10 Distributed Dominating Set Approximation

A dominating set of a grapfi = (V, E) is a subsef C V of the nodes such that for all nodes V,
eitherv € S or a neighbot of v is in S. There are many distributed applications where computing a
small dominating set of the network graph is important. It is well-known that computing a dominating
set of minimal size is NP-hard. We therefore look for approximation algorithms, that is, algorithms
which produce solutions which are optimal up to a certain factor.

10.1 Sequential Greedy Algorithm

In order to understand the problem, we start with a very simple sequential algorithm. We start with
S =) and greedily add ‘good’ nodes t® until S is a dominating set. We call nodes $hblack

nodes which are covered (neighbors of nodeS)igrey, and all uncovered nodeghite By w(v), we
denote the number of white nodes among the direct neighbarsinfludingv itself. We callw(v)

the spanof v. The most natural greedy approach works as follows.

Greedy Algorithm:
1. S:=0;
2: while 3 white nodesio
3 v:={v|wl) =max,{wu)}};
4: S :=SUv;
5. od

Theorem 10.1. The Greedy Algorithmcomputes dn A-approximation, that is, for the computed
dominating sefS and an optimal dominating sét*, we have

5]
5] < InA.

Proof. We prove the theorem using amortized analysis. Each time we choose a new node of the
dominating set (each greedy step), we have todhstead of assigning the whole cost to the node
we have chosen, we distribute the cost equally among all newly covered nodes. Assume that node
chosen in line 3 of the algorithm, is white itself and that its white neighborsarg, vs, anduvy. In
this case each of the 5 nodeandu, ..., v4 get charged /5. If v is chosen as a grey node, only the
nodesuvy, . .., v4 get charged (they all get/4).

Now, assume that we know an optimal dominating$etBy the definition of dominating sets, to
each node which is not if*, we can assign a neighbor frofff. By assigning each node to exactly
one node of5*, the graph is decomposed into stars, each having a dominator (néd¢ &s center
and non-dominators as leaves. Clearly, the cost of an optimal dominatind et sach such star. In
the following, we show that the amortized cost (distributed costs) of the greedy algorithm is at most
(H(A) =~ In A) for each star. This suffices to prove the theorem.

Thus, we now look at a single star with centee S*. Letw(v) be the number of white nodes in
the star ofv. If some nodes in the star ofbecome gray, they get charged some cost. By the greedy
condition of the algorithm, this weight can be at mbgtv(v) per newly covered node. Otherwise,
the algorithm could rather have chosefor the dominating set becausavould cover at leasi(v)
nodes. After becoming grey, nodes do not get charged any more. In the worst case, no two nodes in
the star ofv are covered together. In this case, the first nodes gets charged at/ffidst) + 1), the

second node gets charged at mo&t(v), and so on. Thus, the total amortized cost of a star is at most

1 1 1 1
R < _
d(v)+1 +5(U) + + 5 + 1 H(6(v)+1) <HA4+1)=In(A)+0O(1)
whereA denotes the maximal degree of gragh -

Remarks:

¢ One can show that unle$éP C DTIME(nC(oglogn)) no polynomial-time algorithm can
approximate the minimum dominating set problem better thah — o(In A). Thus, unless
P ~ NP, the simple greedy algorithm is optimal.

10.2 Distributed Greedy Algorithm

Observation: The span of a node can only be reduced if any of the nodes at distance & anest
included in the dominating set. Therefore, if the span of nodegreater than the span of any other
node at distance at maafrom v, the greedy algorithm choosedefore any of the nodes at distance
at most2. This leads to a very simple distributed version of the greedy algorithm. Everywmnode
executes the following algorithm.

Distributed Greedy Algorithm:

1: while v has white neighbordo
2: compute spamw(v);
sendw(v) to nodes at distance at mast
if w(v) largest within distance (ties are broken by unique IDf)en
join dominating set
fi
od

No gaRow

Theorem 10.2. TheDistributed Greedy Algorithncomputes dn A-approximation for the minimum
dominating set problem i®(n) rounds.

Proof. The approximation quality follows directly from the above observation and the analysis of the
greedy algorithm The time complexity is at most linear because in every other round, at least one
node is added to the dominating set. O

The approximation ratio of the above distributed algorithm is optimal. However, the time com-
plexity is very bad. In fact, there are graphs on which in each iteration of the while loop, only one
node is added to the dominating set. As an example, consider a graph as in Figure 1. An optimal
dominating set consists of all nodes on the center axis. di$tebuted greedy algorithnraomputes
an optimal dominating set, however, the nodes are chosen sequentially from left to right. Hence, the
running time of the algorithm iQ(y/n).

