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Searching, Merging,
and Sorting

The task of processing a table consisting of records whose keys come from a
linearly ordered set arises in many practical situations. Examples of specific
processing tasks include searching for a key in the table and sorting the keys
of the table. Such tasks typically involve repeated applications of comparison
and data-movement operations. We assume that each key is an atomic unit
that cannot be manipulated as an integer or as a string of bits. This class of
problems has a rich mathematical theory that still attracts a substantial re-
search interest.

In this chapter, optimal algorithms for basic problems in searching,
merging, and sorting are presented. Several algorithmic techniques are ex-
plored, including parallel searching (Section 4.1), partitioning (Section 4.2),
pipelined or cascading divide-and-conquer (Section 4.3), and bitonic sorting
(Section 4.4). These techniques are used to develop efficient parallel algo-
rithms for searching, merging, selection, and sorting. In addition, we intro-
duce for the first time in this book lower-bound proofs on the parallel com-
plexity of certain problems (Section 4.6). These proofs are especially tailored
for the class of comparison problems considered in this chapter.
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4.1 Searching

LetX = (x1,X2, ... ,X,) be ndistinct clements drawn from a linearly ordered
set (S, =) such thatx; < x; < --- < x,. Given an elementy € §, we are
interested in solving the following search problem: identify the index i for
whichx; <y < x;+1, wherexg = — ® andx,4+1 = + *,and — « and +  are
two elements that are added to S and that satisfy — ® <x < + o, forallx € §.
; The well-known binary search method solves this problem in O(log n)
optimal sequential time. This method consists of comparingy with the middle
element of X. Based on the outcome of this comparison, the search either is
terminated with a success or it can be restricted to the upper or the lower half
of X. The process is repeated until either an element x; is encountered such
that y = x; or the size of the subarray under consideration is equal to 1.
Hence, in either case, the solution is determined. :
_ A natural extension of the binary search method to parallel processing
is parallel searching, in which we compare y concurrently with several ele-
ments of X, say p elements of X, which split X intop + 1 segments of almost
fequal lengths. The outcome of this parallel comparison step is either to
identify an element x; that is equal toy, or to restrict the search to one of the
p + 1segments. We repeat this process until either an element x; is encoun-
terec‘l such that y = x; or the number ¢ of elements in the subarray under
consideration is no more than p. In the former case, the solution is found; in
Fhe latter case, the solution can be determined by ¢ comparisons being made
in parallel.

In this section, we shall not use the WT framework to present and
ar}alyze our parallel-search algorithm. Instead, the algorithm is couched
wthin the alternative time-processors framework. The parameter p that we
introduced can be viewed as the number of processors available on our
PRAM model.

. The parallel-search algorithm for processor P is given next, where 1 <
j < p. Processor P is responsible for various initializations and for taking
care of the boundary cases. The variable c; is used to indicate the outcome of
the comparison performed in a given step; the indices / and r are pointers to
the (left and right) boundaries of the current subarray under consideration.

ALGORITHM 4.1

(Parallel Search for Processor P))

Input: (1) Anarray X = (x1,x3, ... ,xp)Suchthatx; <x; < ... <
Xp; (2) an element y; (3) the number p of processors, where p < n;
(4) the processor number j, where 1 < j < p.

Output: An index i such that x; <y < Xi11.

begin
1. if (j = 1) then do
1.1. Setl: = O;ri=n + 1;xp0 = —®©jXp41t = + @
12. Setco: = 0;¢p41: = 1
2. while (r — [ > p) do
2.1. if (j = 1) then {setqo: = L gp+1: = 1}
22 Setgir=1+] L‘;—:"l‘J
2.3. if (y = xg;) then {return(g;); exit}
else {set cj: = 0ify > xg and cj: = 1
ify <xg}
2.4. if(cj < cj+1) then {setl: = gj;r: = gi+1}
2.5 if(j = land cg < c1) then{setl: = qo; 12 = qi}
3. if(j = r — I) thendo
3.1. Case statement:
y = x4 {return (I + j); exit}
Y > Xp4jisetel = 0
y < xp4jisetel = 1
3.2. if (cj—1 < ¢j) thenreturn (/ +J — 1)

end
EXAMPLE 4.1:
Let Xbe the array X = (2,4,6, ... ,30) consisting of all even integers between
2 and 30, and lety = 19. Suppose thatp = 2. After the execution of step 1,
Pywillset! = 0,r = 16,c9 = 0,¢3 = 1,xg = —,andxjg = + o . The while

loop runs for three iterations; the effect of each such iteration is shown in the
following table:

iteration | 1 2 3
qo B s b
qi1 5016 448
92 10 7 9
a3 16 10 10
cq 0 050
Cq uAE)
(o) 1 0 0
3 1 & 1
[ 5 F 9
5 10 10 10

€s

During the execution of step 3.1, P, setsc; = 1. Hence, atstep 3.2, P, verifi
O

that ¢y < c; and returns the index 9.



We are ready for the following theorem.

Theorem 4.1: Given an array X = (x1,x3, ... ,x,)Withx) <x2 < ... <x,

and an element y, Algorithm 4.1 determines the index i such that x; < ¥ <Xit+1. The

3 i i log (n+1) i
parallel time required is O(W)‘ where p is the number of processors used.

Proof: The correctness proof is simple and is left to the reader (see Exercise 4.2)

: As for the 'number of steps, notice that, after the ith iteration of t’h .
while loop, thu}; size of the subarray to be searched is reduced froms; = r —e
Itos;4) < ;:+1 +p= ;T’I + p, which is the maximum possible lcng;h of the
(p + 1)stsegment. Settingsy = n + 1, it is straightforward to check thats; <

n+1 s S =
(p+1)y + p + 1satisfies this recurrence. Therefore, the number of iterations

. log(n+1) , -
needed is O(—~—|og(p+ ) ), and each iteration takes O(1) time. Hence, the while

loop requires O(log (n + 1)/lo ; .
: g (p + 1)) time. Since st i
the time bound stated in the theorem fo%lows. el . nmlej

P!L}?M Model: Algorithm 4.1 can be implemented on the CREW PRAM

;\;1; . (51’1 llairocessors. A concurrent-read capability is needed, since /, r and the

St tha?; ({ Feed to be accessed by all the processors. Surprisingly, we can

L even(i?gt ]Te_sel;i ﬁ) Ifara:llcl s:;:ps are required on the EREW PRAM
. ey is made available to all the

g;;gon 10.3). Hence, no significant speedup can be achievec{) ;chrfzo I-ESRS$
M mod.el for any number p of processors such thatp < n¢, where c i

constant satisfying 0 < ¢ < 1. ; . allli}l(

f_.telllnag'k 4.1.: Ac‘ctl)rdmg to our notion of optimality, a parallel-search algo-
ithm is pptlmal if its tot al number of operations is asymptotically equal to the
sEquentlal com;_)lem‘ty O(log n) of the search problem. Hence, Theorem 4.1
ZOE“;S t?at optimality on the CREW PRAM is achieved only when p }s
- stant and hence T(n) % O(log ). However, we show in Section 4.6 that

