Information Processing Letters 31 (1989) 3-5
North-Holland

12 Apri! 1989

A TIGHT AMORTIZED BOUND FOR PATH REVERSAL

David GINAT

Department of Computer Science, University of Maryland, College Pask, MD 20742, U.S.A

Daniel D. SLEATOR *

Department of Computer Science, Carnegie— Mellon University, Pittsburgh, PA 15213, U.S.A.

Robert E. TARJAN **

Department of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A. and AT&T Bell Laboratories, Murray Hill,

NJ 07974, U.S.A.

Communicated by T. Lengauer
Received 28 July 1988
Revised 5 December 1988

Path reversal is a form of path compression used in a disjoint set union algorithm and a mutual exclusion algorithm. We
derive a tight upper bound on the amortized cost of path reversal.

Keywords: Analysis of algorithms, path compression, disjoint set union, data structures, amortized efficiency

Let T be a rooted tree. A path reversal at a node
x in T is performed by traversing the path from x
to the tree root r and making x the parent of each
node on the path other than x. Thus x becomes
the new tree root. (See Fig. 1). The cost of the
reversal is the number of edges on the path re-
versed. Path reversal is a variant of the standard
path compression algorithm for maintaining dis-
joint sets under union [5]. It has also been used in
a novel mutual exclusion algorithm [2,6].

Suppose that a sequence of m reversals is per-
formed on an arbitrary initial #n-node tree. What is
the total cost of the sequence? Let T(n, m) be the

* Research partially supported by DARPA, ARPA order
4976, amendment 19, monitored by the Air Force
Aeronautics Laboratory under Contract No. F33615-87-C-
1499, by the National Science Foundation under Grant

»» Research partially supported by NSF Grant No. DCR-
8605962 and ONR Contract No. N00014-87-K-0467.

worst-case cost of such a sequence, and let
A(n, m)=T(n, m)/m. We are most interested in
the value of A(n, m) for fixed n as m grows. As
discussed by Tarjan and Van Leeuwen [5], bi-
nomial trees provide a class of examples showing
that A(n, m)>|lim n] !, and their rather com-

Xs

X

4 Xo

X3
X4 K X2 R X3 X4K
X2
X4
Xo

Fig. 1. Path reversal (triangles denote subtrees).

! All iogarithms in this paper are base 2.

0020-0190,/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland) 3

Volume 31, Number 1

plicated and their rather complicated analysis gives
an upper bound of

A(n, m)= 0(log n+ nlogn)

Ginat and Shankar [2] prove that

A(n, m)<2log n+ ——— nlogn .
m
We shall prove that
nlogn

A(n, m)<log n+

2m

In the special case that the initial tree consists of a
root with n—1 children, which is the case in the
mutual exclusion algorithm, the bound is

A(n, m)<logn.

To obtain the bound, we apply the porential
function method of amortized analysis (see [4]).
Let the size s(x) of a node x in T be the number
of descendants of x, including x itself. Let the
potential of T be

@(T)= 3 2 log s(x).

xET

Define the amortized cost of a path reversal over a
path of k edges to be k — ®(T) + ®(T’), where T
and T’ are the trees before and after the reversal,

respect ely. For any sequence of m reversals, we
have

Z“ = Z(‘z ®_,+®)= Zt —<150+q5m,
i=1 i=1

where q;, ¢;, and @, are the amortized cost of the
ith reversal, the actual cost of the ith reversal, and
the potential after the ith reversal respectively,
and @, is the potential of the initial tree. Since
®y<inlogn and @, >} log n, this inequality
yields

m m

L4< Y a+3(n--1)log a,
i=1 i=1
which in turn implies

1 o nlogn
mZai+ =

A(n, m) <
(n m) Zm

i=1

INFCRMATION PROCESSING LETTERS

12 April 1989

We shall prove that the amortized cost of any
reversal is at most log n, thereby showing that

n log n
2m

When the initial tree consists of a root with n —1
children, the bound drops to A(n, m)<log n,
since then @, < ®,,, and the extra additive term
drops out.

