Discrete Mobile Centers

André Bayer

Seminar of Distributed Computing WS 03/04

Overview

- Introduction
- Previous Work
- Basic Algorithm
- Analysis 2-D
- Hierarchical Algorithm
- Kinetic Discrete Clustering
- Summary

Paper

Paper: Discrete Mobile Centers

Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang,

An Zhu

Published: 2001

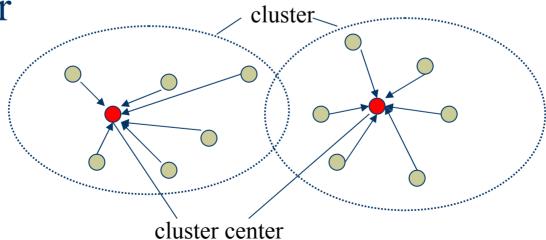
Introduction

- Nodes in the plane
- Nodes are mobile, can switch off and on
- Short range
- For ad-hoc multi-hop networks
- Example: Bluetooth, WLAN

Problem

 Maintaining a clustering for a set of n moving points in the plane

In communication range => visible to each
 other



Goal

- Minimal subset of the n nodes, the centers
- Every node is visible to at least one of the centers
- O(1)-approximation with high probability
- Smooth cluster changes
- Don't need the exact position
- Can be implemented in a distributed way

Previous Work

- Clustering problem = minimum dominating set
- Static version of the problem is NP-complete

Dominating set in an intersection graph:
 Greedy Algorithm with const approximation

- Connected dominating set: extra condition, the subgraph must be connected.
- Marking Algorithm solves the problem presented in Mobile Computing Course SS02
 - Idea: a node is in CDS if it has two neighbors which are itself not neighbors
- ◆ Worst case: O(n)-approximation, but works well in simulation

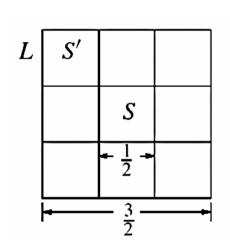
Basic Algorithm

- n points $P=\{p_1,p_2,...,p_n\}$ in the plane
- Visible range: square with side length 1
- Each point can cover all points in its visible range
- Unique identifier (random number)

Description of the basic algorithm

- Each point p_i nominates the largest indexed point in its visible range to be a center (maybe itself)
- All points nominated are the centers in our solution
- A cluster is formed by a selected center and all the points that nominated it

Analysis 2-D



- 9 sub-squares with sidelength ½
- L: visible range of S
- Suppose |L| = m
- Bound for each sub-square S' of L

Lemma: The number of centers nominated inside S is $O(\sqrt{m})$

Proof

S' = S The nodes are mutually visible to each other (complete Graph) => at most one point nominated

$$S' \neq S$$
 Suppose $x = |S|$ and $y = |S'|$

Point $p \in S$ can be nominated by a point $q \in S'$ if q finds that p has the largest index in its visible range p must have rank higher than all the points in S'

Probability that p can be nominated is at most $\frac{1}{1+y}$

At most $\frac{x}{1+y}$ points nominated

Only y points in S'

At most y centers nominated by points in S'

The expected total number of centers is no more than

$$min(y, \frac{x}{1+y}) \le \sqrt{x+y+1} - 1 < \sqrt{m}$$

Summing over all the 9 sub-squares, the expected number of centers nominated in S is bounded by $O(\sqrt{m})$

Theorem

Theorem: The algorithm has an approximation factor of $O(\sqrt{n})$ in expectation

Proof: consider an optimal covering U_i , $1 \le i \le k$

Partition each U_i in the optimal solution into 4 quadrant sub-squares

Apply previous Lemma to each sub-square

$$4kc\sqrt{n} = O(\sqrt{n}) - approximation$$

High probability

- Probability that there are more than $\sqrt{n} \log n \cdot k$ centers is $O(\frac{1}{n^{\log n-1}})$
- k is the optimal number of centers
- High probability result

If the points are uniformly distributed, then we get a O(1)-approximation. Good performance observed in practice

Hierarchical Algorithm

- The basic algorithm is simple
- Constant approximation
- Use a hierarchical algorithm
- Proceed a number of rounds
- At each round we apply the basic algorithm to the centers produced by the previous round
- Use a larger covering ball

