A LR 220 DISTRIBULTRD SHARED MEMORY

from [MP_{ZQS]. The algorithms for sequential consistency are taken
from.ﬁ?&ttlya and Welch [AW94]. For extension of these consistency
conditions to multi-object operations see Garg and Raynal [GR99] and

Mittal and Garg [MG98]. Causal consistenc i
y was introduced by H
and Ahamad [HA90]. peivimetron

Chapter 23

Self-Stabilization

Prudent, cautious self-control is wisdom’s root — Robert Burns

23.1 Introduction

The algorithms for resource allocation problems that we have discussed
so far do not work in the presence of faults. In this chapter we discuss a
class of algorithms, called self-stabilizing algorithms, that can tolerate
many kinds of faults.

We assume that the system states can be divided into legal and
illegal states. The definition of the legal state is dependent on the
application. Usually, system and algorithm designers are very careful
about transitions from the legal states, but illegal states of the system
are ignored. When a fault occurs, the system moves to an illegal state
and if the system is not designed properly, it may continue to execute
in illegal states. A system is called self-stabilizing if regardless of the
initial state, the system is guaranteed to reach a legal state after a finite
number of moves.

This chapter is organized as follows. Section 23.2 presents Dijkstra’s
self-stabilizing algorithm for mutual exclusion on a ring. This algorithm
requires each machine on the ring to have at least as many states as the
number of machines. Section 23.3 presents another mutual exclusion
algorithm also due to Dijkstra, which requires only three states per
machine.

The notation used in this chapter is summarized in Figure 23.1.

287

CHAPTER 23. SELF-STABILIZATION

Number of processes
State of a process
Total number of states per machine
State of the left neighbor

State of the right neighbor

State of the bottom machine

State of the top machine

Figure 23.1: Notation

23.2 Mutual Exclusion with K-State Machines

case of mutual exclusion, legal states are those global states in which
exactly one machine has a privilege. The goal of the self-stabilizing

algorithm is to determine who has the privilege and how the privileges
move in the network.

if (L =8) thenS::S+lmodK;

For other machines:
if(L#S) then S := [, .

Figure 23.2: K-state self-stabilizing algorithm

We assume that there are NV machines numbered (..N — 1. The
state of any machine is determined by its label from theset {0... K — 1}.
We use L, S, and R to denote the labels of the left neighbor, itself, and

machine, is treated differently from all other machines. The program is
given in Figure 23.2, and a sample execution of the algorithm is shown
in Figure 23.3. The bottom machine has a privilege if its label has
the same value as its left neighbor, ie., (I, = S). In Figure 23.3, the
bottom machine and its left neighbor have labels 2 and therefore the
bottom machine has » privilege. Once a machine bossessing a privilege
executes its critical section, it should execute the transition given by

' 289
23.2. MUTUAL EXCLUSION WITH K-STATE MACHINES

Figure 23.3: A move by the bottom machine in the K-state algorithm
ig 3

- . I
t ogram. In Figure 23.3, on exiting from the critical segtmn, itr;z
1e pr i o i
bottltzm machine executes the statement S := S+1 mod K and acq

13. B
. z]&.aieormal machine has a privilege only when L # S. On exiting

ses i ivilege. In
the critical section it executes S := L and thus loses its privileg
Figure 23.4, P; moves and makes it label as 4.

4
4 e
e 4
i \\4 4
|
\\ 3 B 3
4
9 B
. ;)

o . ‘th
Figure 23.4: A move by a normal machine in the K-state algorithm

23.2.1 Proof of Correctness

In the above algorithm, the system is in a‘ legal statfe iexactl;'N(irln)e

ine has the privilege. It is easy to verify that (:Lq, 11, - <, 2!
¥Ilamh-uihc"!f d only if either all z}s are equal or there exists m ’S
. lig?h;.t aa;,rlll #'s with 4 < m are equal to some value and all other z;
suc : <

290 CHAPTER 23. SELF-STABILIZATION

are equal to some other value. In the first case, the bottom machine has
the privilege. In the second case the machine P, has the privilege.
It is easy to verify that

Lemma 23.1 If the system is in a legal state, then it will stay legal.

Now we consider any unbounded sequence of moves. The proof of
the following lemma is left as an exercise.

Lemma 23.2 A sequence of moves in which the bottom machine does
not move is at most O(N?).

The following lemma exploits the fact that K > N.

Lemma 23.3 Given any configuration of the ring, either
(1) no other machine has the same label as the bottom, or
(2) there exists a label that is different from all machines.
Furthermore, within a finite number of moves, (1) will be true.

Proof: We show that if (1) does not hold, then (2) is true. If there
exists a machine that has the same label as that of bottom, then there
are now K — 1 labels left to be distributed among N — 2 machines.
Since K > N, we get that there is some label which is not used.

To show the second part, first note that if some label is missing from
the network, then it can only be generated by the bottom machine.
Moreover, the bottom machine simply cycles among all labels. Since,
from Lemma 23.2, the bottom machine moves after some finite number
of moves by normal machines, we get that the bottom machine will
eventually get the missing label.