¢ performance of Algorithm 4.1 cannot be improved. O

4.2 Merging

;Veitl_laveza]ready considered the problem of merging two sorted sequences in

algoﬁllllm.:l‘;agased on (tih;;] partitioning strategy, an O(log n)-time parallel
presented there. The cor i i .

ol e ety responding total work is O(n); hence,

In this section, we refine the previous partitioning strategy to obtain an
optimal O(log log ) time algorithm that runs on the CREW PRAM. This
problem is one of the few known to have such a fast algorithm on the CREW
PRAM. Compare the merging problem with the simple problem of comput-
ing the maximum of  elements, which requires ((log n) parallel steps on the
CREW PRAM, regardless of the number of the processors available. There-
fore, the existence of an optimal O(log log n) time merging algorithm that
runs on the CREW PRAM is perhaps surprising.

We start by recalling a few definitions presented in Section 2.4. The
rank of an element x in a given sequence X, denoted by rank(x : X), is the
number of elements of X that are less than or equal to x. If X is sorted, it is
useful to define the predecessor of an arbitrary element x to be the element.x, of
X such that r = rank(x : X). Ranking a sequence Y = (y1,¥2 -+ 2:Ym) inX

amounts to computing the integer array rank(Y:X) = (r1,72, --- ,Tm), Where

ri = rank(y; : X).

4.2.1 RANKING A SHORT SEQUENCE IN A SORTED SEQUENCE

Let X be a sorted sequence with n distinct elements, and let Y be an arbitrary
sequence of size m such that m = O(n’), where s is a constant that satisfies
0 < s < 1. The parallel-search algorithm (Algorithm 4.1) can be used to rank
each element of Y in X separately. We set the number p of processors of this
algorithmtop = w/mi = Q(n!~%). Then, each element of ¥ can be ranked
in X in O(log (n + 1)/log (p + 1)) = O(1) time. The total number of
operations used to rank each such element is O(n/m), since p = w/mJ, and
the running time is O(1). We therefore have the following lemma.

Lemma 4.1: Let Y be an arbitrary sequence with m elements, and let X be a
sorted sequence with n distinct elements such that m = O(n®) for some constant
0 < s < 1. Then, all the elements of Y can be ranked in X in O(1) time using

O

a total of O(n) operations.

PRAM Model: The parallel-search algorithm (Algorithm 4.1) requires a
concurrent-read capability. Hence, the procedure referred to in Lemma 4.1

requires the CREW PRAM model. O

4.2.2 A FAST MERGING ALGORITHM

Consider the problem of determining rank(B : A) for sorted sequences A and
Boflengthsn andm, respectively. Assume that all the elements of 4 and B are

distinct and hence that no element of A appears in B.



As in Section 2.4, we use the partitioning strategy to merge the two
sequences A and B. We rank a set of Vm elements of B that partition B into
blocks of almost equal lengths in the sorted sequence A. The computed ranks
of the chosen elements will induce a partition on A4 into blocks such that each
block of 4 has to fit between two of the chosen elements of B. Hence, the
overall problem is now reduced to ranking the elements of each block of B
(excluding already ranked elements) into a corresponding block of A.

The algorithm is given next. Figure 4.1 illustrates the partitions intro-

duced in the algorithm.

ALGORITHM 4.2
(Ranking a Sorted Sequence in Another Sorted Sequence)
Input: Two arrays A = (a1, ..., @) and B = (by, ..., b,,) in
increasing order. Assume that Vm is an integer; otherwise, replace
Vim whenever it occurs by LVm.. '
Output: The array rank(B : A).
begin
I. If m < 4 then rank the elements of B by applying the
parallel-search algorithm (Algorithm 4.1) with p = n, and exit.
2. Concurrently rank the elements by, bovim, ... ,bim, ... by in
A by using the parallel-search algorithm (Algorithm 4.1) with p =
Vn. Let rank(byy : A) = j@), for 1 < i < Vm. Set j(0) = 0.

3 ForO0<i=svVm-1letB; = bimist, --. B+ 1Wm-1)
andlet A; = (ajj+1, ... >aji+1)); ifj(i) = j@ + 1), then set
rank(B; : A;) = (0, ... , 0), else recursively compute rank(B; : A;).
4. Let 1 < k < mbe an arbitrary index that is not a multiple of
Vim, and leti = | ). Then rank(by. : A) = j(i) + rank(by : A;).
end et
EXAMPLE 4.2:

Letd = (- 5,0,3,4,17,18,24,28) and B = (1, 2, 15, 21). At the termination
of step 2, we obtainj(0) = 0,j(1) = 2and(2) = 6, where 2 and 6 are the ranks
of b = 2 and by = 21, respectively. During the execution of step 3, we
introduce By = (1) and 4, = (=5,0),B; =(15)and A4, = (3,4,17, 18). In
this case, rank(1:A4¢) = 2andrank(15:4,) = 2. At step 4, we adjust the ranks
of by = 1and b; = 15 as follows: rank(1 :A) = j(0) + rank(1:Ay) = 2
and rank(15 : A) = j(1) + rank(15, A1) = 4. Therefore, we get the array
rank(B:A) = (2,2,4,6). O

Lemma 4.2: Let A and B be wo sorted sequences such that |A| = n and |1B| =
m. Then, Algorithm 4.2 computes the array rank(B : A) in O(log log m) time
using O((n + m) log log m) operations.

b+ 1 \m
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FIGURE 4.1

Partitions induced by Algorithm 4.2. Each block B is of size Vm but the size of each A; block may

vary. The index /(i) is defined by j(i) = rank(biym : A).



Proof: The correctness proof will be by induction on m.

The base case m = 3 corresponds to ranking a sequence (b, by, b3) in
A. Step 1 settles this case.

Suppose that the induction hypothesis holds for allm’ < m, where m =
4. We establish the fact that all the elements in B; are strictly between aj;yand
aji+1)+1, for anyisuch that0 < i < Vm — 1.

Any element p in B; satisfies bys < p < b(y1yym. Since j(i) =
rank(biym : A) and j(i + 1) = rank(b(+1)ym : A), we have ajii) < biym and
b(;.,. Wm < @j(i+1)+1 and thus aii) <P < djii+1)+1- This result implies that
any element p of block B; fits somewhere in block A; and therefore rank(p : A) =
j(@) + rank(p : A;), since j(i) is the number of elements in 4 preceding A;.
Hence the correctness proof follows by induction.

