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Principles of Distributed Computing

Exercise 7: Sample Solution

1 Pancake Networks

Generally, observe that N = |V (Pn)| = n! ∈ O(nn) ⇒ n ∈ O( log N
log log N ).

a) See Figure 1. For drawing Pn, first draw n copies of Pn−1, each of which will have some
j ∈ [n] fixed as the last vertex. Then there are (n − 2)! nodes of such a Pn−1 connected
to the same (n − 1)-dimensional pancake. To see this, fix v1 and vn, the remaining node
combinations in the middle will be the link between pancake Pn−1|vn and Pn−1|v1. There
are n− 1 such sets in Pn−1|vn, each connecting with another (n− 1)-dimensional pancake.
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Figure 1: Pancake graphs for n = 2, 3, 4.

b) Let us look at the second, more intuitive definition (Eq. (3)). Basically, it states that for
every node, there exists exactly one edge for every distinct prefix reversal. So the node
degree of Pn can be stated as follows: how many non-trivial prefix reversals are there for a
sequence of n nodes? Answer: n− 1 with edges e2, . . . , en. Succinctly,

deg(v) = n− 1 ∀v ∈ V (Pn).

Thus the degree of an N -node pancake graph is in O(log N/ log log N).



c) To give an upper bound on the diameter, we need to determine in how many steps, at most,
we can go from one node to any other node. Say we want to get from node v = v1v2 . . . vn

to node w = w1w2 . . . wn. As with all hypercube-like graphs, we will proceed by correcting
one “coordinate” at a time. In this case, we start at the back. Since the nodes are all
permutations, there will exist a vj such that vj = wn. Now take the edges v → ej → en

to get to node v(1) = vN . . . vj+1v1v2 . . . vj−1wn. We can relable the indices of v(1) to go
again from 1 to n− 1, leave wn fixed, find the index j with vj = wn−1, and take the edges
v(1) → ej → en−1. Thus, by induction, we need at most 2 edges per correct target index,
and we are done after n− 1 steps. Therefore,

D(Pn) ≤ 2(n− 1)

that is, the diameter of Pn is in O(log N/ log log N).

Gates and Papadimitriou [1] have also shown that this is asymptotically optimal, that is,

D(Pn) ≥ n.

d) To show that Pn is Hamiltonian, we proceed by induction on n. We will actually show
the following stronger claim: In Pn, there exists a Hamiltonian path from 12 . . . (n− 1)n to
n(n − 1) . . . 21 and the cycle is completed by using edge en. Observe that since in Pn the
graph looks the same from every vertex, this also holds for any given vertex v1v2 . . . vn.

For n = 3: by direct observation, we have the path 123 → 213 → 312 → 132 → 231 → 321
and the final edge 321 → 123.

Assume that Pn−1 has such a Hamiltonian path Hn−1 from v1v2 . . . vn−1 to vn−1 . . . v2v1.
Then we can construct a Hamiltonian path in Pn by concatenating the Hamiltonian paths
of the n Pn−1 subgraphs as follows:

an = 12 . . . (n− 1)n → Hn−1 → (n− 1) . . . 21n = bn

bn → en → an−1

an−1 = n12 . . . (n− 2)(n− 1) → Hn−1 → n− 2 . . . 1n(n− 1) = bn−1

bn−1 → en → an−2

...
a2 = 3 . . . (n− 1)n12 → Hn−1 → 1n(n− 1) . . . 32 = b2

b2 → en → a1

a1 = 2 . . . (n− 1)n1 → Hn−1 → n(n− 1) . . . 21 = b1

and we complete the cycle with the final b1 → an edge. Or, more formally, set

ai = (i + 1)(i + 2) . . . n1 . . . (i− 1)i
bi = (i− 1) . . . 1n . . . (i + 2)(i + 1)i

using n+1 = 1 and 1−1 = n. Then, since the nth coordinate is fixed, the Hamilitonian path
Hn−1 from ai to bi is completely contained in n− 1 dimensions. Its existence is guaranteed
by the induction hypothesis. Thus, the Hamiltonian path in n dimensions is given by

an

Hn−1· · · bn → an−1

Hn−1· · · bn−1 → an−2 . . . a2

Hn−1· · · b2 → a1

Hn−1· · · b1 → an

where an = 12 . . . (n− 1)n and b1 = n(n− 1) . . . 21 as required in the claim.
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