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Path reversal is a form of path compression used in a disjoint set union algorithm and a mutual exclusion algorithm. We 
derive a tight upper bound on the amortized cost of path reversal. 
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Let T be a rooted tree. A path reversal at a node 
x in T is performed by traversing the path from x 
to the tree root r and making x the parent of each 
node on the path other than X. Thus x becomes 
the new tree root. (See Fig. 1). The cost of the 
reversal is the number of edges on the path re- 
versed. Path reversal is a variant of the standard 
path compression algorithm for maintaining dis- 
joint sets under union [5]. It has also been used in 
a novel mutual exclusion algorithm [2,6]. 

Suppose that a sequence of m reversals is per- 
formed on an arbitrary initial n-node tree. What is 
the total cost of the sequence? Let T(n, m) be the 
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worst-case cost of such a sequence, and let 
A(n, m) = T(n, m)/m. We are most interested in 
the value of A(n, m) for fixed n as m grows. As 
discussed by Tarjan and Van Leeuwen [S], bi- 
nomial trees provide a class of examples showing 
that A( n, m) 2 ]lim nJ I, and their rather com- 

Fig. 1. Path reversal (triangles denote subtrees). 

’ All iogarithms in this paper are base 2. 
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plicated and their rather complicated analysis gives 
an upper bound of 

A(n, m)=o logn+- 
( 

n log n 

1 m ’ 

Ginat and Shankar [2] prove that 

n log n 
A(n, m)d2bgn+y- 

We shall prove that 

n log n 
A(n, m)<Iogn+r. 

In the special case that the initial tree consists of a 
root with n - 1 children, which is the case in the 
mutual exclusion algorithm, the bound is 

A(n, m) flog n. 

To obtain the bound, we apply the potential 
function method of amortized analysis (see [4]). 
Let the size s(x) of a node x in T be the number 
of descendants of X, including x itself. Let the 
potential of T be 

@(T) = f c log s(x)* 
XET 

Define the amortized coTt of a path reversal over a 
path of k edges to be k - a(T) + @(T ‘), where T 
and T’ are the trees before and after the reversal, 
respect’-•ely. For any sequence of m reversals, we 
have 

i=l i=l 

where ai, ti, and @i are the amortized cost of the 
i th reversal, the actual cost of the i th reversal, and 
the potential after the ith reversal respectively, 
and !I#, is the potential of the initial tree. Since 
a0 6 in log n and @m >, 4 log n, this inequality 
yields 

m m 

C ti G C ai + +(n -- 1) log fl, 
i x 1 i-l 

which in turn implies 

1 Bi 
n log n 

A(n, mjc, Cai+- 
i=l 2m - 

We shall prove that the amortized cost of any 
reversal is at most log n, thereby showing that 

n log n 
A(n, m) <log ;I + - 

2m s 

When the initial tree consists of a root with n - 1 
children, the bound drops to A(n, m) 6 log n, 
since then a0 < @,,,, and the extra additive term 
drops out. 

Let x0, x1, x2,..., xk be a path that is re- 
versed, and let A be the amortized cost of the 
reversal. For 0 < i -< k, let Si be the size of xi 
before the reversal. The size of x0 after the rever- 
sal is Sk and the size of Xi after the reversal, for 
1 < i < k, is Si - Si_1. We can thus write A as 

k 

A e k - z 4 log Si + i log Sk 

i-0 

k 

+ C 3 l”g(si-st-l) 
i = 1 

=k+ ~k~l(IOg(Si+*-Si)-logsi) 
L i=() 

= k + i ‘c’lOg((si+, -si)/si). 

For 0 < i < k - 1, let ai = Si+l/Si. Note that 

tsi+l - Si)/Si = QL, - 1. We have 

A=k+ fk~*bg(ai-I) 
i=O 

= ‘il (I+ flOg( Iyi - 1)). 
i=O 

We now make use of the following inequality, 
which will be verified below: for all a > 1, 1 
+ i log(a - I) Q log a, Prom this inequalit,y we 
obtain 

k-l 

A < C log ai 
i=O 

= ‘illOg(Si+*/S,) = ‘il IlOg Si+l - lOgSi) 
i&O i=O 

= bg Sk -’ bg SO 

G log n, 

since sk =n and soal. 
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This completes the amortized analysis. We 
verify the needed inequality by the following chain 
of reasoning: 

0 6 (a - 2)’ 

-O<a2-4cr+4 

=) 4( cy - 1) f (r* 

= log(4( QT - 1)) f log( a*) 

--,2+log~a-1)~2logar 

a 1 + ; log(cr - 1) < log dy. 

We conclude some remarks. The definition of 
the potential function used here has been bor- 
rowed from Sleator and Tarjan’s analysis of splay 
trees [3]; it has also been used to analyze pairing 
heaps [l]. As in the case of splay trees, the upper 
bound can be generalized in the foflowing way. 
Assign to each tree node x a fixed but arbitrary 
positive weight w(x). Define the total weight of X, 
M(X), to be the sum of the weights of all descen- 
dants of X, including x itself. Define the potential 
of the tree T to be 

A straightforward extension of the above analysis 
shows that the total cost of a sequence of m 
reversals is at most 

t 1og(w/wi)+@~-@~9 
i=l 

where Wi is the weight of the node xi at which the 
tth reversal starts and W is the sum of all the 
node weights. 

Choosing w(x) = 1 for all x E T gives our 
original result. Choosing w(x) = f( X) + 1, where 
f(x) is the number of times a reversal begins at X, 
gives an upper bound for the total time of all 
reversals of 

It is striking that the “sum of Iclgarithms” 
potential function serves to analyze three different 
data structures. We are at a loss to explain this 
phenomenon; whereas there is a clear connection 
between splay trees and pairing heaps (see [l]), no 
such connection between trees with path reversal 
and the other two data structures is apparent. In 
the case of path reversal, the sum of logarithms 
potential function gives a bound that is exact to 
within an additive term depending only on the 
initial and final trees. It would be extremely inter- 
esting and useful to have a systematic method for 
deriving appropriate potential functions. The three 
examples of splaying, pairing, and reversal offer a 
setting in which to search for such a method. 
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