We now show that system reaches a legal state in O(N?) moves.

Theorem 23.4 If the system is in illegal state, then within O(N?)
moves, it reaches a legal state.

Proof: It is easy to see that once the bottom machine gets the unique
label, the system stabilizes in O(N?2) moves.

The bottom machine can move at most N times before it acquires
the missing label. Machine 1 therefore can move at most N 4 1 times
before the bottom acquires the label. Similarly, machine ¢ can move at
most N + ¢ times before the bottom gets the label.

By adding up all the moves, we get
N+(N+1)+...+(N+N-1)=0(N?) moves.

23.3. MUTUAL EXCLUSION WITH THREE-STATE MACHINES 291

23.3 Mutual Exclusion with Three-State Ma-
chines

Bottom:
if (B+1=R) then B:=B+2;

Normal:
if(L=S+1)or (R=S5+1) then S:=5+1;

Top:
if(L=B)and (I'# B+1)thenT: =B+ 1,

Figure 23.5: Three-state self-stabilizing algorithm

The above algorithm requires that the number of states per machine
K to be at least N. Therefore the algorithm is not independent of the
number of machines. We now show another algorithm due to Dijkstra
that requires only three states per machine independent of the total
number of machines in the system. Assume that there is a ring of at
least three machines. The program consists of three types of machines.
In this configuration, we view machines as a sequence starting with a
bottom machine, followed by one or more normal machines, and ending
with a fop machine. The state of any machine ranges over {0, 1,2}. In
the algorithm shown in Figure 23.5, all additions are performed modulo
3. A sample execution is shown in Figure 23.6.

23.3.1 Proof of Correctness

To prove correctness of the algorithm, it is useful to view the state
of the system as a string starting with B, then states of the normal
machines S’s, and ending with 7. Between any two consecutive states,
there are only two possibilities—either they are the same or they differ
by 1. In case they differ by 1, we put an arrow between the state such
that arrow points to the direction in which the number decreases by 1
modulo 3. Thus 2 points to 1, 1 points to 0, and 0 points to 2.

Our proof uses the following three different metrics based on the

292 CHAPTER 23. SELF-STABILIZATION

1 — 0 — 2 — 0

@ @ @

B T
1 1 i— 2 — 0

® @ @

B lk

1 £ 2 2 — 0

® & ® - ®

B T

Figure 23.6: A sample execution of the Three-state self-stabilizing al-
gorithm

arrows present in the string.

xz = the number of arrows

y = the number of left-pointing arrows +
twice the number of right-pointing arrows

z = Z distance from bottom + Z distance from top
left-pointing right-pointing
arrows arrows

The three-state machine algorithm can be rewritten as:

23.3. MUTUAL EXCLUSION WITH THREE-STATE MACHINES 499

For bottom:
(0) B+ R to B—R Az

Il
=

Ay=41 Az=N-1

For a normal machine:

()L—-S R to L S—R Az=0 Ay=0 Az=-1
)L S+ R to L«S R Az=0 Ay=0 Az=-1
3)L—-S+<R to L S R Az=-2 Ay=-3 Az=-N+1
4)L—>S—R to L S+R Az=-1 Ay=-3 Az<N-2
5)

(5) L+~ S+ R to LS R Az=-1 Ay=0 Az<N-2
For top:

6)L—->T to LT Az=0 Ay=-1 Az=N-1
Tyl T to L+ T Axz=+1 Ay=+1 Az=N-1

It is easy to see that if a string has a single arrow then the system
is in a legal state. Furthermore, the arrow remains the only one. It
moves left to right using moves (1) and (2). It gets reflected by the
bottom using the move (0) and by the top using the move (6). The
move (6) is possible because if there is a single arrow, the precondition
(L = B) and (T # B + 1) holds.

Moreover, if the system does not have any arrows, then move (7) is
the only eligible move and it will create a single arrow. It also follows
that at least one move is always possible in the system. Our goal is to
bound the number of moves before the string gets into a legal state.

Let m; denote the number of moves corresponding to the transfor-
mation (i), where i € [0...7], made by the system before it stabilizes.

Lemma 23.5 Between two successive moves of top at least one move
of bottom takes place.

Proof: The top machine moves only when T' # B + 1. When it moves,
it makes T equal to B + 1. Now the top machine can move only when
B changes.

Lemma 23.6 A sequence of moves in which bottom does not move s
finite.

Proof: From Lemma 23.5, it is sufficient to consider the moves of
the normal machines. Moves (3),(4), and (5) decrease the number of
arrows, and no moves of the normal machines increase the number
of arrows; therefore, it is sufficient to show that a sequence of moves
(1) and (2) is finite. However, this follows from the structure and the
finiteness of the string. The move (1) takes the arrow from left to right,
and therefore the arrow must eventually hit the top machine. A similar
argument applies to move (2).

Lemma 23.7 If the siring has not reached a legal state, then y de-
creases by at least 1 per move of bottom.

