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5 Basic Network Topologies

(With thanks to Christian Scheideler, Johns Hopkins Unitgrfor a preliminary version of this text.)

In this chapter we will introduce some popular families ofwark topologies. Many of these
topologies are used in classic parallel computers or tel@manication networks, or more recently in
the emerging area of peer-to-peer computing.

The most basic network topologies used in practice are,toyetes, grids and tori. Many other
suggested networks are simply combinations or derivat¥ésese. The advantage of trees is that the
path selection problem is very easy: for every source-adattin pair there is only one possible simple
path. However, since the root of a tree is usually a severdehetk, so-calledat treeshave been
used. These trees have the property that every edge campaatiodey to its parent: has a capacity
that is equal to all leaves of the subtree routed. &ee Figure 1 for an example.
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Figure 1. The structure of a fat tree.

Fat trees belong to a family of networks that require edge®aofuniform capacity to be efficient.
Easier to build are networks with edges of uniform capacitiis is usually the case for grids and
tori. Unless explicitly mentioned, we will treat all edgesthe following to be of capacity 1. In the
following, [x] means the s€i0, 1,..., 2 — 1}.

Definition 5.1 (Torus, Mesh) Let m,d € IN. The (m,d)-meshM (m,d) is a graph with node set
V = [m]¢ and edge set

E— {{(ad_l...ao),(bd_l...bo)} | as,b; € [ml, io la; — by = 1} .

The (m, d)-torusT(m, d) is a graph that consists of afm, d)-mesh and additionally wrap-around
edges fromag_1 ...a;41(m — 1) a;—1...a0) t0 (ag—1...a;41 0 a;—1...qp) forall ¢ € [d] and all
a; € [m] with j # i. M(m,1) is also called aline, T'(m, 1) a cycle, and M (2,d) = T(2,d) a
d-dimensional hypercube
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Figure 2: The structure a¥/(m, 1), T'(4,2), andM (2, 3).

Figure 2 presents a linear array, a torus, and a hypercube.

The hypercube is a very important class of networks, and ndanyatives, the so-callellyper-
cubic networkshave been suggested for it. Among these are the butterthe-cannected-cycles,
shuffle-exchange, and de Bruijn graph. We start with the Biyttevhich is basically a rolled out
hypercube.

Definition 5.2 (Butterfly) Letd € IN. Thed-dimensional butterfly3 F'(d) is a graph with node set
V = [d+ 1] x [2]? and an edge s&f = E, U E, with

B ={{(i,a),(i+1,a)}|ield, ac 2
and

E, = {{(i,a),(i+1,8)}]i€[d], a,3 € [2]%, aandp differ
only at theith positior} .

A node sef{ (i, ) | a € [2]¢} is said to formleveli of the butterfly. The-dimensional wrap-around
butterflyW-BHd) is defined by taking th&8 F'(d) and identifying levefl with level 0.

Figure 3 shows the 3-dimensional butterfiy”(3). The BF(d) has(d + 1)2¢ nodes2d - 2¢ edges
and degree 4. It is not difficult to check that combining theesets{ (i, «) | i € [d]} into a single
node results in the hypercube.
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Figure 3: The structure of BB).

Next we define the cube-connected-cycles network. It onfyadhdegree of 3 and it results from
the hypercube by replacing the corners by cycles.
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Definition 5.3 (Cube-Connected-Cycles) etd € IN. Thecube-connected-cycleetwork CCC{) is
a graph with node set’ = {(a,p) | a € [2]¢,p € [d]} and edge set

E = {{(a,p),(a,(p+1)modd)} | a € [2]*,p € [d]}
U {{(a,p), (b,p)} | a,b € [2]%,p € [d],a = b except forap}

Two possible representations of a CCC can be found in Figure 4.
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Figure 4: The structure of CGQ).

The shuffle-exchange is yet another way of transforming yipeicubic interconnection structure
into a constant degree network.

Definition 5.4 (Shuffle-Exchange)Letd € IN. Thed-dimensional shuffle-exchangd’(d) is defined
as an undirected graph with node dét= [2]? and an edge sef = F; U F, with

FE; = {{(ad_1 .. .CL()), (ad_1 .. .do)} | (ad_l . ..ao) € [Q]d, ag=1— ao}

and
Eg = {{(ad_1 e (1,()), (agad_l ce al)} | (ad_l N a()) € [Q]d} .

Figure 5 shows the 3- and 4-dimensional shuffle-exchangghgra

Definition 5.5 (DeBruijn) Theb-ary DeBruijn graph of dimensioth D B(b, d) is an undirected graph
G = (V, E) with node sel/ = {v € [b]?} and edge sef’ that contains all edge$v, w} with the
property thatw € {(z,v4_1,...,v1) : « € [b]}, wherev = (v4_1, ..., v0).

Two examples of a DeBruijn graph can be found in Figure 6.
One important goal in choosing a topology for a network id th&aas a small diameter. The
following theorem presents a lower bound for this.
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Figure 5: The structure of SB) and SE4).
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Figure 6: The structure dDB(2,2) andDB(2, 3).

Theorem 5.6 Every graph of maximum degrée> 2 and sizen must have a diameter of at least
[(logn)/(log(d —1))] — 1.
Proof. Suppose we have a gragh= (V, E') of maximum degred and sizen. Start from any node

v € V. In afirst step at most other nodes can be reached. In two steps at mo&i — 1) additional
nodes can be reached. Thus, in general, in at megtps at most

(@—1)—1 _d-(d=1)}
d—1)—1~ d—2

k—1
1+ d-(d=1)=1+d-
1=0

nodes (including)) can be reached. This has to be at leai ensure that can reach all other nodes
in V within k& steps. Hence,

(d—1)%> (d_dz)'” s k>logy ((d—2)-n/d) .
Sincelog,_,((d — 2)/d) > —2for all d > 2, this is true only ift > |log,_, n| — 1. M



