Chapter 7
GEOMETRIC
ROUTING

Mobile Computing
Summer 2003

Computin

Y

(@

Overview

Geometric routing
Greedy geometric routing

Euclidean and planar graphs
Unit disk graph
Gabriel graph and other planar graphs

Face Routing

Adaptive Face Routing

Lower bound

Greedy (Other) Adaptive Face Routing

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

712

Geometric (Directional, Position-based) routing

O »0 »0 »0

« ...even with all the tricks there will be flooding every now and then.

* In this chapter we will assume that the nodes are location aware
(they have GPS, Galileo, or an ad-hoc way to figure out their
coordinates), and that we know where the destination is.

« Then we
simply route
towards the
destination

Y

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/3

Y

Geometric routing

) 4
(@]

(@

7

Problem: What if there is no path in the right direction?

We need a guaranteed way to reach a destination even in the case
when there is no directional path...

Hack: as in flooding
nodes keep track

of the messages
they have already
seen, and then they
backtrack™ from there

*packtracking? Does this
mean that we need a stack?!?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/4

Y

Greedy routing

O

Greedy routing
looks promising.

Maybe there is a
way to choose the
next neighbor

and a particular
graph where we
always reach the
destination?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

715

Examples why greedy algorithms fail

O »0

Y
(e}
) 4
o

* We greedily route to the neighbor
which is closest do the destination: .
But both neighbors of x are
not closer to destination D

5=V ¥
0 3

« Also the best angle approach "
might fail, even in a triangulation:
if, in the example on the right, t
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop "
Vg, Wg, Vs Wy, «.ny Vi, Wy, Vo, ... w, '

Y

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 716

Euclidean and Planar Graphs

O »0

Y
(o]
) 4
(e}

* Euclidean: Points in the plane, with coordinates
« Planar: can be drawn without “edge crossings” in a plane

o
@
-9

« Euclidean planar graphs (planar embedding) simplify geometric
routing.

Y

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 717

Y

Unit disk graph

Y
(o]
) 4
(e}

»0)
NS

 We are given a set V of nodes in the plane (points with coordinates).

« The unit disk graph UDG(V) is defined as an undirected graph (with
E being a set of undirected edges). There is an edge between two
nodes u,v iff the Euclidean distance between u and v is at most 1.

« Think of the unit distance as the maximum transmission range.

« We assume that the unit disk graph
UDG is connected (that is, there is a
path between each pair of nodes)

* The unit disk graph has many edges. e
« Can we drop some edges in the UDG . P
to reduced complexity and interference? 2

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/8

Planar graphs

o »0

) 4
(o]
) 4
(e}

« Definition: A planar graph is a graph
that can be drawn in the plane such
that its edges only intersect at their
common end-vertices.

« Kuratowski's Theorem: A graph is planar iff it contains no subgraph
that is edge contractible to Kg or Kj 5.

« Euler’s Polyhedron Formula: A connected
planar graph with n nodes, m edges, and f
faceshasn—-m+f=2.

* Right: Example with 9 vertices,14 edges,
and 7 faces (the yellow “outside” face is
called the infinite face)

 Theorem: A simple planar graph with
n nodes has at most 3n—6 edges, for n>3.

Y

@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/9

Y

Gabriel Graph

Let disk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v.

The Gabriel Graph GG(V) is defined

as an undirected graph (with E being

a set of undirected edges). There is an
edge between two nodes u,v iff the
disk(u,v) including boundary contains no
other points.

As we will see the Gabriel Graph
has interesting properties.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/10

Y

Delaunay Triangulation

) 4
(@]

(@

»0)
L

Let disk(u,v,w) be a disk defined by
the three points u,v,w.

The Delaunay Triangulation (Graph)
DT(V) is defined as an undirected
graph (with E being a set of undirected
edges). There is a triangle of edges
between three nodes u,v,w iff the
disk(u,v,w) contains no other points.

