
Chapter 8
DOMINATING 

SETS 
Mobile Computing

Summer 2004

Distributed
Computing

Group



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 6/2

• Motivation
• Dominating Set
• Connected Dominating Set

• The “Greedy” Algorithm
• The “Tree Growing” Algorithm
• The “Marking” Algorithm
• The “k-Local” Algorithm
• The “Dominator!” Algorithm
• The “Largest ID” Algorithm

Overview
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Discussion

• We have seen: 10 TricksÆ 210 routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

• Flooding is key component of (many) proposed algorithms, including 
most prominent ones (AODV, DSR)

• At least flooding should be efficient
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Finding a Destination by Flooding



Distributed Computing Group    MOBILE COMPUTING R. Wattenhofer 6/5

Finding a Destination Efficiently
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Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node 
can access and be accessed by at least one backbone node. 

• Routing:
1. If source is not a

gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.
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(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there 
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

• A CDS is a good choice
for a backbone. 

• It might be favorable to
have few nodes in the 
CDS. This is known as the
Minimum CDS problem
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Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph. 

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for 

mobile ad-hoc network) – topology of graph “far away” should 
not influence decision who belongs to (C)DS
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Greedy Algorithm for Dominating Sets

• Idea: Greedy choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log ∆ approximation, if ∆ is the 
maximum node degree of the graph. (The proof is similar to the 
“Tree Growing” proof on 6/14ff.) 

• One can also show that there is no polynomial algorithm with better 
performance unless P≈NP.
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CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the 
tree that dominates as many as possible new nodes

• Black nodes are in the CDS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose the node a maximum degree, and make it the root of
the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white 
neighbors and color it black (and its white neighbors grey).
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Example of the “too simple tree growing” algorithm

u u u

v v v

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: start                        … Minimum CDS
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Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node
with a maximum sum of white neighbors and color both black (and 
their white neighbors grey).
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Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size 
|CDS| · 2(1+H(∆)) · |DSOPT|. 

• DSOPT is a (not connected) minimum dominating set
• ∆ is the maximum node degree in the graph
• H is the harmonic function with H(n) ≈ log(n)+0.7

• In other words, the connected dominating set of the tree growing
algorithm is at most a O(log(∆)) factor worse than an optimum 
minimum dominating set (which is NP-hard to compute).

• With a lower bound argument (reduction to set cover) one can show 
that a better approximation factor is impossible, unless P≈NP.
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Proof Sketch

• The proof is done with amortized analysis. 

• Let Su be the set of nodes dominated by u ∈ DSOPT, or u itself. If a 
node is dominated by more than one node, we put it in one of the
sets.

• We charge the nodes in the graph for each node we color black. In 
particular we charge all the newly colored grey nodes. Since we 
color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an Su is at most 
2(1+H(∆)), for any u.
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Charge on Su

• Initially |Su| = u0.
• Whenever we color some nodes of Su, we call this a step.
• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored 
(grey or black). Each vertex gets a charge of 
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored (as 
part of a pair with one of the grey nodes in Su). If u is not 
chosen in step i (with a potential to paint ui nodes grey), then 
we have found a better (pair of) node. That is, the charge to 
any of the new grey nodes in step i in Su is at most 2/ui. 

u
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Adding up the charges in Su
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Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically 
optimal unless P≈NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real mobile 
network? How do we figure out where the best grey/white pair of 
nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider 
local information. 
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The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that 
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the 

graph is undirected v is not in N(w)), then u marks itself being in the 
set CDS.

+ Completely local; only exchange N(u) with all neighbors
+ Each node sends only 1 message, and receives at most ∆
+ Messages have size O(∆)
• Is the marking algorithm really producing a connected dominating

set? How good is the set?
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Example for the Marking Algorithm

[J. Wu]
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Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete. 

• Note: If G was complete then constructing a CDS would not make 
sense. Note that in a complete graph, no node would be marked.

• We show: 

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS
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Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node 
that is not in the dominating set, and also not dominated. Since no 
neighbor of u is in the dominating set, the nodes N+(u) := u ∪ N(u) 
form:

• a complete graph 
– if there are two nodes in N(u) that are not connected, u must be in the 

dominating set by definition
• no node v ∈ N(u) has a neighbor outside N(u) 

– or, also by definition, the node v is in the dominating set

• Since the graph G is connected it only consists of the complete 
graph N+(u). We precluded this in the assumptions, therefore we 
have a contradiction
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Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v,
with u,v ∈ CDS.

• Assume for the sake of contradiction that there is a node w on this 
shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a 
shorter path. This is a contradiction.

w
vu
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Improving the Marking Algorithm

• We give each node u a unique id(u).

• Rule 1: If N+(v) ⊆ N+(u) and id(v) < id(u), then do not include node v 
into the CDS.

• Rule 2: Let u,w ∈ N(v). If N(v) ⊆ N(u) ∪ N(w) and id(v) < id(u) and 
id(v) < id(w), then do not include v into the CDS.

• (Rule 2+: You can do the same with more than 2 covering 
neighbors, but it gets a little more intricate.)

