
Chapter 8
DOMINATING

SETS
Mobile Computing

Summer 2004

Distributed
Computing

Group

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/2

• Motivation
• Dominating Set
• Connected Dominating Set

• The “Greedy” Algorithm
• The “Tree Growing” Algorithm
• The “Marking” Algorithm
• The “k-Local” Algorithm
• The “Dominator!” Algorithm
• The “Largest ID” Algorithm

Overview

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/3

Discussion

• We have seen: 10 TricksÆ 210 routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

• Flooding is key component of (many) proposed algorithms, including
most prominent ones (AODV, DSR)

• At least flooding should be efficient

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/4

Finding a Destination by Flooding

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/5

Finding a Destination Efficiently

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/6

Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node
can access and be accessed by at least one backbone node.

• Routing:
1. If source is not a

gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/7

(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there
is a path between any two nodes in CDS that does not use nodes
that are not in CDS.

• A CDS is a good choice
for a backbone.

• It might be favorable to
have few nodes in the
CDS. This is known as the
Minimum CDS problem

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/8

Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph.

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for

mobile ad-hoc network) – topology of graph “far away” should
not influence decision who belongs to (C)DS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/9

Greedy Algorithm for Dominating Sets

• Idea: Greedy choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log ∆ approximation, if ∆ is the
maximum node degree of the graph. (The proof is similar to the
“Tree Growing” proof on 6/14ff.)

• One can also show that there is no polynomial algorithm with better
performance unless P≈NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/10

CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the
tree that dominates as many as possible new nodes

• Black nodes are in the CDS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose the node a maximum degree, and make it the root of
the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white
neighbors and color it black (and its white neighbors grey).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/11

Example of the “too simple tree growing” algorithm

u u u

v v v

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: start … Minimum CDS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/12

Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node
with a maximum sum of white neighbors and color both black (and
their white neighbors grey).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/13

Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size
|CDS| · 2(1+H(∆)) · |DSOPT|.

• DSOPT is a (not connected) minimum dominating set
• ∆ is the maximum node degree in the graph
• H is the harmonic function with H(n) ≈ log(n)+0.7

• In other words, the connected dominating set of the tree growing
algorithm is at most a O(log(∆)) factor worse than an optimum
minimum dominating set (which is NP-hard to compute).

• With a lower bound argument (reduction to set cover) one can show
that a better approximation factor is impossible, unless P≈NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/14

Proof Sketch

• The proof is done with amortized analysis.

• Let Su be the set of nodes dominated by u ∈ DSOPT, or u itself. If a
node is dominated by more than one node, we put it in one of the
sets.

• We charge the nodes in the graph for each node we color black. In
particular we charge all the newly colored grey nodes. Since we
color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an Su is at most
2(1+H(∆)), for any u.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/15

Charge on Su

• Initially |Su| = u0.
• Whenever we color some nodes of Su, we call this a step.
• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored
(grey or black). Each vertex gets a charge of
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored (as
part of a pair with one of the grey nodes in Su). If u is not
chosen in step i (with a potential to paint ui nodes grey), then
we have found a better (pair of) node. That is, the charge to
any of the new grey nodes in step i in Su is at most 2/ui.

u

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/16

Adding up the charges in Su

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/17

Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically
optimal unless P≈NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real mobile
network? How do we figure out where the best grey/white pair of
nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider
local information.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/18

The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the

graph is undirected v is not in N(w)), then u marks itself being in the
set CDS.

+ Completely local; only exchange N(u) with all neighbors
+ Each node sends only 1 message, and receives at most ∆
+ Messages have size O(∆)
• Is the marking algorithm really producing a connected dominating

set? How good is the set?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/19

Example for the Marking Algorithm

[J. Wu]

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/20

Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete.

• Note: If G was complete then constructing a CDS would not make
sense. Note that in a complete graph, no node would be marked.

• We show:

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/21

Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node
that is not in the dominating set, and also not dominated. Since no
neighbor of u is in the dominating set, the nodes N+(u) := u ∪ N(u)
form:

• a complete graph
– if there are two nodes in N(u) that are not connected, u must be in the

dominating set by definition
• no node v ∈ N(u) has a neighbor outside N(u)

– or, also by definition, the node v is in the dominating set

• Since the graph G is connected it only consists of the complete
graph N+(u). We precluded this in the assumptions, therefore we
have a contradiction

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/22

Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v,
with u,v ∈ CDS.

• Assume for the sake of contradiction that there is a node w on this
shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a
shorter path. This is a contradiction.

w
vu

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/23

Improving the Marking Algorithm

• We give each node u a unique id(u).

• Rule 1: If N+(v) ⊆ N+(u) and id(v) < id(u), then do not include node v
into the CDS.

• Rule 2: Let u,w ∈ N(v). If N(v) ⊆ N(u) ∪ N(w) and id(v) < id(u) and
id(v) < id(w), then do not include v into the CDS.

• (Rule 2+: You can do the same with more than 2 covering
neighbors, but it gets a little more intricate.)

• …for a quiet minute: Why are the identifiers necessary?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/24

Example for improved Marking Algorithm

• Node 17 is removed with rule 1
• Node 8 is removed with rule 2

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/25

Quality of the Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
• The transmission range of each node is such that it is connected to

the k left and right neighbors, the id’s of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts
every k’th node into the CDS. Thus |CDSOPT| ≈ n/k; with k = n/c for
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the
nodes (except the k leftmost ones). Thus |CDSMarking| = n – k; with
k = n/c we have |CDSMarking| = Ω(n).