The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a
path (s,...,t) on the DT is within a
constant factor of the s-t distance.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

711

Y

(@

Other planar graphs

« Relative Neighborhood Graph RNG(V)

 An edge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v)
and (v,w) < (u,v).

* Minimum Spanning Tree MST(V)

* A subset of E of G of minimum weight
which forms a tree on V.

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

712

Y

(@

Properties of planar graphs

»0) »0) LO
L d NS >

« Theorem 1:
MST(V) ORNG(VH GGM) DT(V)

« Corollary:
Since the MST(V) is connected and the DT(V) is planar, all the
planar graphs in Theorem 1 are connected and planar.

e Theorem 2:

The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent a > 2)

« Corollary:

GG(V) N UDG(V) contains the Minimum Energy Path in UDG(V)

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 713

Y

Routing on Delaunay Triangulation?

) 4
(@]

(@

1)
2)

»0)
Ll v

Let d be the Euclidean
distance of source s and
destination t

Let ¢ be the sum of the
distances of the links of
the shortest path in the
Delaunay Triangulation

It was shown that ¢ = ©(d)

Two problems:
How do we find this best route in the DT? With flooding?!?
How do we find the DT at all in a distributed fashion?

. and even worse: The DT contains edges that are not in the UDG,

that is, nodes that cannot hear each other are “neighbors” on DT

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 714

Breakthrough idea: route on faces

O »0O 0
« Remember the Aé
- =]
faces... .
= o
.
 |dea:

Route along the

boundaries of

the faces that \ a
lie on the , /
source—destination = i)

line /

TlIE

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

E

_

Y

7115

Y

Face Routing

(@

) 4
o
\
C

0. Letf be the face
incident to the source
s, intersected by (s,t)

1. Explore the boundary
of f;: remember the
point p where the
boundary
intersects with (s,t)
which is nearest to t;
after traversing
the whole
boundary, go back
to p, switch the face,
and repeat 1 until
you hit destination t.

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/16

Face Routing Works on Any Graph

o 129 »0

Y

@ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

77

Face routing is correct

o) »O >0

 Theorem: Face routing terminates on any simple planar graph in
O(n) steps, where n is the number of nodes in the network

« Proof: A simple planar graph has at most 3n—6 edges. You leave
each face at the point that is closest to the destination, that is, you
never visit a face twice, because you can order the faces that
intersect the source—destination line on the exit point. Each edge is
in at most 2 faces. Therefore each edge is visited at most 4 times.
The algorithm terminates in O(n) steps.

Y

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/18

|s there something better than Face Routing?

* How to improve face routing? Face Routing 2 ©

» |dea: Don’t search a whole face for the best exit point, but take the
first (better) exit point you find. Then you don’t have to traverse huge
faces that point away from the destination.

« Efficiency: Seems to be practically more efficient than face routing.
But the theoretical worst case is worse — O(n?).

* Problem: if source and destination are very close, we don’t want to
route through all nodes of the network. Instead we want a routing
algorithm where the cost is a function of the cost of the best route in
the unit disk graph (and independent of the number of nodes).

Y

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 719

Y

Adaptive Face Routing (AFR)

) 4
(@]

* |dea: Use
face routing
together with
ad-hoc routing
trick 1!

« Thatis, don’t
route beyond
some radius
r by branching
the planar graph
within an ellipse
of exponentially
growing size.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/20

Y

AFR Example Continued

« We grow the
ellipse and
find a path

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/21

Y

(@

AFR Pseudo-Code

0. Calculate G = GG(V) N UDG(V)
Set ¢ to be twice the Euclidean source—destination distance.

1. Nodes w € W are nodes where the path s-w-t is larger than c. Do
face routing on the graph G, but without visiting nodes in W. (This is
like pruning the graph G with an ellipse.) You either reach the
destination, or you are stuck at a face (that is, you do not find a
better exit point.)

2. If step 1 did not succeed, double ¢ and go back to step 1.

* Note: All the steps can be done completely locally,
and the nodes need no local storage.

