
Chapter 5
AD HOC

NETWORKS
Mobile Computing

Summer 2004

Distributed
Computing

Group

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/2

• Characteristics
• Routing
• “Classic” routing
• Some basic tricks to improve routing

Overview

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/3

What are ad-hoc networks?

• Sometimes there is no infrastructure
– remote areas, ad-hoc meetings, disaster areas
– cost can also be an argument against an infrastructure

• Sometimes not every station can hear every other station
– Data needs to be forwarded in a “multihop” manner

A B C

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/4

Mobile (and Multihop) Ad-Hoc Networks (MANET)

• Nodes move

• First and foremost issue: Routing

N1

N4

N2

N5

N3

N1

N4

N2

N5

N3

good link
weak link

time = t1 time = t2

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/5

An ad-hoc network as a graph

• A node is a mobile station
• All nodes are equal (are they?)
• Iff node v can “hear” node u, the

graph has an arc (u,v)
• These arcs can have weights that

represent the signal strength
• Close-by nodes have MAC issues

such as hidden/exposed terminal
problems

• Optional: links are symmetric
• Optional: the graph is Euclidian,

i.e., there is a link between two
nodes iff the distance d of the
nodes is less than D

N1

N4

N2

N5

N3

N1

N4

N2

N5

N3

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/6

Routing: Flooding

• What is Routing?
• „Routing is the act of moving information across an internetwork

from a source to a destination.“ (CISCO)

• The simplest form of routing is “flooding”: a source s sends the
message to all its neighbors; when a node other than destination t
receives the message the first time it re-sends it to all its neighbors.

+ simple (sequence numbers)
– a node might see the same message

more than once. (How often?)
– what if the network is huge but the

target t sits just next to the source s?
• We need a smarter routing algorithm

s

a

b

t

c

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/7

Classic Routing 1: Link-State Routing Protocols

• Link-state routing protocols are a preferred iBGP method (within an
autonomous system – think: service provider) in the Internet

• Idea: periodic notification of all nodes about the complete graph
• Routers then forward a message along (for example) the shortest

path in the graph
+ message follows shortest path
– every node needs to store whole graph,

even links that are not on any path
– every node needs to send and receive

messages that describe the whole
graph regularly

s

a

b

t

c

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/8

Classic Routing 2: Distance Vector Routing Protocols

• The predominant method for wired networks
• Idea: each node stores a routing table that has an entry to each

destination (destination, distance, neighbor)
• If a router notices a change in its neighborhood or receives an

update message from a neighbor, it updates its routing table
accordingly and sends an update to all its neighbors

+ message follows shortest path
+ only send updates when topology changes
– most topology changes

are irrelevant for a given
source/destination pair

– every node needs to
store a big table

– count-to-infinity problem

s

a

b

t

c

t=1

t?

1aa

1bb

2bc

2

Dst

bt

DirDest

t=2

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/9

Discussion of Classic Routing Protocols

• Proactive Routing Protocols

• Both link-state and distance vector
are “proactive,” that is, routes are
established and updated even if
they are never needed.

• If there is almost no mobility,
proactive algorithms are superior
because they never have to
exchange information and find
optimal routes easily.

• Reactive Routing Protocols

• Flooding is “reactive,” but does
not scale

• If mobility is high and data
transmission rare, reactive
algorithms are superior; in the
extreme case of almost no data
and very much mobility the simple
flooding protocol might be a good
choice.

There is no “optimal” routing protocol; the choice of the routing protocol depends
on the circumstances. Of particular importance is the mobility/data ratio.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/10

Routing in Ad-Hoc Networks

• Reliability
– Nodes in an ad-hoc network are not 100% reliable
– Algorithms need to find alternate routes when nodes are failing

• Mobile Ad-Hoc Network (MANET)
– It is often assumed that the nodes are mobile (“Moteran”)

• 10 Tricks 210 routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/11

Trick 1: Radius Growth

• Problem of flooding (and similarly other algorithms): The destination
is in two hops but we flood the whole network

• Idea: Flood with growing radius; use time-to-live (TTL) tag that is
decreased at every node, for the first flood initialize TTL with 1, then
2, then 3 (really?), …when destination is found, how do we stop?

• Alternative idea: Flood very slowly (nodes wait some time before
they forward the message) – when the destination is found a quick
flood is initiated that stops the previous flood

+ Tradeoff time vs. number of messages

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/12

Trick 2: Source Routing

• Problem: nodes have to store routing information for others

• Idea: Source node stores the whole path to the destination; source
stores path with every message, so nodes on the path simply chop
off themselves and send the message to the next node.

• “Dynamic Source Routing” discovers a new path with flooding
(message stores history, if it arrives at the destination it is sent back
to the source through the same path)

+ Nodes only store the paths they need
– Not efficient if mobility/data ratio is high
– Asymmetric Links?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/13

Trick 3: Asymmetric Links

• Problem: The destination cannot send the newly found path to the
source because at least one of the links used was unidirectional.

