storage requirements grow too large (remember each node stores one Õ(1) table per tree).
- If "too few", (e.g. O(1)), then avg distance to landmark grows with network size and we will not have constant stretch
- Therefore we must have at most Õ($\mathrm{n}^{1 / 2}$) landmarks.
- Where?
- Should be spread out "uniformly" - so that every node pair has a landmark which is "close" to their optimal route.

Landmark Set as a Hitting Set

- $G=(V, E)$: undirected graph of size n
- $\mathrm{N}(\mathrm{v})$: set of v's $\mathrm{n}^{1 / 2}$ closest nodes ("neighborhood ball")
- Thm. (hitting set) : [Lovasz, 1975]
- There exists a set L s.t.
- $\forall v \in V, L \bigcap N(v) \neq \varnothing$ (all nodes have nearby landmark)
- $|L|=\tilde{O}\left(n^{1 / 2}\right) \quad$ (sublinear size)
- Exists an algorithm to compute L in polynomial time
- Our CR scheme makes use of any set of landmarks satisfying this theorem.
- Note: If there are $\tilde{O}\left(\mathrm{n}^{1 / 2}\right)$ landmarks, then we can afford to maintain optimal route entries to each of them

Which landmark to route through?

- So far:
- Õ($n^{1 / 2}$) landmarks
- Nodes have optimal routes to each landmark
- Nodes have optimal routes to nodes in neighborhood ball
- Most routes will go through a landmark

- Pick landmark which minimizes

$$
\mathrm{d}(\mathrm{~s}, \mathrm{l})+\mathrm{d}(\mathrm{l}, \mathrm{~d}) \quad \text { ("best" landmark) }
$$

- Remark: Can only store "best" landmark for Õ($\mathrm{n}^{1 / 2}$) destinations!
- So we need some assignment of which Õ($\left.n^{1 / 2}\right)$ subset of destinations each node knows about

BiOCK Set

- Lemma:
- Given $G=(V, E),|G|=n$
- $N(v)$: set of v 's $\mathrm{n}^{1 / 2}$ closest nodes ("neighborhood ball")
- Blocks: Namespace partitioned into $\mathrm{n}^{1 / 2}$ blocks, each of size $\mathrm{n}^{1 / 2} .$| B_{1} | $\mathrm{~B}_{2}$ | \ldots | $\mathrm{~B}_{\mathrm{k}}$ |
| :--- | :--- | :--- | :--- |
- There exists an assignment of sets of blocks S_{v} to each node v such that:
- $\forall v \in G, \forall B_{i}\left(0 \leq i<n^{1 / 2}\right), \exists j \in N(v): B_{i} \in S_{j}$
- $\forall v \in G,\left|S_{v}\right|=O(\log n)$
- Each node v keeps track of the "best" landmark to reach all nodes in S_{v}. This takes $\tilde{O}\left(\mathrm{n}^{1 / 2}\right)$ space.

Storage Recap \& Analysis

Data (at node u)	Space
Next-hop entries (shortest-path) to all nodes in $\mathrm{N}(\mathrm{u})$	$O\left(n^{1 / 2}\right)$ (Because $\mathrm{N}(\mathrm{u})$ contains by construction $\mathrm{n}^{1 / 2}$ closest nodes)
Next-hop entries (shortest-path) to all landmark nodes.	Õ($\mathrm{n}^{1 / 2}$) (Because L contains by the hitting set thm Õ($\mathrm{n}^{1 / 2}$) nodes)
For each node j in S_{u}, the triple ($\mathrm{j}, \mathrm{I}, \operatorname{addr}(\mathrm{j}, \mathrm{I})$) where: - minimizes $\mathrm{d}(\mathrm{u}, \mathrm{l})+\mathrm{d}(\mathrm{l}, \mathrm{j})$ over all landmarks - $\operatorname{addr}(\mathrm{j}, \mathrm{l})$ is the address of j in tree rooted at I	$\tilde{O}\left(n^{1 / 2}\right)$ (S_{u} contains $\mathrm{O}(\operatorname{logn})$ blocks, each of size $O\left(\mathrm{n}^{1 / 2}\right)$
For every landmark I, the routing table Tab(u) for the tree $\mathrm{T}_{\text {I }}$	$\tilde{O}\left(n^{1 / 2}\right)$ (There are Õ($\mathrm{n}^{1 / 2}$) landmarks, each routing tables is $\tilde{O}(1)$)

Routing Algorithm I

- Case $d \in N(s)$
- Easy: s can route along stretch-1 path to d (remember that we keep routing entries for all nodes in neighborhood)

s

Routing Algorithm II

- Case $d \notin N(s), d \in S_{s}$ (s knows which landmark to choose)

Minimizes $\mathrm{d}(\mathrm{s}, \mathrm{l})+\mathrm{d}(\mathrm{l}, \mathrm{d})$ over all
landmarks

- Stretch is 3:

Call l^{*} the landmark closest to s.
Then $d\left(s, l^{*}\right) \leq d(s, d)$ (because $l^{*} \in N(s)$, and by assumption $d \notin N(s)$)
$d(s, l)+d(l, d) \leq d\left(s, l^{*}\right)+d\left(l^{*}, d\right)$ (by construction)
$d\left(l^{*}, d\right) \leq d\left(s, l^{*}\right)+d(s, d) \leq 2 d(s, d)$

Routing Algorithm II

- Case $\quad d \notin N(s), d \notin S_{s} \quad$ (s knows which landmark to choose)

- Stretch is 5 :

Call l^{*} the landmark closest to s.
Then $d(s, h) \leq d(s, d)$ (because $h \in N(s)$, and by assumption $d \notin N(s)$)

$$
\begin{aligned}
d\left(h, l^{*}\right) & \leq d(h, s)+d\left(s, l^{*}\right) \text { (tri. inequality) } \\
& \leq 2 d(s, d) \\
d\left(l^{*}, d\right) & \leq d\left(l^{*}, s\right)+d(s, d)(\text { tri. inequality } \\
& \leq 2 d(s, d) \\
d(s, h) & +d(h, l)+d(l, d) \leq 5 d(s, d)
\end{aligned}
$$

3. Remaining bits, comments, and conclusion

Bits not covered

- Stretch 7 and other stretch 5 schemes
- Similar flavor to this one
- Above schemes generalized to provide schemes with different stretch/space tradeoffs
- Õ($\left.k^{2} n^{2 / k}\right)$ tables
- Õ $\left(\log ^{2} n\right)$ headers
$-\min \left\{1+(k-1)\left(2^{k / 2}-2\right), 16 k^{2}+4 k\right\}$
- Method to apply these schemes when node names are picked from an arbitrary namespace (of size larger than n)

connenents anc wuestions

- Open questions from conclusions
- Bridge gap to lower bound (stretch 3)
- Study problem in dynamic context
- Comments:
- Scheme is flat (non-hierarchical) in terms of storage, but not in terms of load (landmarks get more traffic)
- After first lookup, can we take shorter route?
- Maybe node names could be considered as data ids, in which case this problem (and solution) could be cast in a p2p setting?
- Would this work if the name-space is much larger than |G|, ie each node has many labels attached to it? (we would then be close to the p2p setup)