We now establish the complexity bounds. Let T(n, m) be the parallel
time it takes to rank B in 4, where |B| = mand |4| = n.

Step 2 invokes Vm calls to the parallel-search algorithm (Algorithm
4.1) withp = Vn. The running time is O(log (n + 1)/log (Vn + 1)) = O(1),
and the total number of operations required is O(Vm.Vn) = O(n + m)
(since 2Vm.Vn < n + m). Except for the recursive calls, steps 3 and 4
trivially take O(1) time, with O(n + m) operations.

Let |[4;] = n;,for0 < i = Vm — 1. The recursive call corresponding
to the pair (B;, 4;) takes T(n;, Vim ) time. Hence, T(n,m) < max; T(n;, \/E) +
O(1), and T(n, 3) = O(1). A solution to this recurrence is given by T(n, m) =
O(log log m). Since the number of operations required for each set of recur-
sive calls is O(n + m), the total number of operations used by Algorithm 4.2
is thus O((n + m) log log m). g

PRAM Model: Algorithm 4.2 requires the CREW PRAM model because the
parallel-search algorithm requires that model. O

Remark 4.2: Algorithm 4.2 is given in the WT presentation framework. The
corresponding processor allocation problem is not straightforward. The
reader is asked to provide the details in Exercise 4.11. O

As indicated in Section 2.4, we can solve the problem of merging two
sorted sequences A and B by computing the two arrays rank(4 : B) and
rank(B : A). Therefore, the following result follows immediately from
Lemma 4.3,

Corollary 4.1: Let A and B be two sorted sequences, each of length n. Merging
A and B can be done in O(log logn) time, using a total of O(n log log n)
operations. ]

4.2.3 AN OPTIMAL FAST MERGING ALGORITHM

The previous fast merging algorithm (Algorithm 4.2) is clearly nonoptimal.
As is usually the case, the fast nonoptimal algorithm is used to solve a suitably
chosen reduced-sized version generated by an optimal (and slow) algorithm.

Assume for the remainder of this section thatm = n. The details for the
more general case are left to Exercise 4.12.

We begin by partitioning 4 and B into blocks, each of size less than or
equal to rloglogn1,say4 = (41,42, ... )and B = (By, B3, ... ). We then
letA’ = (p1,p2, --- ), where p; is the first element of block 4; of 4 and B’ =
(q1,92, --- ), where g; is the first element of block B; of B. As a result, |A'| =
O(n/log log n) and |B'| = O(n/log log n). Then, we rank the elements of A’
in B and the elements of B’ in A. The merging problem is now reduced to
merging nonoverlapping pairs of subsequences; each subsequence is of
length O(log log n). The details are as follows:

1. Merge A’ = (p1,p2, ... )and B’ = (q1,92, ... ) using the fast nonop-
timal algorithm (Algorithm 4.2).
Explanation: Algorithm 4.2 can be used to perform the merging of A’
and B’ in O(log log n) time using a total of O(n) operations. At this
point, we have computed the two arrays rank(A' : B') and rank(B’ : A").

2. Determine the two arrays rank(A' : B) and rank(B' : A).

Explanation: Letrank(p; : B') = r;; hence p; must fit somewhere in block
B,, of B since q,, < pi < q+1 (see Fig. 4.2). For each p;, we can
determine its exact location in B,, by using a simple sequential algorithm
(or binary search algorithm). This algorithm takes O(log log nn) sequen-
tial time per element. Since we have =< rn/loglog n 1such elements, the
arrayrank(A' : B) can be determined in O(log log n) parallel time, using
a total of O(n) operations. Similarly, we can obtain rank(B' : A) in
O(log log n) time, using a total of O(n) operations.

3. For each i, determine the ranks of the elements A; — {p;} in B, and, for
each k, the ranks of the elements By — {gx}in A.
Explanation: We computed rank(A' : B) and rank(B' : A) by the end of
step 2. Let rank(p; : B) = j(i) and rank(gy : A) = j(k). Recall that p; is
the first element of block A; and gy is the first element of block By,
where each 4; and each By, is of size less than or equal to Tlog log# 1.
In step 3, we determine the ranks of the remaining elements in each A;
and By.

Given the facts that rank(p; : B) = j(i) and that p; is the first element of
A;, all the elements of 4; must lie between bj(;) and bj(; + 1) +1- Hence, ifj(i) =
j(i + 1), each element of 4; has rank j(i) in B.
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Step 2 of the optimal merging procedure. Since rank(p; : B') = r;j, where B’ =
(91, g2, ... ), we have that g, < p; < gr+1; hence, p; must fit somewhere in
block By,

Suppose that j(i + 1) > j(i). In this case, all the elements bjgy+1, ... ,
bj(i+1) fit between p; and p;+ 1. If the number of such elements (that is, the
j@@ + 1) — j(i) elements bj(;) + 1, -.. ,bji+1)) is less than log log n, then we can
merge A; with the corresponding subarray of B in O(log log n) sequential
time. Otherwise, there exist elements of B'—say, g, gx+1, - .. , qx+s—that
lie between bj) + 1 and b + 1) (see Fig. 4.3). Since the ranks j(k), j(k + 1), ...,
Jk + 5)of Gi, Gk +1, ... ,qk+5 are already known, our problem is reduced to
merging no more than s + 2 pairs of subsequences, each pair containing
O(log log n) elements (see Fig. 4.3). Note that the subsequences are com-
pletely disjoint. Hence, this merging can be done in O(log log n) time, using
alinear number of operations (in the total size of the subsequences involved).
This process can be performed concurrently for all blocks A4;.

In summary, the optimal merging algorithm consists of three main steps:

1. Partition A and B into blocks 4 = (4,4, ---)and B = (B, B, --+)
such that each block is of size = rloglogn 1. Use the fast but nonop-
timal algorithm (Algorithm 4.2) to merge 4’ = (py,p2, -.. )and B’ =
(1,92, ... ),wherep; andg; are the first elements of 4; and B, respectively.

2. Each p; can now be located in a block B, ; hence, its exact rank in B can
be determined easily, since | B,,| = roglogn 1. The ranks of all the p;’s in
B are determined concurrently. Similarly the ranks of the g;’s in A are
determined concurrently.

3. Since the exact ranks of the elements of A’ in B and the exact ranks of B' in
A are known, the merging problem is reduced to a set of nonoverlapping
merging subproblems; each of the corresponding pairs of subsequences
involves O(log log n) elements. All the merging subproblems can now be
solved concurrently in O(log log ) time, using a linear number of operations.
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Therefore we have the following theorem.

Theorem 4.2: The problem of merging two sorted sequences each of length n
can be done in O(log log n) time, using a total of O(n) operations.

