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Principles of Distributed Computing 
Roger Wattenhofer 

Chapter 1 

Symmetry Breaking 1: Vertex Coloring 

Section 1.1: Introduction 
  
(Useful toy problem to see style of lecture) 
(Vertex coloring infamous as tough graph theory problem) 
 
Problem 1.1 [Vertex Coloring]: Given undirected Graph G = (V,E). Assign a color cu to each 
vertex u ∈ V such that if e = (v,w) ∈ E, then cv ≠ cw. Use few colors! 
 
Assumption 1.2 [Node Identifiers]: Each node has a unique identifier (the IP-Address, for 
example). Sometimes we assume that each identifier is only O(log n) bits if the system has n 
nodes. (Sometimes we might even assume that the nodes exactly have identifiers 1, …, n.) 
 
Assumption 1.2 solves Problem 1.1, but badly. 
 
Definition 1.3 [Chromatic Number]: Given an undirected Graph. The chromatic number χ(G) 
is the minimum number of colors to solve Problem 1.1.  

 
Definition 1.5 [Degree]: The number of neighbors of a vertex v is called the degree of v δ(v). 
The maximum degree vertex in a Graph G defines the Graph degree ∆(G) = ∆.  
 
Theorem 1.6 [Analysis of Algorithm 1.4]: The algorithm is correct and terminates in O(n) 
steps. The algorithm uses ∆+1 colors. 
 
Proof: Correctness and termination are straight-forward. Since each node has at most 
∆ neighbors, there is always at least one color free in the range {1, …, ∆+1}. 
 
Remarks: 

• “Steps” 
• For many graphs coloring can be done with much less than ∆+1 colors. 
• This algorithm is not distributed at all; only one processor is active at a time. But: Use 

idea of Algorithm 1.4 to define “local” coloring subroutine 1.7 

 
Remark: 

• With this subroutine one cannot color two adjacent vertices at the same time. 

Algorithm 1.7 [First Free]: Color a vertex with the smallest available (not used by 
neighbors) color. 

Algorithm 1.4 [Greedy Sequential]: As long as there are uncolored vertices: Take an 
arbitrary uncolored vertex v, and color it with the minimal color (number) that does not 
conflict with the already colored neighbors. 
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Definition 1.8 [Synchronous Distributed Algorithm]: In a synchronous algorithm, nodes 
operate in synchronous rounds. In each round, each processor executes the following steps: 

1. Do some local computation. (“reasonable” complexity) 
2. Send messages to neighbors in graph. (“reasonable” size) 
3. Receive messages (that were sent by neighbors in step 2 of the same round) 

 
Remark:  

• Any other step ordering is fine. 

 
Definition 1.10 [Time Complexity]: For synchronous algorithms (Definition 1.8) the time 
complexity is the number of rounds until the algorithm terminates. 
 
Remarks: 

• The algorithm terminates when the last processor has decided to terminate. 
• With every legal input. 

 
Theorem 1.11 [Analysis of Algorithm 1.9]: Algorithm 1.9 is correct and has time complexity 
m-∆+1, that is O(n) with m = O(n). The algorithm uses ∆+1 colors. 
 
Remarks: 

• Quite trivial, huh. 
• And also damn slow. 
 

Section 1.2: Coloring Trees 
 
Lemma 1.12: χ(Tree) · 2.  
 
Constructive Proof: If the distance of a node to the root is odd (even), color it 1 (0). An odd 
node has only even neighbors and vice versa. 
 
If we assume that each node knows its parent (root has no parent) and children in a tree, this 
constructive proof gives a very simple algorithm. 

 
  

Algorithm 1.13 [Slow tree coloring]:  
• Color the root 0, root sends “0” to children. 
• When receiving a message “x” (from parent), a node u chooses color cu = 1-x, and 

sends “cu” to its children (all neighbors except parent).  

Algorithm 1.9 [Reduce]: Assume that initially the vertices are legally colored with colors 
in the range {1, …, m} (Assumption 1.2). Then each vertex v executes the following code 
(in parallel) 

1. for x from ∆+2 to m do 
2.   if cv = x then  
3.    c chooses a free color with Algorithm 1.7 in {1, …, ∆+1}. 
4.    c informs neighbors about its choice 
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Remarks: 
• With the proof of Lemma 1.12, the algorithm 1.13 is correct. 
• How can we determine a root in a tree? (Later!) 
• The time complexity of the algorithm is the height of the tree. 
• When the root was chosen unfortunately, this can be up to the diameter of the tree. 
• Wait a second… this algorithm does not need to be synchronous…! 

 
Definition 1.14 [Asynchronous Distributed Algorithm]: In the asynchronous model, 
algorithms are event driven (“upon receiving message …, do …”. Processors cannot access a 
global clock. A message sent from one processor to another will arrive in finite but 
unbounded time.  
 