The problem of the graph of Figure 1 is that there is a long path of descending degrees (spans).
Every node has to wait for the neighbor to the left. Therefore, we want to change the algorithm in
such a way that there are no long paths of descending spans. Allowing for an additiona! fadtor
approximation ratio, we can round all spans to the next powerawfd let the greedy algorithm take
a node with a maximal rounded span. In this case, a path of strictly descending rounded spans has at
most lengthog n. For the distributed version, this means that nodes whose rounded span in maximal

2

SEEAAN

Figure 1: Distributed greedy algorithm: Bad example

within distance2 are added to the dominating set. Ties are again broken by unique node IDs. If node
IDs are chosen at random, the time complexity for the graph of Figure 1 is reduce®frgim) to
O(logn).

o

e

Figure 2: Bad example for distributed greedy with rounded spans

Unfortunately, there still is a problem remaining. To see this, we consider Figure 2. The graph
of Figure 2 consists of a clique with/3 nodes and two leaves per node of the clique. In an optimal
dominating set, there are all the/3 nodes of the clique. Because they all have distdnitem each
other, the described distributed algorithm only selects one in each while iteration (the one with the
largest ID). Note that as soon as one of the nodes is in the dominating set, the span of all remaining
nodes of the clique i8. They do not have common neighbors and therefore there is no reason not
to choose all of them in parallel. However, the time complexity of the simple algorithgi$. In
order to improve this example, we need an algorithm which also chooses nodes based on the number
of common white neighbors and not only based on having a large enough ID. This is accomplished
by the following probabilistic algorithm which is described in [JRS01].

Fast Distributed Dominating Set Algorithm:

1. Nodev is a candidate for joining the dominating set if its spaf) rounded to the next power
of 2 is maximal within distance.

2. Each white node computes its suppost«), which is the number of candidates that cover

3. For a candidate, letm(v) be the median support of all white neighbargoins the dominating
set with probabilityl /m(v).

The above three steps are carried out until all nodes are covered. In [JRS01], the following theorem
is proven.

Theorem 10.3.[JRS01] Thefast distributed dominating set algorithtcomputes a dominating set of
expected siz®(log A) in time O(log n log A) w.h.p.

Remarks:

e Taking the average support instead of the median support in step 3, gives an algorithm with
approximation ratio and time complexi€y(log n log A).

e Based on different techniques (LP relaxation), there is another fast distributed dominating
set algorithm with approximation rati@(Al/\/Elog A) and time complexityO (k) [KWO3,
KMWO05]. Choosingk = O(log? A), the approximation ratio i€ (log A).

e Itis not known whether there is a local (fast) good deterministic approximation algorithm. This
is an interesting and important open problem.

10.3 Simple One Round Lower Bound

In the second part of this chapter, we try to give lower bounds for the distributed approximation of
dominating sets. To start, we show that in a single communication round, dominating set cannot be
approximated better than by a factdfv/A) where A is the maximum degree of the graph. We
assume that initially, all nodes know the identity of all their neighbors. They do not know anything
else about the topology of the network graph. In one communication round, each node can inform all
adjacent nodes about its neighborhood. Therefore, after one round, each node knows the graph up to
distance two. It does not know, however, how nodes at distance two are interconnected to each other.

Figure 3: Simple lower bound graphs for one-round algorithms

Theorem 10.4.1n one communication round (as described above), minimum dominating set cannot
be approximated better than(v/A).

Proof. To prove this theorem, we have a look at the two graphs of Figure 3. In the left graph, an
optimal dominating set consists of the nodes at the top and the bottom node, that is, it contains
m + 1 nodes. In the right graph, we have a minimum dominating set consisting of ondyrtbées

which are marked by a dashed circle. As indicated in the figure, after only one communication round,
all the nodes on the third level from the top have the same view. They all/havel neighbors,

m of which have degre@ and one has degree Because all these nodes see the same topology,
the probabilityp that they go to the dominating set is equal for all of them. In the left graph, we
haven such nodes, resulting in a dominating set of expected size atjeast the right graph, not
choosing the bottom node forces us to choesef the nodes of the top right part in order to get a
valid dominating set. Therefore, in expectation, there are at (@astp)m nodes in the dominating

set. For the approximation ratio, we then get

max P G=pmlo [o (d=plvr]
m+1 3 (m=y/n) vVn+1 3

Hence, if we setn = /n, independent of the choice pfthe approximation ratio is at leadf/n) =
Q(VA). O

10.4 Vertex Cover Lower Bound

Extending the proof of the last section to more communication rounds turns out to be very difficult.
Looking at a simpler but related problem, it is however possible. Instead of minimum dominating set
we are now considering the minimum vertex cover problem. A vertex cover is a set of ficies
that for each edge, at least one of the end points.s ifhat is, instead of covering nodes with nodes,
we cover edges with nodes.

The basic idea is to construct a grapgh = (V, E), for each positive integet, which contains
a bipartite subgrapl§’ with node setC, U C and edges iy x C; as shown in Figure 4. Sét,
consists ofng nodes each of which hag neighbors inC'y. Each of theng - g—? nodes inC; hasdy,
41 > dg, neighbors inCy. The goal is to construe¥,, in such a way that all nodes ine S see the
same topology within distande In a globally optimal solution, all edges 6fmay be covered by
nodes inC; and hence, no node ifly needs to join the vertex cover. In a local algorithm, however,
the decision of whether or not a node joins the vertex cover depends only on its local view. We show
that because adjacent nodesSisee the same topology, every algorithm adds a large portion of nodes
in Cy to its vertex cover in order to end up with a valid solution.