• Idea: The destination needs to find the source by flooding again, the
path is attached to the flooded message. The destination has
information about the source (approximate distance, maybe even
direction), which can be used.

s

a

b

t

c

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/14

Trick 4: Re-use/cache routes

• This idea comes in many flavors:
• Clearly a source s that has already found a route “s-a-b-c-t” does

not need to flood again in order to find a route to node c.
• Also, if node u receives a flooding message that searches for node

v, and node u knows how to reach v, u might answer to the flooding
initiator directly.

• If node u sees a message with a path (through u), node u will learn
(cache) this path for future use.

+ Without caching you might do the same work twice
– Which information is up-to-date? sequence numbers for updates
– Caching is in contradiction to the source routing philosophy

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/15

Trick 5: Local search

• Problem: When trying to forward a message on path “s-a-u-c-t” node
u recognizes that node c is not a neighbor anymore.

• Idea: Instead of not delivering the message and sending a NAK to s,
node u could try to search for t itself; maybe even by flooding.

• Some algorithms hope that node t is still within the same distance
as before, so they can do a flooding with TTL being set to the
original distance (plus one)

• If u does not find t, maybe the predecessor of u (a) does?

– One can construct examples where this works, but of course also
examples where this does not work.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/16

Trick 6: Hierarchy

• Problem: Especially proactive algorithms do not scale with the
number of nodes. Each node needs to store big tables

• Idea: In the Internet there is a hierarchy of nodes; i.e. all nodes with
the same IP prefix are in the same direction. One could do the same
trick in ad-hoc networks

+ Well, if it happens that the ad-hoc nodes with the same numbers are
in the same area are together, hierarchical routing is a good idea.

– There are not too many applications where this is the case. Nodes
are mobile after all.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/17

Trick 7: Clustering

• Idea: Group the ad-hoc nodes into clusters (if you want
hierarchically). One node is the head of the cluster. If a node in the
cluster sends a message it sends it to the head which sends it to the
head of the destination cluster which sends it to the destination

+ Simplifies operation for most nodes
(that are not cluster heads); this is
particularly useful if the nodes are
heterogeneous and the cluster
heads are “stronger” than others.

– A level of indirection adds overhead.
– There will be more contention at

the cluster heads.

Internet

super cluster

cluster

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/18

Trick 8: Implicit Acknowledgement

• Problem: Node u only knows that neighbor node v has received a
message if node v sends an acknowledgement.

• Idea: If v is not the destination, v needs to forward the message to
the next node w on the path. If links are symmetric (and they need
to be in order to send acknowledgements anyway), node u will
automatically hear the transmission from v to w (unless node u has
interference with another message).

• Can we set up the MAC layer such that interference is impossible?

+ Finally a good trick

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/19

Trick 9: Smarter updates

• Sequence numbers for all routing updates

+ Avoids loops and inconsistencies
+ Assures in-order execution of all updates

• Decrease of update frequency
• Store time between first and best announcement of a path
• Inhibit update if it seems to be unstable (based on the stored time

values)
+ Less traffic

• Implemented in Destination Sequenced Distance Vector (DSDV)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/20

Trick 10: Use other distance metrics

• Problem: The number of hops is fine for the Internet, but for ad-hoc
networks other metrics might be better, for example: Energy,
Congestion, Successful transmission probability, Interference*, etc.

– How do we compute
interference in an
online manner?

*Interference: a
receiving node is
also in the receiving
area of another
transmission.

S1

N5

N3

N4

N1 N2

R1

R2N6

N8

S2

N9N7

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/21

Link Reversal Routing

• An interesting proactive routing protocol with low overhead.
• Idea: For each destination, all communication links are directed,

such that following the arrows always brings you to the destination.
• Example (with only one destination D):

• Note that positive labels can be chosen such that higher labels point
to lower labels (and the destination label D = 0).

5

1

7
13

6 9
11

17D

8

3

12
4

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/22

Link Reversal Routing: Mobility

• Links may fail/disappear: if nodes still have outlinks no problem!
• New links may emerge: just insert them such that there are no loops

(use the labels to figure that out)

5

1

7
13

6 9
11

17D

8

3

12
4

X

X

X

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/23

Link Reversal Routing: Mobility

• Only problem: Non-destination becomes a sink reverse all links!
• Not shown in example: If you reverse all links, then increase label.
• Recursive progress can be quite tedious…

5

1

7
13

6 9
11

17D

8

3

12
4

XX

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 5/24

Link Reversal Routing: Analysis

• In a ring network with n nodes, a deletion of a single link (close to the
sink) makes the algorithm reverse like crazy: Indeed a single link
failure may start a reversal process that takes n rounds, and n links
reverse themselves n2 times!

• That’s why some researchers proposed partial link reversal, where
nodes only reverse links that were not reversed before.

• However, it was shown by Busch et al. that in the extreme case also
partial link reversal is not efficient, it may in fact even worse be than
regular link reversal.

• Still, some protocols (TORA) are based on link reversal.

