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A TIGHT AMORTIZED BOUND FOR PATH REVERSAL
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Path reversal is a form of path compression used in a disjoint set union algorithm and a mutual exclusion algorithm. We
derive a tight upper bound on the amortized cost of path reversal.
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Let T be a rooted tree. A path reversal at a node
x in T is performed by traversing the path from x
to the tree root r and making x the parent of each
node on the path other than x. Thus x becomes
the new tree root. (See Fig. 1). The cost of the
reversal is the number of edges on the path re-
versed. Path reversal is a variant of the standard
path compression algorithm for maintaining dis-
joint sets under union [5]. It has also been used in
a novel mutual exclusion algorithm [2,6].

Suppose that a sequence of m reversals is per-
formed on an arbitrary initial #n-node tree. What is
the total cost of the sequence? Let T(n, m) be the
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worst-case cost of such a sequence, and let
A(n, m)=T(n, m)/m. We are most interested in
the value of A(n, m) for fixed n as m grows. As
discussed by Tarjan and Van Leeuwen [5], bi-
nomial trees provide a class of examples showing
that A(n, m)>|lim n] !, and their rather com-
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Fig. 1. Path reversal (triangles denote subtrees).

! All iogarithms in this paper are base 2.
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plicated and their rather complicated analysis gives
an upper bound of

A(n, m)= 0(log n+ nlogn)

Ginat and Shankar [2] prove that

A(n, m)<2log n+ ——— nlogn .
m
We shall prove that
nlogn

A(n, m)<log n+

2m

In the special case that the initial tree consists of a
root with n—1 children, which is the case in the
mutual exclusion algorithm, the bound is

A(n, m)<logn.

To obtain the bound, we apply the porential
function method of amortized analysis (see [4]).
Let the size s(x) of a node x in T be the number
of descendants of x, including x itself. Let the
potential of T be

@(T)= 3 2 log s(x).

xET

Define the amortized cost of a path reversal over a
path of k edges to be k — ®(T) + ®(T’), where T
and T’ are the trees before and after the reversal,

respect ely. For any sequence of m reversals, we
have

Z“ = Z(‘z ®_,+®)= Zt —<150+q5m,
i=1 i=1

where q;, ¢;, and @, are the amortized cost of the
ith reversal, the actual cost of the ith reversal, and
the potential after the ith reversal respectively,
and @, is the potential of the initial tree. Since
®y<inlogn and @, >} log n, this inequality
yields

m m

L4< Y a+3(n--1)log a,
i=1 i=1
which in turn implies

1 o nlogn
mZai+ =

A(n, m) <
(n m) Zm

i=1
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We shall prove that the amortized cost of any
reversal is at most log n, thereby showing that

n log n
2m

When the initial tree consists of a root with n —1
children, the bound drops to A(n, m)<log n,
since then @, < ®,,, and the extra additive term
drops out.

Let x4, X3, X5,...,%x; be a path that is re-
versed, and let 4 be the amortized cost of the
reversal. For 0 <i <k, let s; be the size of x;
before the reversal. The size of x, after the rever-
sal is 5, and the size of x; after the reversal, for
1<i<k,is s;—s;_,. We can thus write 4 as

k
A=k- Z 1log s, + 1 log s,

A(n, m)<log i +

(log(s,_” -s;) —log Si)

08((Si+1 —5:)/5:)-

u'[V]_‘ Q[VJ T

For 0<z<k~l, let a;,=s,,,/s;. Note that

(si41— 8:)/si=a,— 1. We have
k=1
A=k+} Y log(e;—1)
i=0
k-1
=X (1 + 3log(a; — 1))
i=0

We now make use of the following inequality,
which will be verified below: for all a>1, 1
+ 3 log(a — 1) < log . From this inequality we
obtain

k-1
< Y loga
i=0
k-1 k-1
= X log(sis1/8) = X (log 5,41~ logs;)
i=0 i=0
= log s, — log s,
<log n,
since s, =n and 54> 1.
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This completes the amortized analysis. We
verify the needed inequality by the following chain
of reasoning:

<(a-2)
=0<a®—4a+4
=4(a—-1)<a?

= log(4(a — 1)) < log(a?)
=2+logla-1)<2log a
=1+ 3 log(a—1)<log a.

We conclude some remarks. The definition of
the potential function used here has been bor-
rowed from Sleator and Tarjan’s analysis of splay
trees [3]; it has also been used to analyze pairing
heaps [1]. As in the case of splay trees, the upper
bound can be generalized in the following way.
Assign to each tree node x a fixed but arbitrary
positive weight w(x). Define the total weight of x,
w(x), to be the sum of the weights of all descen-
dants of x, including x itself. Define the potential
of the tree T to be

o(T)== 2 log tw(x).

xET

A straightforward extensicn of the above analysis
shows that the total cost of a sequence of m
reversals is at most

2 log(W/w,) + @ — @,

i=1
where w, is the weight of the node x; at which the
tth reversal starts and W is the sum of all the
node weights.

Choosing w(x)=1 for all x€T gives our
original result. Choosing w(x) = f(x) + 1, where
f(x) is the number of times a reversal begins at x,
gives an upper bound for the total time of all
reversals of

igl log( .’;(+ ")1 ) *32 nglog( ';z- ';1 )
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It is striking that the “sum of logarithms”
potential function serves to analyze three different
data structures. We are at a loss to explain this
phenomenon; whereas there is a clear connection
between splay trees and pairing heaps (see [1]), no
such connection between trees with path reversal
and the other two data structures is apparent. In
the case of path reversal, the sum of logarithms
potential function gives a bound that is exact to
within an additive term depending only on the
initial and final trees. It would be extremely inter-
esting and useful to have a systematic method for
deriving appropriate potential functions. The three
examples of splaying, pairing, and reversal offer a
setting in which to search for such a method.
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