PRAM Model: A concurrent-read capability is required by the optimal fast
merging algorithm since, for example, it uses the fast nonoptimal merging
algorithm (Algorithm 4.2), which requires concurrent-read operations. How-
ever, no concurrent write was used, and therefore the optimal O(log log n)
time algorithm can be implemented on the CREW PRAM model. O

As we shall show in Section 4.6, {}(log log n) parallel steps are required
to merge two sorted sequences each of length n, even on any CRCW PRAM
model with n log® n processors, for any constant «. Hence, the optimal time
fast merging algorithm cannot be improved as long as we insist on optimality;
that is, it is work-time (WT) optimal.

If we are provided with additional information, however, we may be
able to perform merging faster. We now discuss a case which pertains to the
O(log n) time sorting algorithm described in Section 4.3.2.

4.2.4 *MERGING WITH THE HELP OF A COVER

Let ¢ be a positive integer. A sorted sequence X will be called a c-cover of
another sorted sequence Y if ¥ has at most ¢ elements between each pair of
consecutive elements in X o = (— «, X, + ). More precisely, given any two
consecutive elements o and B of X ., then the set {y; | y; € Yanda < y; <
B} has at most c elements.

EXAMPLE 4.3:

The sequence X = (— 1, 15,21, 23)isa4-coverof Y = (— 10, =5, =2, —1,
4,5, 10, 12, 20, 22, 26, 31, 50). Consider, for example, the two consecutive
elements —1 and 150f X = (— =, —1, 15,21, 23, + ). The total number
of elements of ¥ between —1 and 15 is 4. O

Lemma 4.3: Let A and B be two sorted sequences of lengths n and m,
respectively, and let X be a c-cover of A and B for some constant c. If rank(X : A)
and rank(X : B) are known, then the problem of merging A and B can be solved
in O(1) time, using O(|X|) operations.

Proof: LetX = (x1, ... ,x;),rank(X:A) = (r1,r2, ... ,rs) and rank(X, B) =
(Livtdy s she). FOrCaOhi 1 =i =5 + L, 060A; = (dy. 40y s009Gp); gtid
B; = (brr_ﬁrlw SOTI b,].), whererg = tp = 0, and ry41 = h, b1 = W
Figure 4.4 illustrates the partitions of A and B. Note that A; or B; could be

Ay Aqy A
Arlay w82 ar] “r|+l'“ar2 sew ar;.[*‘l“'ar,' sse
X X 5 o X Sk
A LT R S T S o

FIGURE 4.4 :
A merge of the two sorted sequences A and B with the cover X. The arrows

indicate rank information as follows: r; = rank(x; : A) and t; = rank(x; : B).
Since X is a c-cover, we have |A;|, |Bi| = c.

empty (ifri-1 =riorti—1 = ti, respectively). We‘now :v,h(?w how to compute
rank(A : B). Computing rank(B : A) can be done in a similar fashion.
Suppose that A; = @ and leta € A;. Then, rank(a : B) = ti—1 +
rank(a : B;),sinceb;,_, SXi-1 <@r,_+1 =4 <ap =X < b;r.+1_. Hence, the
problem reduces to determining rank(a : B;). But | B;| < c,since X isac-cover of
B. Hence, a can be ranked in B; in O(1) sequential time. Therefore, t_he array
rank(A : B) can be found in O(1) time using a linear number of operations. [J

Remark 4.3: Suppose we know that X is a c-cover of B, and we are given
rank(A : X) and rank(X : B). Then, the technique used in tl_lc proof of Lemma
4.3 allows us to determine rank(A : B) in O(1) time, using O( 4| + |XI|:)]

operations.

4.3 Sorting

The problem of serting a sequence X is the process of ’rearrar_lging the
elements of X such that they appear in nondecreasing or nonincreasing order.
The problem of sorting has been studied extensively in the literature because



of its many important applications and because of its intrinsic theoretical
significance. Many solution strategies have been studied in some depth and
their actual performances reported.

In this section, we restrict ourselves to the modest goal of providing two
possible parallel implementations of the merge-sort strategy on the PRAM
model, each requiring O(n log n) operations and hence optimal. The first
implementation yields a simple parallel-sorting algorithm that runs in
O(log n log log n) time. The second is significantly more involved and de-
pends on an intricate pipelining scheme; however, it results in an O(log n)
time sorting algorithm.

An additional parallel-sorting algorithm, called bitonic sorting, is de-
scribed in Section 4.4. In Chapter 9 (Section 9.6), we describe and analyze a
randomized quicksort algorithm.

4.3.1 A SIMPLE OPTIMAL SORTING ALGORITHM

As its name indicates, the merge-sort strategy is based on a merging procedure
that is used to sort successively a number of larger and larger nonoverlapping
subsequences until the whole sequence is sorted. One possible way to imple-
ment this strategy, referred to as two-way merge sort, is to start by sorting
pairs of elements of the given sequence X, and then to sort every pair of
consecutive pairs, and so on, until X is sorted.

The two-way merge-sort algorithm can be also viewed as an application
of the divide-and-conquer strategy that consists of (1) dividing the input
sequence X into two subsequences, X; and X, of approximately the same
size; (2) sorting X; and X, separately; and finally (3) merging the two sorted
sequences.

The sequence of operations required by the two-way merge-sort algo-
rithm can be represented by a binary tree as follows. Let T be a balanced
binary tree with n leaves. The elements of X are distributed among the leaves,
one per leaf. The nodes at height 1 represent the lists we obtain by merging
the pairs of consecutive elements contained in the children nodes (leaves, in
this case). More generally, each internal node represents the subsequence we
obtain by merging the subsequences generated at the children nodes, Hence,
cach internal node represents the sorted list of the elements stored in its subtree.

Since we are interested in a parallel implementation of the merge-sort
algorithm, our problem can be rephrased as follows. For each node v of the
balanced binary tree T, compute the sorted list L[v] containing all the ele-
ments stored in the subtree rooted at v. Clearly, the root will contain the
sorted list.

This process can be achieved in a fashion similar to that used in Algo-
rithm 3.8 (the basic range-minima algorithm), which computes, for each node

v of a balanced binary tree, the prefix minima and the suffix minima of the

clements contained in the subtree rooted at v. The only difference lu?s in

the merging procedure. For our sorting ‘algo_rithm, we use the optimal

O(log log n) time merging procedure described in Sec.t]on 42 ’
The formal algorithm is given next. The node (4, /) of a binary tree is the

jth node at height 4 ordered in a left to right fashion.

