Principles of Distributed Computing
Roger Wattenhofer

6 Routing Strikes Back

6.1 Butterfly

Let’s first assume that all the sources are on I8yelll destinations are on levélof a d-dimensional
butterfly.

Algorithm 6.1 (Greedy Butterfly Routing) The unique path from a source on levetio a desti-
nation on leveld with d hops is the greedy path. In the greedy butterfly routing atgor each
packet is constrained to follow its greedy path.

Remark:

¢ In the bit-reversal permutation routing problem, the awdton of a packet is the bit-reversed
address of the source. With= 3 you can see that both sour@0, 0) and sourcg001, 0) route
through edg€000, 1..2). Will the contention grow with higher dimension? Yes! Choaseodd
d, then all the source® . .. 0b(+1y/2 - - - ba—1, 0) will route through edge00..0, (d —1)/2...(d +

1)/2). You can choose the bits arbitrarily. There ar@(**!)/* bit combinations, which ig/n /2
for n = 27 sources.

e On the good side, this contention is also a guaranteed timadyaas the following theorem
shows.

Theorem 6.2 (Analysis) The greedy butterfly algorithm terminates(/n) steps.

Proof. For simplicity we assume thatis odd. An edge on levél(from a node on level to a node

on levell + 1) has at mos?’ sources, and at mogt—'~! destinations. Therefore the number of paths
through an edge on levels bounded by, = 2@i*(4=1=1) A packet can therefore be delayed at most
n; — 1 times on level. Summing up over all levels, a packet is delayed at most

d-1 (d-1)/2 d—1 (d—1)/2 (d—3)/2
Yo=Y m+ Y, om=), 2! + > 2l < 3.21-V2 = O(y/n).
1=0 1=0 1=(d+1)/2 1=0 1=0
steps. M

Remarks:
e The bit-reversed routing is therefore asymptotically astxaase example.

e However, one that requires square-root queues. When benitgdi to constant queue sizes the
greedy algorithm can be forced to usén) steps for some permutations.

e A routing problem where all the sources are on lévahd all the destinations are on levkis
called an end-to-end routing problem. Surprisingly, saivan arbitrary routing problem on a
butterfly (or any hypercubic network) is often not harder.

1

¢ Inthe next section we show that there is general squardewet bound for “greedy” algorithms
for any constant-degree graph. (In other words, our optgnaédy mesh routing algorithm of
Chapter 4 was only possible because the mesh has such a badetiain

6.2 Oblivious Routing

Definition 6.3 (Oblivious) A routing algorithm is oblivious if the path taken by each ketadepends
only on source and destination of the packet (and not on gilekets, or the congestion encountered).

Theorem 6.4 (Lower Bound) Let G be a graph withn nodes and (maximum) degréelLet A be
any oblivious routing algorithm. Then there is a one-to-ométing problem for which4 will need
at least,/n/2d steps.

Proof. SinceA is oblivious, the path from node to nodev is P, ,; A can be specified by? paths.
We must findk one-to-one paths that all use the same edgehen we can proof that takes at least
k/2 steps.

Let's look at then — 1 paths to destination node For any integek: let Si.(v) be the set of edges
in G wherek or more of these paths pass through them. Alsd5jét) be the nodes incident 8. (v).
Since there are two nodes incident to each ddgév)| < 2|S(v)|. In the following we assume that
k < (n—1)/d;thenv € S;(v), henceS;(v)| > 0.

We have

n—[Sp(w)| < (k= 1)(d = 1)[Sk(v)|

because every nodenot in S;(v) is a start of a patl®, , that entersS; (v) from outside. In particular,
for any nodeu ¢ S;(v) there is an edgéw, w’) in P,, that entersS;(v). Since the edgéw,w’) ¢
Sk(v), there are at mogk — 1) starting nodes for edge(w, w’). Also there are at most/ — 1) edges
adjacent tav’ that are not inSy.(v). We get

n < (k=1)(d=1D[Sg)[+ S (0)] < 2[1+ (k = 1)(d = D][Sk(v)| < 2kd|Sk(v)]

Thus,|Sk(v)| > 515 We setk = \/n/d, and sum over alk nodes:

Since there are at most//2 edges in, this means that there is an edgir at least

n3/2/2

nd/2 = Vn/d=k

different values ob.
Since edge is in at least different paths in each sé.(v) we can construct a one-to-one permu-
tation problem where edgeis used,/n/d times (directed:/n/2d contention). M

