
Chapter 7
GEOMETRIC

ROUTING
Mobile Computing

Summer 2004

Distributed
Computing

Group

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/2

• Geometric routing
• Greedy geometric routing

• Euclidean and planar graphs
• Unit disk graph
• Gabriel graph and other planar graphs

• Face Routing
• Adaptive Face Routing
• Lower bound
• Greedy (Other) Adaptive Face Routing

Overview

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/3

Geometric (Directional, Position-based) routing

• …even with all the tricks there will be flooding every now and then.

• In this chapter we will assume that the nodes are location aware
(they have GPS, Galileo, or an ad-hoc way to figure out their
coordinates), and that we know where the destination is.

• Then we
simply route
towards the
destination

s

t

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/4

Geometric routing

• Problem: What if there is no path in the right direction?

• We need a guaranteed way to reach a destination even in the case
when there is no directional path…

• Hack: as in flooding
nodes keep track
of the messages
they have already
seen, and then they
backtrack* from there

*backtracking? Does this
mean that we need a stack?!?

s

t

?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/5

Greedy routing

• Greedy routing
looks promising.

• Maybe there is a
way to choose the
next neighbor
and a particular
graph where we
always reach the
destination?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/6

Examples why greedy algorithms fail

• We greedily route to the neighbor
which is closest to the destination:
But both neighbors of x are
not closer to destination D

• Also the best angle approach
might fail, even in a triangulation:
if, in the example on the right,
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop
v0, w0, v1, w1, …, v3, w3, v0, …

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/7

Euclidean and Planar Graphs

• Euclidean: Points in the plane, with coordinates
• Planar: can be drawn without “edge crossings” in a plane

• Euclidean planar graphs (planar embedding) simplify geometric
routing.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/8

Unit disk graph

• We are given a set V of nodes in the plane (points with coordinates).
• The unit disk graph UDG(V) is defined as an undirected graph (with

E being a set of undirected edges). There is an edge between two
nodes u,v iff the Euclidean distance between u and v is at most 1.

• Think of the unit distance as the maximum transmission range.

• We assume that the unit disk graph
UDG is connected (that is, there is a
path between each pair of nodes)

• The unit disk graph has many edges.
• Can we drop some edges in the UDG

to reduced complexity and interference?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/9

Planar graphs

• Definition: A planar graph is a graph
that can be drawn in the plane such
that its edges only intersect at their
common end-vertices.

• Kuratowski’s Theorem: A graph is planar iff it contains no subgraph
that is edge contractible to K5 or K3,3.

• Euler’s Polyhedron Formula: A connected
planar graph with n nodes, m edges, and f
faces has n – m + f = 2.

• Right: Example with 9 vertices,14 edges,
and 7 faces (the yellow “outside” face is
called the infinite face)

• Theorem: A simple planar graph with
n nodes has at most 3n–6 edges, for n≥3.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/10

Gabriel Graph

• Let disk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v.

• The Gabriel Graph GG(V) is defined
as an undirected graph (with E being
a set of undirected edges). There is an
edge between two nodes u,v iff the
disk(u,v) including boundary contains no
other points.

• As we will see the Gabriel Graph
has interesting properties.

disk(u,v)

v

u

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/11

Delaunay Triangulation

• Let disk(u,v,w) be a disk defined by
the three points u,v,w.

• The Delaunay Triangulation (Graph)
DT(V) is defined as an undirected
graph (with E being a set of undirected
edges). There is a triangle of edges
between three nodes u,v,w iff the
disk(u,v,w) contains no other points.

• The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a
path (s,…,t) on the DT is within a
constant factor of the s-t distance.

disk(u,v,w)

v

u
w

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/12

Other planar graphs

• Relative Neighborhood Graph RNG(V)

• An edge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v)
and (v,w) < (u,v).

• Minimum Spanning Tree MST(V)

• A subset of E of G of minimum weight
which forms a tree on V.

vu

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/13

Properties of planar graphs

• Theorem 1:

• Corollary:
Since the MST(V) is connected and the DT(V) is planar, all the
planar graphs in Theorem 1 are connected and planar.