ALGORITHM 4.3
(Simple Merge Sort)
Input: An array X of order n, where n = 2! for some integer I.
Output: A balanced binary tree with n leaves such that, fgr.eack
0 < h < log n, L(h,j) contains the sorted subsequence consisting of
the elements stored in the subtree rooted at node (h,j), for 1 < j <
n/2". That is, node (h, J) contains the sorted list of the elements
X2 - 1) + 1), X2 - 1) + 2), ..., X(2H)).
begin
I. for1 = j < n pardo
Ser L(0,j): = X(J)
2. forh = 1tologn do
for 1 < j < n/2" pardo
Merge L(h — 1,2j — 1)and L(h — 1, 2))into the sorted
list L(h,J)
end

EXAMPLE 4.4:

Consider the sequence X = (12, =5, —7,51,6,28, 3, TSI- Fig. _4.5 shows the
binary tree with the initial contents of the leaves. During iteration 2 = 1, we
getL(1,1) = (- 5,12),L(1,2) = (— 7,51),L(1, 3_') = (6,28)and L(1,4) =
(— 8,3). The next iteration causes the following two !1sts tobe crt?ated: L(2,1) =
(=7, =5,12,51) and L(2,2) = (- 8,3, 6, 28). Finally, the list at the root is
generated and is given by L(3,1) = (— 8, =7, -5, 3,6, 12, 28, 51). 1]

Theorem 4.3: For each node v of the balanced tree T, Algorithm 4.3 generates
the sorted list L[v] consisting of the elements stored in the subtree rooted at v.
The running time of the algorithm is O(log n log lqg n),.and {he total number
of operations used is O(n log n). Hence, this algorithm is optimal.

* The correctness proof of Algorithm 4.3 is straightforwayd.
mofThc number of itcfations executed at step 2 is O(log n)._ Smcej the total
number of elements involved at each level is n, each iteration takes
O(log log n) time, using a total of O(n) operations if we use the optimal fast
merging algorithm presented in Section 4.2. Hence, the theorem follows. [J



(-8, 7,5, 3,6, 12, 28, 51)

(=1,=3; 12, 51) (-8, 3, 6,28)

-5,12) (-8,3)

FIGURE 4.5
A merge-sort tree for eight elements. Each node contains the sorted list
containing the elements stored in its subtree.

Remark 4.4: The space used by Algorithm 4.3 can be made O(n) if we are
interested in only the final sorted list. Once iteration 4 is completed, the
nodes at height 4~ — 1 will not be needed; hence, their space can be used to
store the nodes at height A. a

Corollary 4.2: Sorting a sequence of n elements can be done optimally in
O(log n log log n) time.

PRAM Model: The only nontrivial operation used in Algorithm 4.3 is the
O(log log n) time merging procedure of Section 4.2. Hence, this algorithm
requires the CREW PRAM model. Had we used an EREW PRAM merging
procedure, the corresponding sorting algorithm would have been an EREW
PRAM algorithm. O

4.3.2 *AN OPTIMAL O(LOG n) TIME SORTING ALGORITHM

This section is devoted to the derivation of an O(log ) time optimal sorting
algorithm. Actually, we address a slightly more general problem; its solution
will provide us with an O(log n) time optimal sorting algorithm. In addition,
several applications will make use of the general version.

The general formulation is as follows. Let T be a binary tree such that
cach leaf u contains an unsorted list 4(«) drawn from a linearly ordered set.
We consider the problem of determining, for each internal node v, the sorted

list L[v] that contains all the elements stored in the subtree rooted at v. Note
that the initial list 4(u) of a leaf u could be empty.

EXAMPLE 4.5:
Consider the tree T shown in Fig. 4.6(a). The list that should be generated at
the indicated node is given by (=9, —7, —6, 2, 5). O

We start by making a couple of transformations. We replace each leaf
u with a balanced binary tree with |4(«)| leaves such that each element of
A(u) is stored in one of the leaves. The height of T has increased by
O(log(max, |A(u)|)), but each leaf of T now contains at most one element.
The second transformation is to force each internal node to have two
children. If this is not the case, a leaf containing no elements can be inserted.

EXAMPLE 4.6:

Applying the two transformations to the tree T given in Fig. 4.6(a), we obtain
the tree T" shown in Fig. 4.6(b). O

Therefore, we assume for the remainder of this section that T is a binary
tree such that at most one element is stored in a leaf node and every internal
node has exactly two children.

Pipelined Merge-Sort Algorithm. We introduced in Section 4.2 the notion
of a c-cover, and the integer array rank(A4 : B) corresponding to ranking a
sorted list 4 in a sorted list B. Before proceeding, we need to make the
following additional definition.

Given a sorted list L, the c-sample of L, denoted by sample. (L), is
the sorted sublist of L consisting of every cth element of L; that is, if L =
(1,12, ... ), thensample. (L) = (I, 12, ... ).

EXAMPLE 4.7:

LetL = (4,7,8,9,11, 15, 38). Then samples (L) is given by samples (L) =
(8, 15). O

The parallel merge-sort strategy presented earlier is based on a forward
traversal of the binary tree such that, for all vertices at a given height A, the
lists L[v] are completely determined before processing of the nodes at height
h + 1 begins.

The pipelined (or cascading) divide-and-conquer strategy consists of
determining L[v] over a number of stages such that, at stage s, L[v] is an
approximation of L[v] that will be improved at the next stage s + 1. At the
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FIGURE 4.6
The tree for Examples 4.5 and 4.6 (@ An i
j 4. 6. N input tree for the general sortin
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a list by a balanced binary tree, and § i
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same ti‘me, a sample of ‘L,[v] is propagated upward to be used for obtaining
approximations of the lists to be generated at higher heights. The success of

this method is due to the intricate combinati ipelini
_ mbination of pipelining a i
merging of sample lists. i T

We now describe the procedure for determining L;[v] precisely; later,
we provide a correctness proof and an analysis of the resources required.

Let Lo[v] = @ if v is an internal node; otherwise, L[v] consists of the
item (if any) stored at the leaf v. Let the altitude of a node v be defined as
alt(v) = h(T) — level(v), where h(T) is the height of T, and, as usual, level(v)
is the length of the path from the root tov. The list stored at an internal node
v will be updated over the stages s satisfying alt(v) < s < 3alt(v).

We say that v is active during stage s if alt(v) < s < 3alt(v). The
algorithm will update the list L;[v] such that node v will be full —that is,
Lg[v] = L[v]—when s = 3alt(v). It is clear that, if this invariant can be
maintained, then, after 34(T) stages, the node at the root will be full, and all
the nodes will contain their sorted lists.

An additional notation is needed before a description of the algorithm
is given. Define Sample(L¢[x]) for an arbitrary node x as follows.

sampley (L[x]) if s < 3alt(x);
Sample(L[x]) = | samples (L[x]) if s = 3alt(x) + 1;
sample| (Ls[x]) if s = 3alt(x) + 2.