Details

- P_i is a cover in round i, P is the input set
- $\lg \lg n \text{ rounds}$ $(\lg n = \log_2 n)$
- Squares with side length $\delta_i = 2^i/\lg n$
- i^{th} step, for $1 \le i < lg \ lg \ n$, apply the algorithm with squares of side length δ_i to the set P_{i-1} and let P_i be the output
- Final output is $P' = P_{\lg \lg n-1}$

Lemma

- $\alpha(x) \leq 4/x^2$
- α(x) the number of centers of an optimal covering of P
- x the side length of the squares

Proof: a unit square covers all the points in P

Divide the unit square into $4/x^2$ small squares of size x/2

Pick one point from each non-empty small square

This gives a covering with $4/x^2$ centers

Constant approximation

The expected size of P_{i+1} is at most $c\sqrt{|P_i|}\alpha(\delta_i)$

For some constant c > 0

From Theorem in 2-D analysis $O(\sqrt{n}) - approx \Leftrightarrow c\sqrt{n}k$

n_i the size of P_i

Recursive relation: $n_0 = n$, $n_{i+1} \le c\sqrt{n_i}\alpha(\delta_i)$

 $\delta_i = 2^i/\lg n, \, \alpha(x) \le 4/x^2$

Last round: i = lg lg n-1

We have $|P'| = n_{\lg \lg n-1} \le c^2 2^{13} = O(1)$

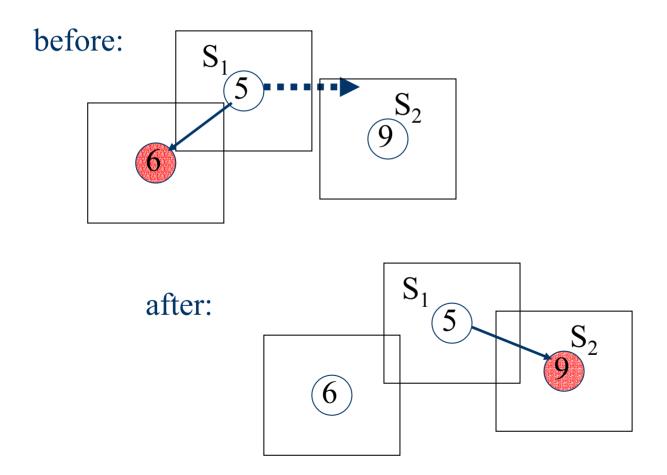
Kinetic Discrete Clustering

- Half-size square centered over each point
- Two squares intersect, the points are mutually visible
- Left and right extremes in x-sorted order
- Top and bottom extremes in y-sorted order
- Lists for each level of the hierarchy

Event

- An event is if two extremes of squares change x- or y-order
- Two cases: start or stop intersecting
- S_1 , S_2 start intersecting:
 - Need to check the square with the lower rank
 - Say S_1 , look at its nomination
 - If it has a lower rank than S_2 , we need to change S_1 to point to S_2

Example S₁, S₂ start intersecting



S₁, S₂ stop intersecting

- Say S₁ lower rank than S₂
- ◆ Check if S₁ nominated S₂
- If so, find another overlapping square with the highest rank
- Data structure: standard range search tree
 - Binary tree
 - Each leaf stores a range of the interval
 - Find a point in O(log n)

- ◆ Two dimensions: find the point with the highest rank in O(log² n) time
- For the hierarchical algorithm, we need this structure for each level

Kinetic Properties

- Assume the points have bounded-degree algebraic motion
- Points move continuously
- Simplification to analyse the efficiency
- => each pair of points can cause O(1) events

Kinetic Properties

- ◆ The number of events in the basic algorithm is O(n²)
- ◆ The number of events in the hierarchical algorithm is O(n² log log n)
- O(1)-approximate covering with high probability

Distributed implementation

- Each node keeps track of its neighborhood, with ,,who is there" messages
- For the hierarchical algorithm, nodes broadcast with different power for each level
- New nominated centers cause updates in higher levels
- Only local operations

http://www.stanford.edu/~jgao/mobile_centers.html

Summary

- Moving points in the plane
- Given cluster radius
- Algorithm: variable subset of the nodes as cluster centers
 - Property: chosen nodes cover all the others
 - The number of centers selected is a constantfactor approximation of the minimum possible
- Use for applications in ad-hoc networks

Comment

- Hierarchical Algorithm is theoretically very interesting
- In practice?
- Linear motion realistic approach?

Questions?