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7122

Y

»0) »0) LO
L d NS >

The Q(1) Model

« We simplify the model by assuming that nodes are sufficiently far
apart; that is, there is a constant d, such that all pairs of nodes have
at least distance d,. We call this the Q(1) model.

« This simplification is natural because nodes with transmission range
1 (the unit disk graph) will usually not “sit right on top of each other”.

 Lemma: In the Q(1) model, all natural cost models (such as the
Euclidean distance, the energy metric, the link distance, or hybrids
of these) are equal up to a constant factor.

« Remark: The properties we use from the Q(1) model can also be
established with a backbone graph construction.

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/23

Y

Analysis of AFR in the Q(1) model

« Lemma 1: In an ellipse of size ¢ there are at most O(c?) nodes.

« Lemma 2: In an ellipse of size ¢, face routing terminates in O(c?)
steps, either by finding the destination, or by not finding a new face.

« Lemma 3: Let the optimal source—destination route in the UDG
have cost c*. Then this route c* must be in any ellipse of size c* or
larger.

« Theorem: AFR terminates with cost O(c*?).

« Proof: Summing up all the costs until we have the right ellipse size
is bounded by the size of the cost of the right ellipse size.

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7124

Y

(@

Lower Bound

) 4
o
) 4
(e}

* The network on the right
constructs a lower bound.

 The destination is the
center of the circle,
the source any node
on the ring.

* Finding the right chain

costs Q(c*?),
even for randomized
algorithms

e Theorem:

AFR is asymptotically optimal.

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/25

Non-geometric routing algorithms

O »0

Y
(o]
) 4
(e}

* Inthe Q(1) model, a standard flooding algorithm enhanced with trick
1 will (for the same reasons) also cost O(c*?).

« However, such a flooding algorithm needs O(1) extra storage at
each node (a node needs to know whether it has already forwarded

a message).

* Therefore, there is a trade-off between O(1) storage at each node or
that nodes are location aware, and also location aware about the

destination. This is intriguing.

Y

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/26

Y

(@

GOAFR — Greedy Other Adaptive Face Routing

O »0

Back to geometric routing...
AFR Algorithm is not very efficient (especially in dense graphs)
Combine Greedy and (Other Adaptive) Face Routing

— Route greedily as long as possi Other AFR: In each
— Circumvent "dead ends” by use of face routing ™) face proceed to node

— Then route greedily again closest to destination

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7127

GOAFR+

« GOAFR+ improvements:

edy routing

Early fallback to

— (Circle centered at destination inste

GOAFR+ — Early Fallback

(@

Y
(o]
) 4
(e}

« We could fall back to greedy routing as soon as we are closer to t
than the local minimum

 But:

Q(c*Q)vnodes Q(c*) local minima

« “Maze” with Q(c*?) edges is traversed Q(c*) times — Q(c*3) steps

Y

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7129

Y

(@

GOAFR — Greedy Other Adaptive Face Routing

Early fallback to greedy routing:
— Use counters p and q. Let u be the node where the exploration of the
current face F started
» p counts the nodes closer to t than u
» (counts the nodes not closer to t than u
— Fall back to greedy routing as soon as p > ¢ - q (constant g > 0)

Theorem: GOAFR is still asymptotically worst-case optimal...
...and it is efficient in practice, in the average-case.

What does “practice” mean?
— Usually nodes placed uniformly at random

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/30

Average Case

) 4
o
y

o »0

* Not interesting when graph not dense enough
* Not interesting when graph is too dense

« Critical density range (“percolation”)
— Shortest path is significantly longer than Euclidean distance

. : - P PR A <X Y K

% b DA oA e
- A "4 Z 4"‘ B sl NI

- IS o A, A SRR R

: RN V. N e SR R R a8
v b O NGNS S e ilers s

o XK o AR (N L2 A

SN R I T P SRS
N \ i 7 "'Q;
” R R
< A< d A B A
. ’] T e

- e DR N A B AT LI AY

. Wy NS BT (]