Therefore, Sample(L[x]) is the sublist consisting of every fourth ele-
ment of L[x] until it becomes full; then Sample(L[x]) is every other element
in the following stage (that is, stage 3alt(x) + 1), and every element in stage
3alt(x) + 2.

We next give a description of a general stage of the pipelined merge-
sort algorithm that maintains the stated invariant. That is, for each node v,
L¢[v] will be full when s = 3alt(v).

ALGORITHM 4.4

(Pipelined Merge Sort)

Input: For each node v of a binary tree, a sorted list L[v] such that

v is full whenever s = 3alt(v).

Output: For each node v, a sorted list L |[v] such that v is full

whenever s = 3alt(v) — 1.

Algorithm for (s + 1) at stage:

begin

for all active nodes v pardo

1. Letu and w be the children of v. Set L; + 1[u] = Sample(Lg[u])
and L [w] = Sample(L[w]).
2. Merge the two lists L; . |[u] and L; ; 1[w] into the sorted list
'z s+1 [V]

end



EXAMPLE 4.8:

Let T'be the binary tree shown in Fig. 4.7(a). The lists corresponding to a set
of selected stages are shown in the table of Fig. 4.7(b). Note that, initially, no
changes occur until stage s = 3. At the end of stage s = 3, all the nodes of
altitude 1 (nodes vs and v, in this case) become full. Consider, for example,
node vs. Since alt(vs) = 1,vs is active during stage s = 3. In this case, L3[v1] =
sampley (L2[v1}) = (7), and similarly L3[v,] = (8). Hence, L3[vs] = (7, 8).
During this stage, we also obtain L3[vs] = (1, 6).

The lists generated at several later stages are shown in the figure. Notice
that, at the end of stage s = 6, the nodes at altitude 2 become full; at the end
of stage s = 9, the nodes at altitude 3 become full. The root v, is active for
all stages s, 5 < s < 15. However, L;[v2;] remains empty until stage s = 13
since, at each of the previous stages, the lists of the children nodes v19 and vag
contain less than four elements. At the end of stage s = 12, nodes v9 and vy
become full and each contain at least four elements. Hence, at stages = 13,
Li[va1] = (5, 15), which results from the merging of sample4(L[v19]) and
sample4(L[vyo]). At the end of stage s = 15, L 5[v21] consists of the sorted list
of all the items stored in the tree. O

We are ready to show that Algorithm 4.4 works correctly.

Lemma 4.4: Let v be an arbitrary node of the binary tree T. Then, at the end
of stage s = 3alt(v) of Algorithm 4.4, v becomes full; that is, Ly[v] = L[v].

FIGURE 4.7
The tree for Example 4.8. (a) A binary tree.
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(b) The lists arising during the execution of the indicated stages of the pipelined merge-sort algorithm.

FIGURE 4.7 (continued)




Proof: The proof is by induction on alt(v). The claim is obviously true for
all nodes satisfying alt(v) = 0, since they all are leaves satisfying initially
Lo[v] = L[v].

Letvbe anode withalt(v) = k > 0. Ifvisa leaf, then Ly[v] = L[v], and
there is nothing to prove. Assume that v is an internal node with children u
and w. Clearly, alt(u) = alt(w) = k — 1. By the induction hypothesis, « and
w will become full at stage s’ such that s' = 3(k — 1). During stage s’ + 1,
Sample(L [u]) and Sample(Ls[w]) will be merged to form Ly 1 [v]. But
Sample(Ls[u]) = sample, (Ls'[u]) = samples (L[u]), and similarly for w.
During stage s’ + 2, Sample(L .., [u]) will consist of every other element of
L[u]; during stage s’ + 3, Sample(Ly +3[u]) = L[u]. Similar arguments hold
for node w. Hence, at stages’ + 3 = 3k = 3alt(v), Ly +3[v] = L[v], and the
lemma follows by induction. O

The following lemma states that the size of each list can grow at most by
roughly a factor of 2 after each stage. The proof is a simple induction on s and
is left to the reader in Exercise 4.22.

Lemma 4.5: Let v be an arbitrary node of Tandlets = 1. Then, |L,. iv]l <
2|Ls[v]| + 4. O

Remark4.5: For agiven stage s, the total number of elements stored in all the
active nodes of T'is givenby n; = 3, ... o)l = Z i sanonss [Ls[v]].
Note that, if a node v is full, where alt(v) = 1s/3, , none of its ancestors can
be full. Thus, 3 4= w4y [Ls[v]| < n, where n is the number of leaves in T.

Consider the active nodes at the level just above the level of these full nodes.
There can be at most n/2 elements stored in these nodes, and at most n/4
elements stored at the level above them, and so on. Therefore, n, = O). O

Implementation Detail and Analysis. The only essential details left are to
show how to perform step 2 of Algorithm 4.4 in O(1) time, using O(n;) =
O(n) operations.

We have already seen (Lemma 4.3) that the merging of two sorted lists
A and B can be done optimally in O(1) time if we are given a c-cover X for 4
and B and if rank(X : A) and rank(X : B) are also given as a part of the input.
Guided by this observation, we next show that, for each node v, the list Liv]isa
4-cover for L 1[u] and for L+ 1[w], where u and w are the children of v. We
later show how the two arrays rank(Lg[v]: L+ [u]) and rank(Ls[v]:L; 4 [w])
can be generated efficiently.

Covers for the Lists to be Merged. We start by establishing the fact that
Sample(Ls—1[v]) = L;[v]is a 4-cover of Sample(Ls[v]) = Ly [v].

Y

Lemma 4.6: Let v be an arbitrary node of T and let s = 1. Then, L [v] is a
4-cover of L{ ¢ 1[v].

Proof: We prove aslightly stronger result. Let [a, b] be an interval w.ith a, be
(= o,Lg[v], + «). We say that [a, b] intersects (— o, L{[v], + %) in k items
(or that there are k items in common) if the number of cle_ments_x E(—o>,
Lg[v], + =) such that e < x < b is equal to k. We use induction on s to

establish the following claim.

Claim: If [a, b] intersects (— o, L{[v], + ®) in k = 2 items, then [a, b]
intersects L{ {[v] in at most 2k items.

Proof of the Claim: The base case s = 1 is trivial, since no list has more than
one element, and hence both L{[v] and L; ,[v] are empty. :

Assume that the induction hypothesis holds up to stage s — 1; that is, for
any stage t < s, we know that any interval [a’, b'] wit}_l a,b' € (—w, ;;[v],
+ o) intersects L/ {[v] in at most 24 items, where / is the number of items
common between [a’, b'] and (— =, L/[v], + «). We show that the claim
holds for stage s.