Proof: Between successive moves of bottom, falsification of “leftmost
arrow exists and points to the right” happens in (3), (4), or (6). If this
happens in move (6), then the string is legal and we are done. If the
falsification happens in (3) or (4), then y decreases by 3. But y can
increase by at most 2 on account of moves (0) and (7) between two
successive moves of bottom, Therefore, we get that y decreases by at
least 1 per move of bottom.

n
Theorem 23.8 Within O(N?) moves, there is one arrow in the string.

Proof: From Lemma 23.7, if the algorithm has not yet reached a legal
state, then y decreases by at least 1 per move of bottom. As the initial

value of y is at most 2V,
mo < 2N.

Also, from Lemma 23.5, between two successive moves of top at least
one move of bottom takes place. Therefore,

mg +my < 2N.

We now bound the number of moves made by normal machines. Note
that the transformations (3), (4), and (5) decrease x whereas the trans-
formations (0), (1), and (2) do not change x at all. Furthermore, a move
by top increases = by at most 1 and the total number of such moves is
upper-bounded by 2N. Since the maximum initial value of z is N,

m3 +1mg +ms < IN.

Finally, since the transformations (1) and (2) decrease z, the other
transformations—which are at most 7V in total—increase it by at most
N and the maximum initial value of z is N2,

my + mao 58N2

giving us an upper bound of O(N?) on the total number of moves
required for the system to stabilize.

The following example establishes that it is, in fact, a tight upper
bound. Consider the string consisting of (N — 1)/2 right-pointing ar-
rows followed by (N —1)/2 spaces, for some odd N > 3. By repeatedly
using transformation (1) (N — 1)2/4 times, we obtain the string con-
sisting of (N — 1) /2 spaces followed by (N —1)/2 right-pointing arrows;
each arrow moves to the right by (IV — 1)/2 places, with the system
staying in an illegal state throughout.

23.4 Problems

23.1. Show that a system with four machines may not stabilize if it
uses the K-state machine algorithm with K = 2.

23.2. Prove Lemma 23.2.

23.3. Show that the K-state machine algorithm converges to a legal
state in at most O(N?) moves by providing a norm function on
the configuration of the ring that is at most O(N?), decreases by
at least 1 for each move, and is always nonnegative.

23.4. In our K-state machine algorithm we have assumed that a ma-
chine can read the value of the state of its left machine and write
its own state in one atomic action. Give a self-stabilizing algo-
rithm in which a processor can only read a remote value or write
a local value in one step, but not both.

¥23.5. [due to [Dij74]] Show that the four-state machine algorithm in
Figure 23.7 is self-stabilizing. The state of each machine is rep-
resented by two booleans xS and upS. For the bottom machine
upS = true and for the top machine upS = false always hold.

Bottom:
if (zS = zR) and ~upR then z5 := -zS:

Normal:
if S # zL then 8 := —z8;upS := true;
if S = 2R and upS and —upR then upS := false;

Top:
if (S # zL) then z8 := —-zS;

Figure 23.7: Four-state self-stabilizing algorithm

23.6. A self-stabilizing algorithm is uniform if all processes are equal
and do not have any process identifiers. Show that there is no
self-stabilizing algorithm for mutual exclusion in a ring with a
nonprime number of processes.

*23.7. Assume that each process P; has a pointer that is either null or
points to one of its neighbors. Give a self-stabilizing, distributed
algorithm on a network of processes that guarantees that the
system reaches a configuration where (1) if P; points to P; then
P; points to F;, and (2) there are no two neighboring processes
such that both have null pointers.

23.5 Bibliographic Remarks

The idea of self-stabilizing algorithms first appeared in Dijkstra [Dij74],
where three self-stabilizing algorithms were presented for mutual exclu-
sion in a ring. The proof for the Three-state algorithm is taken from
Mittal and Garg [MGO1b].

Chapter 24

Knowledge and Common
Knowledge

Imagination is more important than knowledge. — Albert Einstein

24.1 Introduction

Many problems in a distributed system arise from the lack of global
knowledge. By sending and receiving messages, processes increase the
knowledge they have about the system. However, there is a limit to the
level of knowledge that can be attained. In this chapter, we use the no-
tion of knowledge to prove some fundamental results about distributed
systems. In particular, we show that agreement is impossible to achieve
in an asynchronous system in the absence of reliable communication.
The notion of knowledge is also useful in proving lower bounds
on the message complexity of distributed algorithms. In particular,
knowledge about remote processes can be gained in an asynchronous
distributed system only by message transfers. For example, consider
the mutual exclusion problem. It is clear that if process P; enters the
critical section and later process P; enters the critical section, then
there must be some knowledge gained by process P; before it can begin
eating. This gain of knowledge can happen only through a message
transfer. Observe that our assumption of asynchrony is crucial in re-
quiring the message transfer. In a synchronous system with a global
clock, the knowledge can indeed be gained simply by passage of time.
Thus for a mutual exclusion algorithm, one may have time-division
multiplexing in which processes enter the critical section on their pre-

297