• Theorem 2:
The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent α ≥ 2)

• Corollary:
GG(V) ∩ UDG(V) contains the Minimum Energy Path in UDG(V)

⊆ ⊆ ⊆MST() RNG() GG() DT()V V V V

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/14

Routing on Delaunay Triangulation?

• Let d be the Euclidean
distance of source s and
destination t

• Let c be the sum of the
distances of the links of
the shortest path in the
Delaunay Triangulation

• It was shown that c = Θ(d)

• Two problems:
1) How do we find this best route in the DT? With flooding?!?
2) How do we find the DT at all in a distributed fashion?
… and even worse: The DT contains edges that are not in the UDG,

that is, nodes that cannot hear each other are “neighbors” on DT

s t
d

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/15

Breakthrough idea: route on faces

• Remember the
faces…

• Idea:
Route along the
boundaries of
the faces that
lie on the
source–destination
line

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/16

Face Routing

0. Let f be the face
incident to the source
s, intersected by (s,t)

1. Explore the boundary
of f; remember the
point p where the
boundary
intersects with (s,t)
which is nearest to t;
after traversing
the whole
boundary, go back
to p, switch the face,
and repeat 1 until
you hit destination t.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/17

Face Routing Works on Any Graph

s

t

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/18

Face routing is correct

• Theorem: Face routing terminates on any simple planar graph in
O(n) steps, where n is the number of nodes in the network

• Proof: A simple planar graph has at most 3n–6 edges. You leave
each face at the point that is closest to the destination, that is, you
never visit a face twice, because you can order the faces that
intersect the source—destination line on the exit point. Each edge is
in at most 2 faces. Therefore each edge is visited at most 4 times.
The algorithm terminates in O(n) steps.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/19

Is there something better than Face Routing?

• How to improve face routing? Face Routing 2 ☺

• Idea: Don’t search a whole face for the best exit point, but take the
first (better) exit point you find. Then you don’t have to traverse huge
faces that point away from the destination.

• Efficiency: Seems to be practically more efficient than face routing.
But the theoretical worst case is worse – O(n2).

• Problem: if source and destination are very close, we don’t want to
route through all nodes of the network. Instead we want a routing
algorithm where the cost is a function of the cost of the best route in
the unit disk graph (and independent of the number of nodes).

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/20

Adaptive Face Routing (AFR)

• Idea: Use
face routing
together with
ad-hoc routing
trick 1!!

• That is, don’t
route beyond
some radius
r by branching
the planar graph
within an ellipse
of exponentially
growing size.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/21

AFR Example Continued

• We grow the
ellipse and
find a path

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/22

AFR Pseudo-Code

0. Calculate G = GG(V) ∩ UDG(V)
Set c to be twice the Euclidean source—destination distance.

1. Nodes w ∈ W are nodes where the path s-w-t is larger than c. Do
face routing on the graph G, but without visiting nodes in W. (This is
like pruning the graph G with an ellipse.) You either reach the
destination, or you are stuck at a face (that is, you do not find a
better exit point.)

2. If step 1 did not succeed, double c and go back to step 1.

• Note: All the steps can be done completely locally,
and the nodes need no local storage.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/23

The Ω(1) Model

• We simplify the model by assuming that nodes are sufficiently far
apart; that is, there is a constant d0 such that all pairs of nodes have
at least distance d0. We call this the Ω(1) model.

• This simplification is natural because nodes with transmission range
1 (the unit disk graph) will usually not “sit right on top of each other”.

• Lemma: In the Ω(1) model, all natural cost models (such as the
Euclidean distance, the energy metric, the link distance, or hybrids
of these) are equal up to a constant factor.

• Remark: The properties we use from the Ω(1) model can also be
established with a backbone graph construction.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/24

Analysis of AFR in the Ω(1) model

• Lemma 1: In an ellipse of size c there are at most O(c2) nodes.

• Lemma 2: In an ellipse of size c, face routing terminates in O(c2)
steps, either by finding the destination, or by not finding a new face.

• Lemma 3: Let the optimal source—destination route in the UDG
have cost c*. Then this route c* must be in any ellipse of size c* or
larger.

• Theorem: AFR terminates with cost O(c*2).
• Proof: Summing up all the costs until we have the right ellipse size

is bounded by the size of the cost of the right ellipse size.