Let [a, b] be an interval with a, b € (— o, Lg[v], + =) such that the
number of common items is k. Assume thats < 3alt(v). The case w‘here 5=
3alt(v) + 1 is straightforward, since L;_[v] = f‘.s[v] = L[v]. Since s =
3alt(v), L{[v] = sample4 (L _1[v]), and hence [a, b] intersects ( — o, L;_q[v],
+ o) in 4k — 3 items.

Recall that we obtained L,_[v] by merging L;_[u] and L/_ 1[w],
where u and w are the children of v. Hence, the items belonging to [a, b]_an_d
L;_1[v] must have come from the set L _[u] U L§__|[w], where t':a_ch list is
viewed as a set of elements. Let [a1, b1 ] be the smallest interval containing [a,b]
such thatay, by € (=, L{_[u], + «). Similarly define [a, bg] such that
az,by € (—»,L;{_1[w], + »). Let p be the number of elements in common
between [ay, b1] and (— ®, L{_;[u], + =). Similarly, define ¢ to be the
number of items in common between [a;, by] and (— o, L;_[w], + =).
Since we are assuming that all the elements are distinct, we obtain thatp + g <
4k — 1 (= (4 — 3) + 2, since two additional elements from {a, by, a3, b}
are included). oo,

By the induction hypothesis, [a;, b1] intersects Lg[u] in at most 2p
elements, and [a3, b, ] intersects L{[w] in at most 2g elements.(see Flg..4.8 for
a pictorial representation of the relationships among the dlfrferem IlSI? in-
volved). Now L[v] is just the list obtained after merging of L;[u] and Ls_[w].
Hence, [a, b] intersects L[v] in at most 2p + 2q < 8k — Zic]emc_nts. Since
Ls+1[v] = sampley (Ls[v]), we obtain that [, b] intersects L; , ;[v] in at most
2k items, and the claim follows.



Merge
‘-—Eﬁ- - -—h-
S—llu]_ . o.l . 5 & ) (s s s t. . . . l[“J
Induction \ / \ Induction
& [u] =(s@ s =+ o )( e “1’]
-— 22— -d— 2q
Merge
L_‘ lv] = ( . . @ o . . . . « @ . - )
e P ) Y e gy
FIGURE 4.8

lllustration of the inductive proof of the fact that, if [a, b] intersects Lz[v] in k
elements, then [a, b] intersects Ls[v] in at most 2p + 2g < 8k — 2 elements.
This result implies that [a, b] intersects Lg1[v] in at most 2k items.

We now complete the proof of the lemma. Let a, b € (— =, L;[v],
+ =), such that @ and b are adjacent. Hence, [a, b] intersects (— %, L;[v],
+ =) in exactly two items. As shown in the claim, [a, b] intersects L4 1[v] in
at most four elements; hence, L;[v] is a 4-cover of L{ , {[v]. O

Corollary 4.3: For each internal node v of T, and for each stage s = alt(v),
Lg[v] is a 4-cover of L{1[u] and L, 1[w], where u and w are the children of v.

Proof: Leta andbbe two adjacent elements of (— o, Lg[v], + = ). Recall that
we obtain Lg[v] by merging L[u] and L;[w]. Let [a’, b’'] be the smallest
interval containing @ and b such thata’, b’ € (— , L{[u], + »). Clearly, a
and b’ are adjacent in (— %, L{[u], + ). Hence, by Lemma 4.6, there are at

most four elements in L4 1[u] between a’ and b’. This result implies that
there are at most four elementsin L, i [u] between a and b, which proves that
Ls[v] is a 4-cover for L, q[u].

We can establish in a similar fashion that L,[v] is a 4-cover of L{ 4 1[w]. [J

Efficient Merging of the Samples. The next lemma shows how to maintain
efficiently certain rank information, which will be used to perform the merg-
ing operations fast.

Lemma 4.7: Lets = 2 be a given stage number of Algorithm 4.4. Suppose that,
for every internal node v of T and its two children u and w, we are given the
Sollowing information:

1. rank(Lg[v]:Lg11[v])

2. rank(Lg[u] : L{[w])

3. rank(Lgs[w] : Lg[u])
Then, |Ls+1[w]|) operations, we can compute the
following information in O(1) time:

1. rank(L{41[v] : LL+o[v])

2. rank(Lgyq[u] : Liv1[w])

3. rank(Lj1[w] : Li+1[u])

Proof: We first show how to obtain rank(L; ;1[u]: L +[w]) within the stated
bounds. Actually, the proof follows from Remark 4.3; for clarity, however, we
provide the proof here.

Consider the array rank(Lg[u] : L+ 1[u]), which is given as a part of the
input whenever u is an internal node. Since L;[u] is a 4-cover of L], 1[u], by
Lemma 4.6, the number of elements in L, ; | [u] between any two consecutive
elements of (— «, Ls[u], + ) is at most 4. Let S; be the segment of L; ; 1 [u]
consisting of all the elements between the ith and the (i + 1)st elements—say,
p andg—of L[u]. Clearly, |S;| < 4. We also know the ranks of p and q in L;[w],
since the array rank(Lg[u] : L{[w]) is given as a part of the input. Let us denote
rank(p : L;[w]) by s, and rank(q : L;[w]) by s,. Therefore, the elements of S;
are known to lie in the segment S/ of L;[w] determined by the indices s, and
53 (see Fig. 4.9 for an illustration).

The problem of generating rank(L; ;1 [u] : L;[w]) reduces to determin-
ing the relative ranks of each element of §; in the corresponding block S;.
Since [S;| = 4, however, we can use the parallel-search procedure (Algo-
rithm 4.1) to determine the ranks of all the elements of S; in §;. Such
computation takes O(1) time, using O(|S; |) operations. Since, fori = j, §! and
S/ do not overlap, the array rank(L;+1[u] : L;[w]) can be obtained in O(1)
time, using O(|L;+1[u]| + |L;[w]|) operations.
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FIGURE 4.9

lllustration of how to compute rank(Ls + 1[u] : Lg[w]). Note that Lg[u] is a
4-cover of L§ . 1[u], and that the array rank(Ls[u] : Ls[w]) is given as part of the
input. The elements p and g are the ith and the (i + 1)st elements of Lg[u].

We can easily determine the array rank(Lg+1[u] : Lg+1[w]) by using
rank(L![w]: L;+1[w]) and the fact that L{[w] is a 4-cover of L; 4 1[w]. We can
obtain the array rank(L;+1[w] : Ls+1[u]) in a similar fashion.

We now consider the problem of determining rank(L;  1[v] : Ls+2[v])-
Recall that L, {[v] is just a sample of L,[v], and that L[v] is obtained by
merging of L[u] and Lg[w].

Letp be any element of L ;[u]. We know the rank of p in L;[u], of course.
We also know the rank of p in Lj[w], since we are given the array rank(L;[u] :
L![w]). Since rank(p : L;[v]) = rank(p : L{[u]) + rank(p : L;[w]), we know,
for eachp € L;[u], the latter’s location in the array L ;[v]. Moreover, since the
array rank(L[u] : L;+1[u]) is also given, we know rank(p : Lg+1[u]).