Remarks:

e In fact, as many a6,/n/d)! one-to-one routing problems can be constructed with thihatk

2

e The proof can be extended to the case where the one-to-otiegpuoblem consists aR route
requests. The lower bound is thei;).

e There is a node that needs to rotg /n/d) packets.

e The lower bound can be extended to randomized obliviousrigthgas... however, if we are
allowed to use randomization, the lower bound gets much areéik fact, one can use Valiant’'s
trick also in the butterfly: In a first phase, we route each ptok the greedy path to a random
destination on level, in the second phase on the same row back to [&vahd in a third phase
on the greedy path to the destination. This way we can estepbad one-to-one problems
with high probability. (There are much more good one-to-preblems than bad one-to-one
problems.) One can show that with this trick one can routeargtto-one end-to-end routing
problem in asymptotically optimaD(log n) time (with high probability).

¢ If a randomized algorithm fails (takes too long), simplyreerit. It will be likely to succeed
then. On the other hand, if a deterministic algorithm failsome rare instance, re-running it
will not help!

6.3 Offline Routing

There are a variety of other aspects in routing. In this sactve study one of them to gain further
insights.

Definition 6.5 (Offline Routing) We are given a routing problem (graph and set of routing restisie
An offline routing algorithm is a (not distributed) algoriththat sees the whole input (the routing
problem).

Remarks:

e Offline routing is worth being studied because the same camuation pattern might appear
whenever you run your (important!) (parallel) algorithm.

¢ In offline routing, path selection and scheduling can beistuoshdependently.

Definition 6.6 (Path Selection)We are given a routing problem (a graph and a set of routing re-
quests). A path selection algorithm selects a path (a rdotedach request.

Remarks:

e Path selection is efficient if the paths are “short” and dointgrfere if they do not need to.
Formally, this can be defined by congestion and dilation (staw).

e For some routing problems, path selection is easy. If thplgia a tree, for example, the best
path between two nodes is the direct path. (Every route fremuace to a destination includes
at least all the links of the shortest path.)

Definition 6.7 (Dilation, Congestion) The dilation of a path selection is the length of a maximum
path. The contention of an edge is the number of paths thathesedge. The congestion of a path
selection is the load of a most contended edge.

3

Remarks:
e A path selection should minimize congestion and dilation.

e Networking researchers have defined the “flow number” whgldefined as the minimum
max(congestion, dilation) over all possible path selections.

¢ Alternatively, congestion can be defined with directed sgdgenodes.

Definition 6.8 (Scheduling) We are given a set of source-destination paths. A schedalgayithm
specifies which messages traverse which link at which time fetepr(appropriate model).

Remark: The most popular model is store-and-forward (witlalsgqueues). Other popular models
have no queues at all: e.g. hot-potato routing or directimgugwhere the source might delay the
injection of a packet; once a packet is injected howeverilitge to the destination without stop.)

Lemma 6.9 (Lower Bound) Scheduling takes at leaSt(C' + D) steps, wher&' is the congestion
and D is the dilation.

Remark: We aim for algorithms that are competitive with thedobound. (As opposed to algorithms
that finish inO(f(n)) time; C + D andn are generally not comparable.)

Algorithm 6.10 (Direct Tree Routing) We are given a tree, and a set of routing requests. (Since
the graph is a tree each route request will take the direct pttween source and destination; jn
other words, path selection is trivial.) Choose an arbitraoptr. Now sort all packets using th
following order (breaking ties arbitrarily): packetcomes before packeif the path ofp reaches a
node closer to then the path of. Now scan all packets in this order, and for each packet gigedi
assign its injection time to be the first that does not causerdlict with any previous packet.

(1%

Theorem 6.11 (Analysis)Algorithm 6.10 terminates iRC' + D steps.

Proof. A packetp first goes up, then down the tree; thus turning at nedeet e, ande, be the “up”
resp. “down” edge on the path adjacent:itol he injection time of packetis only delayed by packets
that traverse,, or ¢, (if it contends with a packeton another edge, and packdtas not a lower order,
then it contends also om, or ;). Since congestion i€’, there are at mostiC' — 2 many packets.
Thus the algorithm terminates aft&f’ + D steps. r

Remark: [Leighton, Maggs, Rao 1988] have shown that the exdstef aO(C' + D) schedule for
any routing problem (on any graph!) using the Lovasz Locahir&a. Later the result was made more
accessible by [Leighton, Maggs, Richa 1996] and otherd.iS8ltoo hard for this course...