AV SOV RS v D S <l

.o '("‘V <J 77 A f “y.' Y

N AR R A PRS0
R R AT NS A &

| K el TN ;
I s, RS
A NS INrsp 2 G svea Vil
A N SREEHE R GAN

too sparse critical density too dense

Y

7 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/31

Y

Simulation on Randomly Generated Graphs

o »O »O

—
o
|
v
1
Y
1
1
1
1
1
1
1
1
1
1
1
1
]
]
]
]
[
[
Il
|
—

worse

- 0.5

Frequency

Performance
N w LN (@) » ~ (@) (o)

better

— critical - ' ' ' 0
0 2 4 6 8 10 12

Network Density [nodes per unit disk]

—

7 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

7/32

A Word on Performance

O »0

) 4
(@]

 What does a performance of 3.3 in the critical density range mean?

« If an optimal path (found by Dijkstra) has cost c,
then GOAFR+ finds the destination in 3.3-c steps.

» |t does not mean that the path found is 3.3 times as long as the
optimal path! The path found can be much smaller...

 Remarks about cost metrics
— In this lecture “cost” ¢ = ¢ hops
— There are other results, for instance on distance/energy/hybrid metrics

— In particular: With energy metric there is no competitive geometric
routing algorithm

Y

Wi Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/33

Y

Energy Metric Lower Bound

o »0

»0 »0

Example graph: k “stalks”, of which only one leads to t

— any deterministic (randomized)

N

eometric routing algorithm A has
9 ast c(A) _

to visit all k (at least k/2) “stalks” , M

— optimal path has constant cost

(covering a constant distance at

almost no cost)

. X
¢ | ksoo ©

J
w

c9—0—90 0 -

1<D<2

T

d

W

— With energy metric there is no competitive geometric routing algorithm

o

7 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 7/34

Y

Milestones in Geometric Routing

»0)
L

(@

»0)
L

Kleinrock et al. Various | MFR et Geometric Routing proposed

197 5ff al.
Kranakis, Singh, CCCG Face First correct algorithm
Urrutia 1999 Routing
Bose, Morin, DialM GFG First average-case efficient
Stojmenovic, Urrutia | 1999 algorithm (simulation but no proof)
Karp, Kung MobiCom | GPSR A new name for GFG

2000
Kuhn, Wattenhofer, | DialM AFR First worst-case analysis. Tight
Zollinger 2002 ©(c?) bound.
Kuhn, Wattenhofer, | MobiHoc | GOAFR | Worst-case optimal and average-
Zollinger 2003 case efficient, percolation theory
Kuhn, Wattenhofer, | PODC GOAFR+ | Currently best algorithm, other
Zhang, Zollinger 2003 cost metrics, etc.

Distributed Computing Group

MOBILE COMPUTING R. Wattenhofer

7/35

	Chapter 7GEOMETRIC ROUTING
	Overview
	Geometric (Directional, Position-based) routing
	Geometric routing
	Greedy routing
	Examples why greedy algorithms fail
	Euclidean and Planar Graphs
	Unit disk graph
	Planar graphs
	Gabriel Graph
	Delaunay Triangulation
	Other planar graphs
	Properties of planar graphs
	Routing on Delaunay Triangulation?
	Breakthrough idea: route on faces
	Face Routing
	Face Routing Works on Any Graph
	Face routing is correct
	Is there something better than Face Routing?
	Adaptive Face Routing (AFR)
	AFR Example Continued
	AFR Pseudo-Code
	The ?(1) Model
	Analysis of AFR in the ?(1) model
	Lower Bound
	Non-geometric routing algorithms
	GOAFR – Greedy Other Adaptive Face Routing
	GOAFR+
	GOAFR+ ? Early Fallback
	GOAFR – Greedy Other Adaptive Face Routing
	Average Case
	Simulation on Randomly Generated Graphs
	A Word on Performance
	Energy Metric Lower Bound
	Milestones in Geometric Routing