• The worst-case quality of the marking algorithm is worst-case! ☺

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/26

The k-local Algorithm

0.2
0.5

0.2

0.80

0.2

0.3

0.1
0.3

0

Input:
Local Graph

Fractional
Dominating Set

Dominating
Set

Connected
Dominating Set

0.5

Phase C:
Connect DS
by “tree” of
“bridges”

Phase B:
Probabilistic
algorithm

Phase A:
Distributed
linear program
rel. high degree
gives high value

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/27

Result of the k-local Algorithm

• Distributed Approximation

• The value of α depends on the number of rounds k (the locality)

• The analysis is rather intricate… ☺

Theorem: E[|DS|] · O(α ln ∆ · |DSOPT|)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/28

Unit Disk Graph

• We are given a set V of nodes in the plane (points with coordinates).
• The unit disk graph UDG(V) is defined as an undirected graph (with

E being a set of undirected edges). There is an edge between two
nodes u,v iff the Euclidian distance between u and v is at most 1.

• Think of the unit distance as the maximum transmission range.

• We assume that the unit disk graph
UDG is connected (that is, there is a
path between each pair of nodes)

• The unit disk graph has many edges.
• Can we drop some edges in the UDG

to reduced complexity and interference?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/29

The “Dominator!” Algorithm

• For the important special case of Euclidean Unit Disk Graphs there
is a simple marking algorithm that does the job.

• We make the simplifying assumptions that MAC layer issues are
resolved: Two nodes u,v within transmission range 1 receive both
all their transmissions. There is no interference, that is, the
transmissions are locally always completely ordered.

• Initially no node is in the connected dominating set CDS.
1. If a node u has not yet received an “I AM A DOMINATOR, BABY!”

message from any other node, node u will transmit “I AM A
DOMINATOR, BABY!”

2. If node v receives a message “I AM A DOMINATOR, BABY!” from
node u, then node v is dominated by node v.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/30

• This gives a dominating set. But it is not connected.

Example

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/31

The “Dominator!” Algorithm Continued

3. If a node w is dominated by more two dominators u and v, and node
w has not yet received a message “I am dominated by u and v”,
then node w transmits “I am dominated by u and v” and enters the
CDS.

• And since this is still not quite enough…

4. If a neighboring pair of nodes w1 and w2 is dominated by
dominators u and v, respectively, and have not yet received a
message “I am dominated by u and v”, or “We are dominated by u
and v”, then nodes w1 and w2 both transmit “We are dominated by u
and v” and enter the CDS.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/32

“Dominator Algorithm”: Results

• The “Dominator!” Algorithm produces a connected dominating set.

• The algorithm is completely local. (is it?)

• Each node only has to transmit one or two messages of constant
size.

• The connected dominating set is asymptotically optimal, that is,
|CDS| = O(|CDSOPT|).

• Routes on backbone (CDS) are only by a constant factor longer
than on UDG.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/33

“Dominator Algorithm”: Remarks

• “Dominator” algorithm seems to be very local.

• If two neighbors want to join the DS simultaneously, we have a
problem → synchronization between nodes is a problem!

• Algorithm actually calculates a maximal independent set (MIS).

• When taking care of all synchronization problems, best known MIS
algorithm needs time O(log n).

• Lower Bound for general graphs:

• If you want to know more, visit PODC course!

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/34

The “Largest-ID” Algorithm

• All nodes have unique IDs

• Algorithm for each node:
1. Send ID to all neighbors
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (extremely local!)

4

6
7

92

8

10

53

1

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/35

“Largest ID” Algorithm, Analysis I

• Assume, node IDs are at random, graph is UDG.

• We look at a disk S of diameter 1:

S

Diameter: 1

Nodes inside S have
distance at most 1.
→ they form a clique

How many nodes in S
are selected for the DS?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/36

S

“Largest ID” Algorithm, Analysis II

1 11

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks Si of diameter 1.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/37

“Largest ID” Algorithm: Analysis III

• How many nodes in S are chosen by nodes in a disk Si?

• x = # of nodes in S, y = # of nodes in Si:

• A node u∈S is only chosen by a node in Si if
(all nodes in Si see each other).

• The probability for this is:

• Therefore, the expected number of nodes in S chosen by nodes in
Si is at most:

Because at most y nodes in Si can
choose nodes in S
and because of linearity of expectation.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/38

“Largest ID” Algorithm, Analysis IV

• From x·n and y·n, it follows that:

• Hence, in expectation the DS contains at most nodes
per disk with diameter 1.

• An optimal algorithm needs to choose at least 1 node in the disk
with radius 1 around any node.

• This disk can be covered by a constant (9) number of disks of
diameter 1.

• The algorithm chooses at most times more disks than an
optimal one

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/39

“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes an
-approximation (analysis is tight).

• If nodes know the distances to each other, there is a iterative variant
of the “Largest ID” algorithm which computes a constant
approximation in O(loglog n) time.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/40

Overview of (C)DS Algorithms

YesNoYes
(const / loglog n)

/ constant“Largest ID”
simple / iter.

YesNoYes (log n)Asymptotically Optimal“Dominator!”

YesYesYes (k-local)Yes, but with add. factor αk-local

YesYesYes (const.)NoMarking

YesYesNoYes, optimal unless P=NPTree Growing

NoYesNoYes, optimal unless P=NPGreedy

CDSGeneral
Graphs

Local
(Distributed)

Worst-Case GuaranteesAlgorithm