We can also obtain rank(p : L; 1[w]) as follows. Suppose that rank(p :
L{[w]) = r1. Then, p is between elements e and f at positions r; and ry + 1,
respectively, of L{[w]. Since rank(L[w] : L;+1[w]) is known, we can deter-
mine in O(1) sequential time the boundaries of the segment S, of L+ 1 [w] of
all elements between e and f (see Fig. 4.10 for an illustration). Using the fact
that L{[w] is a 4-cover of Ly, 1[w], we conclude that | S, | = 4. Therefore, we
can determine in O(1) sequential time rank(p : L 1[w]).

Since rank(p : Ls+1[v]) = rank(p : L{+1[u]) + rank(p : Li41[w]), the
rank of p in L;41[v] can be determined in O(1) sequential time. However,
since L, »[v] is a sample of L ; 1[v], we can obtain the rank of p in L+ 2[v] in
O(1) sequential time.
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FIGURE 4.10

Determination of rank(p : Ls . 2[v]) in three steps: (1) determine

rank(p : Ls+1[wl]) using rank(p : Lg[w]), which identifies e and f, followed

by ranking p in Sp; (2) determine rank(p : Ls41([v]); and (3) use the fact that
Ls i 2[v] is a sample of Lg 1[v] to deduce rank(p : L. 2[v]).

We can perform the same procedure for all the elements in L{[w].
Therefore, we can determine rank(L[v] : L{12[v]) in O(1) time, using a linear
number of operations. Once this value is determined, generating the array
rank(L;+1[v] : Ls+2[v]) can be done easily in O(1) time, using O(|L;+1[v]])
operations. |

Corollary 4.4: Under the hypothesis of Lemma 4.7, we can determine rank(L[v] :
Li+1[u]) and rank(Ls[v] : L;+[w]) in O(1) time using a linear number of
operations.
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Proof: For each p € L;[u], we know rank(p : L{[w]) and rank(p : Ly +1[u])
from the given input (as listed in Lemma 4.7). Hence, we can trivially obtain
rank(p : Li[v]) and rank(p : L;1[u]) for eachp € L;[u].

On the other hand, for each g € L;[w], we can deduce rank(q : Lg[v])
and rank(q : L{+1[u]) in O(1) sequential time by using rank(Ls[w] : Ls[u]),
rank(L{[u] : Li+1[u]), and the fact that L¢[u] is a 4-cover of Ly +1[u]. Hence,
we can determine in O(1) sequential time the rank of each element of L;[v]
in L}, 1[u). We can in a similar fashion determine rank(L;[v] : Lg+1[w]). O

The algorithm to compute L, [v], for an arbitrary active node v with
children u and w, can be summarized as follows.
’ As a part of the input to stage s + 1, we are given the following rank
information: (1) rank(Lg[u] : Li+1[ul]), (2) rank(Ls[w] : Ls+1[w]), (3)
rank(Lg[u] : L{[w]), and (4) rank(L¢[w] : Lg[u]). The main steps are these:

1. Compute rank(L,[v]: L;+1[u]) and rank(L,[v] : L§+1[w]) (Corollary 4.4).

2. Merge L;41[u] and L;,[w] using Ls[v] as a 4-cover for both lists
(Lemma 4.3). The resulting list is Ly 1[v].

3. Update the necessary input information for stage s + 2 (Lemma 4.7).

Putting the Pieces Together. Combining all the facts shown in this section,
we obtain the following theorem.

Theorem 4.4: Let T be a given binary tree such that each leaf v contains a list
A(v). Let h(T) be the height of T, and let m = max, |A(v)|. Then, the pipelined
merge-sort algorithm (Algorithm 4.4) generates, for each node v of T, a sorted
list L[v] containing all the items stored in the subtree rooted at v. The overall
algorithm runs in O(h(T) + log m) time, using a total of O((n1 + n2)(A(T) +
log m)) operations, where ni is the number of nodes in T and n; is the total
number of items in T.

Proof: The tree T' that we obtain from T by replacing each list A(v) with a
balanced binary tree with |A(v)| leaves is of height less than or equal to A(7T) +
log m and has no more than n; + n; leaves.

The pipelined merge-sort algorithm applied to 7’ consists of at most
3(h(T) + log m) stages; each stage can be performed in O(1) time, using
O(n + ny) operations (recall Remark 4.5, which states that the number of
elements in all the active nodes of any stage is asymptotically the same as the
number of leaves). Therefore, the running time is O(h(T) + log m), and the
number of operations is O((n1 + n2)(h(T) + logm)). O

Corollary 4.5: Sorting n elements can be done in O(log n) time, using a total
of O(n log n) operations. O

PRAM Model: Concurrent read is used in the procedures outlined in
Lemma 4.7. Hence, Algorithm 4.4 runs on the CREW PRAM model. This
algorithm can be modified to run on the EREW PRAM, but the details
required are nontrivial. O

Remark4.6: It is easy to check that, after an arbitrary stage s of the pipelined
merge-sort algorithm, we can obtain rank(L s[u] : Lg[v]), for anode v and a
child u, without any asymptotic increase in the resources used. Therefore, we
can assume that, at the end of the algorithm, the array rank(L[u] : L[v]) is
available. In addition, the lists generated at any sibling pair are cross-ranked.
These facts will be used in Chapter 6 to derive optimal algorithms for several
problems in computational geometry. O

4.4 Sorting Networks

The importance of sorting has stimulated a considerable amount of research
in the development of special-purpose hardware for sorting. The comparator-
network model for handling comparison problems is especially well suited for
hardware implementation and has a rich theory. In this section, we shall intro-
duce the classical bitonic sorting network, and outline several of its properties.

A comparator network is made up of comparators, where a comparator
is a module whose two inputs are x and y and whose two ordered outputs are
min{x, y} and max{x, y}. A possible representation of a comparator is shown in
Fig. 4.11(a). Note that the direction of the arrow used in this representation
is significant.

An example of a comparator network that sorts is shown in Fig. 4.11(b).
In this example, the input items are x1, X2, X3, x4, and the output itemsy,¥2,
y3,y4 correspond to the sorted sequence.

The size of a comparator network is the number of comparators used in
the network; the depth is the length of the longest path from an input to an
output. The sorting network shown in Fig. 4.11(b) is of size 5 and depth 3.

Our main goal in this section is to design comparator networks that sort
in small depth and that have a small size. Given a comparator network that
sorts, we can easily derive a parallel algorithm whose running time is asymp-
totically the same as the depth of the network, and whose total number of
operations is asymptotically the same as the size of the network.