• …for a quiet minute: Why are the identifiers necessary?
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Example for improved Marking Algorithm

• Node 17 is removed with rule 1
• Node 8 is removed with rule 2
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Quality of the Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
• The transmission range of each node is such that it is connected to 

the k left and right neighbors, the id’s of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts 
every k’th node into the CDS. Thus |CDSOPT| ≈ n/k; with k = n/c for 
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the 
nodes (except the k leftmost ones). Thus |CDSMarking| = n – k; with 
k = n/c we have |CDSMarking| = Ω(n).

• The worst-case quality of the marking algorithm is worst-case! ☺
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The k-local Algorithm
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Result of the k-local Algorithm

• Distributed Approximation

• The value of α depends on the number of rounds k (the locality)

• The analysis is rather intricate… ☺

Theorem: E[|DS|] · O(α ln ∆ · |DSOPT|)
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Unit Disk Graph

• We are given a set V of nodes in the plane (points with coordinates).
• The unit disk graph UDG(V) is defined as an undirected graph (with 

E being a set of undirected edges). There is an edge between two 
nodes u,v iff the Euclidian distance between u and v is at most 1.

• Think of the unit distance as the maximum transmission range.

• We assume that the unit disk graph 
UDG is connected (that is, there is a 
path between each pair of nodes)

• The unit disk graph has many edges.
• Can we drop some edges in the UDG

to reduced complexity and interference?
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The “Dominator!” Algorithm

• For the important special case of Euclidean Unit Disk Graphs there 
is a simple marking algorithm that does the job.

• We make the simplifying assumptions that MAC layer issues are 
resolved: Two nodes u,v within transmission range 1 receive both 
all their transmissions. There is no interference, that is, the 
transmissions are locally always completely ordered.

• Initially no node is in the connected dominating set CDS.
1. If a node u has not yet received an “I AM A DOMINATOR, BABY!”

message from any other node, node u will transmit “I AM A 
DOMINATOR, BABY!”

2. If node v receives a message “I AM A DOMINATOR, BABY!” from 
node u, then node v is dominated by node v.
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• This gives a dominating set. But it is not connected.

Example
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The “Dominator!” Algorithm Continued

3. If a node w is dominated by more two dominators u and v, and node 
w has not yet received a message “I am dominated by u and v”, 
then node w transmits “I am dominated by u and v” and enters the 
CDS.

• And since this is still not quite enough…

4. If a neighboring pair of nodes w1 and w2 is dominated by 
dominators u and v, respectively, and have not yet received a 
message “I am dominated by u and v”, or “We are dominated by u 
and v”, then nodes w1 and w2 both transmit “We are dominated by u 
and v” and enter the CDS.
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“Dominator Algorithm”: Results

• The “Dominator!” Algorithm produces a connected dominating set.

• The algorithm is completely local. (is it?)

• Each node only has to transmit one or two messages of constant 
size.

• The connected dominating set is asymptotically optimal, that is,
|CDS| = O(|CDSOPT|).

• Routes on backbone (CDS) are only by a constant factor longer 
than on UDG.
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“Dominator Algorithm”: Remarks

• “Dominator” algorithm seems to be very local.

• If two neighbors want to join the DS simultaneously, we have a 
problem → synchronization between nodes is a problem!

• Algorithm actually calculates a maximal independent set (MIS).

• When taking care of all synchronization problems, best known MIS
algorithm needs time O(log n).

• Lower Bound for general graphs:

• If you want to know more, visit PODC course!
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The “Largest-ID” Algorithm

• All nodes have unique IDs

• Algorithm for each node:
1. Send ID to all neighbors
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (extremely local!)
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“Largest ID” Algorithm, Analysis I

• Assume, node IDs are at random, graph is UDG.

• We look at a disk S of diameter 1:

S

Diameter: 1

Nodes inside S have
distance at most 1.
→ they form a clique

How many nodes in S
are selected for the DS?
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S

“Largest ID” Algorithm, Analysis II

1 11

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks  Si of diameter 1.
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“Largest ID” Algorithm: Analysis III

• How many nodes in S are chosen by nodes in a disk Si?

• x = # of nodes in S, y = # of nodes in Si:

• A node u∈S is only chosen by a node in Si if 
(all nodes in Si see each other).

• The probability for this is: 

• Therefore, the expected number of nodes in S chosen by nodes in 
Si is at most:

Because at most y nodes in Si can
choose nodes in S
and because of linearity of expectation.
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“Largest ID” Algorithm, Analysis IV

• From x·n and y·n, it follows that:

• Hence, in expectation the DS contains at most              nodes
per disk with diameter 1.

• An optimal algorithm needs to choose at least 1 node in the disk
with radius 1 around any node.

• This disk can be covered by a constant (9) number of disks of 
diameter 1.

• The algorithm chooses at most                  times more disks than an 
optimal one
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“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good 
dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes an
-approximation (analysis is tight).

• If nodes know the distances to each other, there is a iterative variant 
of the “Largest ID” algorithm which computes a constant 
approximation in O(loglog n) time.
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Overview of (C)DS Algorithms

YesNoYes
(const / loglog n)

/ constant“Largest ID”
simple / iter.

YesNoYes (log n)Asymptotically Optimal“Dominator!”

YesYesYes (k-local)Yes, but with add. factor αk-local

YesYesYes (const.)NoMarking

YesYesNoYes, optimal unless P=NPTree Growing

NoYesNoYes, optimal unless P=NPGreedy
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Local 
(Distributed)

Worst-Case GuaranteesAlgorithm