Let x4, X3, X5,...,%x; be a path that is re-
versed, and let 4 be the amortized cost of the
reversal. For 0 <i <k, let s; be the size of x;
before the reversal. The size of x, after the rever-
sal is 5, and the size of x; after the reversal, for
1<i<k,is s;—s;_,. We can thus write 4 as

k
A=k- Z 1log s, + 1 log s,

A(n, m)<log i +

(log(s,_” -s;) —log Si)

08((Si+1 —5:)/5:)-

u'[V]_‘ Q[VJ T

For 0<z<k~l, let a;,=s,,,/s;. Note that

(si41— 8:)/si=a,— 1. We have
k=1
A=k+} Y log(e;—1)
i=0
k-1
=X (1 + 3log(a; — 1))
i=0

We now make use of the following inequality,
which will be verified below: for all a>1, 1
+ 3 log(a — 1) < log . From this inequality we
obtain

k-1
< Y loga
i=0
k-1 k-1
= X log(sis1/8) = X (log 5,41~ logs;)
i=0 i=0
= log s, — log s,
<log n,
since s, =n and 54> 1.

Volume 31, Number 1

This completes the amortized analysis. We
verify the needed inequality by the following chain
of reasoning:

<(a-2)
=0<a®—4a+4
=4(a—-1)<a?

= log(4(a — 1)) < log(a?)
=2+logla-1)<2log a
=1+ 3 log(a—1)<log a.

We conclude some remarks. The definition of
the potential function used here has been bor-
rowed from Sleator and Tarjan’s analysis of splay
trees [3]; it has also been used to analyze pairing
heaps [1]. As in the case of splay trees, the upper
bound can be generalized in the following way.
Assign to each tree node x a fixed but arbitrary
positive weight w(x). Define the total weight of x,
w(x), to be the sum of the weights of all descen-
dants of x, including x itself. Define the potential
of the tree T to be

o(T)== 2 log tw(x).

xET

A straightforward extensicn of the above analysis
shows that the total cost of a sequence of m
reversals is at most

2 log(W/w,) + @ — @,

i=1
where w, is the weight of the node x; at which the
tth reversal starts and W is the sum of all the
node weights.

Choosing w(x)=1 for all x€T gives our
original result. Choosing w(x) = f(x) + 1, where
f(x) is the number of times a reversal begins at x,
gives an upper bound for the total time of all
reversals of

igl log(.’;(+ ")1) *32 nglog(';z- ';1)

INFORMATION PROCESSING LETTERS

12 April 1989

It is striking that the “sum of logarithms”
potential function serves to analyze three different
data structures. We are at a loss to explain this
phenomenon; whereas there is a clear connection
between splay trees and pairing heaps (see [1]), no
such connection between trees with path reversal
and the other two data structures is apparent. In
the case of path reversal, the sum of logarithms
potential function gives a bound that is exact to
within an additive term depending only on the
initial and final trees. It would be extremely inter-
esting and useful to have a systematic method for
deriving appropriate potential functions. The three
examples of splaying, pairing, and reversal offer a
setting in which to search for such a method.

Acknowledgment

The first author thanks D. Mount and A.U.
Shankar for valuable discussions and useful com-
ments.

References

[1] M.L. Fredman, R. Sedgewick, D.D. Sleator, and R.E.
Tarjan, The pairing heap: a new form of self-adjusting
heap, Algorithmica 1 (1986) 111-129.

[2} D. Ginat and A. Udaya Shankar, Correctness proof and
amortization analysis of a log N distributed mutual exclu-
sion algorithm, Tech. Rept. CS-TR-2038, Department of
Computer Science, University of Maryland, 1988.

[3) D.D. Sleator and R.E. Tarjan, Self-adjusting binary search
trees, J. Assoc. Comput. Mach. 32 (1985) 652-686.

[4j R.E. Tarjan, Amortized computational complexity, SIAM
J. Alg. Disc. Meth. 6 (1985) 306-318.

[5] R.E. Tarjan and J. van Leeuwen, Worst-case analysis of set
union algorithms, J. Assoc. Comput. Mach. 31 (1984)
245-281.

{6] M. Trehel and M. Naimi, A distributed algorithm for
mutual exclusion based on data structures and fault toler-
ance, In: Proc. Sixth Ann. Internat. Phoenix Conf. on
Computers and Communication, Scottsdale, AZ (February
1987) 35-39.