10.4.1 The Cluster Tree

Level 3

Level 2

Figure 4: Cluster-Tre€'Ts.

The nodes of graptr, = (V, E) can be grouped into disjoint sets which are linked to each other
as bipartite graphs. We call these disjoint sets of natlesters

We define the structure af, using a directed tre€'T, = (C,.A4) with doubly labelled arcs
{: A — N x N. We refer toCT}, as thecluster tree because each verteéX € C represents a
cluster of nodes ittz. Thesizeof a cluster|C| is the number of nodes the cluster contains. An arc
a = (C,D) € Awith ¢(a) = (6c,dp) denotes that the cluste€s and D are linked as a bipartite
graph, such that each nodes C hasdc neighbors inD and each node € D hasdp neighbors in
C. Itfollows that|C| - 6c = |D| - dp. We call a clusteteaf-clusterif it is adjacent to only one other
cluster, and we call inner-clusterotherwise.

Definition 10.5. The cluster tre€’T}, is recursively defined as follows:

CTy = (C1, A1), C = {Cy,C1,C2,Cs}

Ar = {(Co, Ch),(Ch, Ca),(C1,C3)}
(Co,C1) = (60,61), ¥¢(Cp,C2) = (01,062),
0(Ch,C3) = (dg,01)

GivenCTy_1, we obtainC'Ty, in two steps:
e For each inner-cluste€;, add a new leaf-clustet! with £(C;, C!) := (0k, Og+1)-

e For each leaf-cluster; of C'T;,_; with (Cy,C;) € Aand{(Cy,C;) = (0p, 0p+1), addk—1
new leaf-cluster€’; with £(C;, C?) := (05,0;41) forj =0...k,j #p+ 1.

Further, we defingCy| = ng for all CTj,.

Figure 4 showg 7. The shaded subgraph correspond€'ig. The labels of each aice A are
of the form¢(a) = (0, 9;+1) for somel € {0,..., k}. Further, settingCy| = ng uniquely determines
the size of all other clusters. Note thafl}, describes the general structure®j, that is, it defines
for each node the number of neighbors in each cluster. HowéVBr,does not specify the actual
adjacencies. In [KMWO04], it is shown thét;, can be constructed in such a way that each node’s view
is a tree up to distande that is, there are no short cycles. Choosing- ¢/, we obtain a realization
of Gy with ng < 42F§4”,

10.4.2 Proving the Lower Bound

Having constructedy,, it remains to prove that everyround vertex cover algorithm behaves bad

on Gy. It is possible to prove that the nodes@l and the nodes if'; see the same topology up to
distancek. Therefore, all nodes d@fy andC have to join the vertex cover with the same probabjlity
Because the edges connecting hewith C; have to be covereg, > 1/2. Otherwise there is a non-

zero probability that two adjacent nodes are both not in the vertex cover. Therefore, in expectation,
each algorithm chooses at least half of the node§pf An optimal vertex cover consists at most

|[V'\ Cy| = n—np nodes. One can show that-ng < ;‘E((’Zj;ll)) Therefore if we choosé > 2(k+1),

the approximation ratiev is at least

o m0/2 _ me/2:6/2 & (n/2)1/(4%2) €Q<n1/(4k2)>.

“n-ng no-(k+1) 4(k+1) T 44V (k4 1) k

Hence, we obtain the following theorem (note that= §%*1).

6

Theorem 10.6.In £ communication rounds, every distributed algorithm for the minimum vertex cover
problem has approximation ratio at least

c/k? Al/k
Q(nk)andQ(? >

for some constant > 1/4, wheren and A denote the number of nodes and the maximum degree of
the network graph.

Remarks:

¢ It can be shown that unique node IDs do not help, that is, the lower bounds also hold in this
case.

e As a consequence of Theorem 10.6, at lgas{/log n/loglogn) and Q(log A/loglog A)
rounds are required for a constant or polylogarithmic approximation.

e By simple reductions, it can be shown that the lower bounds also hold for the minimum dom-
inating set problem and for the construction of maximal matchings and maximal independent
sets.

References

[JRS01] L. Jia, R. Rajaraman, and R. Suel. An Efficient Distributed Algorithm for Constructing
Small Dominating Sets. IRroc. of the20™* ACM Symposium on Principles of Distributed
Computing (PODC)pages 33—42, 2001.

[KMWO04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally! In
Proc. of the23rd ACM Symp. on Principles on Distributed Computing (PODZD)04.

[KMWO05] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of Being Near-Sighted, 2005.
submitted.

[KWO03] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating Set Approximation.
In Proc. of the22™? Annual ACM Symp. on Principles of Distributed Computing (PODC)
pages 25-32, 2003.