Remarks: 

• Probably as unrealistic as the synchronous model (Definition 1.8). There are several 
models in between synchronous and asynchronous. However, from a theory standpoint 
the synchronous and the asynchronous model are the most interesting (because every 
other model is “in-between” these extremes). 

• Messages that take a longer path may arrive earlier. 
 
Definition 1.15 [Time Complexity]: For asynchronous algorithms (Definition 1.14) the time 
complexity is the number of time units from the start of the execution to its completion in the 
worst case (every legal input, every execution scenario), assuming that each message occurs a 
delay of at most one time unit. 
 
Remark: 

• You cannot use the maximum delay in the algorithm design; in other words: the 
algorithm has to be correct even if there is no such delay upper bound. 

 
Definition 1.16 [Message Complexity]: The message complexity of a synchronous or 
asynchronous algorithm is determined by the number of messages exchanged (again every 
legal input, every execution scenario).  
 
Theorem 1.17 [Analysis of Algorithm 1.13]: Algorithm 1.13 is correct. If each node knows 
its parent and its children, the (asynchronous) time complexity is the tree height which is 
bounded by the diameter of the tree; the message complexity is n-1 in a tree with n nodes.  
 
Remarks: 

• Note that asynchronous time complexity is the same as synchronous time complexity. 
• “Nice” trees have logarithmic height, that is O(log n) time complexity. 
• This algorithm is not very exciting… can we do better than logarithmic?!? 
 

(The following algorithm terminates in log*n time. Log-Star? That’s the number of logarithms 
you have to take to get down to at least 2, starting with n. But we need a bit more colors.) 
 
(Idea: start with color labels of size O(log n). In each synchronous round: make label of 
logarithmic size by getting essence out of label by reading it as a bitstring!...?) 
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Example (only part of a tree): 
 
Grand-parent  1010110000  10010    … 
Parent   1010010000    1010  111 
Child   0110010000  10001      1 
 
Theorem 1.19 [Analysis of Algorithm 1.18]: Algorithm 1.18 terminates in log*n + O(1) time.  
 
Proof: [Peleg 7.3] 
 
Remarks:  

• Some nodes might terminate earlier than others… 
• Colors 11x (binary, decimal 6 or 7) will not be chosen, because the node will then do 

another round (since it has reduced the number of bits from 4 to 3). Gives a total of 6 
colors. 

• Can one reduce the number of colors in only constant steps? Note that algorithm 1.9 
does not work (since the degree of a node can be much higher than 6)! For fewer 
colors we need to have siblings monochromatic!  

 
 
Lemma 1.21: Algorithm 1.20 preserves coloring legality; also siblings are monochromatic. 

 
 
Theorem 1.23: Algorithm 1.22 colors a tree with three colors in time O(log* n). 
 
Corollary 1.24: A general graph with constant degree ∆ can be colored with ∆+1 colors in 
O(log* n) time. 
 

Algorithm 1.18 [“6-Color”]: Assume that initially the vertices are legally colored with 
colors in the range {0, …, O(n)} (O(log n) bits; Assumption 1.2). The root assigns itself 
the label 0 immediately. Each other vertex v executes the following code (in parallel) 

1. send cv to all children 
2. repeat  
3.    receive cp from parent 
4.   interpret cv and cp as little-endian bit-strings: c(k), …, c(1), c(0) 
5.   let i be the smallest index where cv and cp differ 
6.   the new label is i (as bitstring) followed by the bit cv(i) itself.  
7.    send cv to all children 
8. until new label has as many bits as previous label 

Algorithm 1.20 [Shift down]: Concurrently at all vertices: Recolor with the color of 
parent. Root (as an exception) simply chooses any new color.  

Algorithm 1.22 [Six-2-Three]: For all nodes 
1. for x from 4 to 6 do 
2.   Perform subroutine 1.20 (shift down) 
3.   A vertex v colored x chooses as new color using subroutine 1.7 (first free) 
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Algorithm idea: In each step, a vertex compares its label to each of its neighbors, constructing 
a logarithmic difference-tag as in 6-color. Then the new label is the concatenation of all the 
difference-tags. For constant degree ∆, this gives a 2∆ label in O(log* n) steps. Algorithm 1.9 
(Reduce) then reduces the number of colors to ∆+1 in 22∆ (still a constant!) steps.  
 
Remark: 

• One can color a general graph (without constant degree) with a recursive algorithm 
with ∆+1 colors in Ο(∆log n) time.   

 
Theorem 1.25: Coloring a ring with three colors costs time Ω(log* n). 
 
Proof: [Peleg 7.5]  


