	Overview		
<section-header>Chapter 6DOMINATINGDISTIBUTEDStributedStributedStributedStributedSummer 2003</section-header>	 Motivation Dominating Set Connected Dominating Set The "Greedy" Algorithm The "Tree Growing" Algorithm The "Marking" Algorithm The "k-Local" Algorithm The "Dominator!" Algorithm 		
Discussion	Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/2		
0			
 Last lecture: 10 Tricks → 2¹⁰ routing algorithms In reality there are almost that many! Q: How good are these routing algorithms?!? Any hard results? A: Almost none! Method-of-choice is simulation Perkins: "if you simulate three times, you get three different results" Flooding is key component of (many) proposed algorithms, including most prominent ones (AODV, DSR) At least flooding should be efficient 			

6/4

Greedy Algorithm for Dominating Sets

- Idea: Greedy choose "good" nodes into the dominating set.
- Black nodes are in the DS
- · Grey nodes are neighbors of nodes in the CDS
- White nodes are not yet dominated, initially all nodes are white.
- Algorithm: Greedily choose a node that colors most white nodes.
- One can show that this gives a log ∆ approximation, if ∆ is the maximum node degree of the graph. (The proof is similar to the "Tree Growing" proof on 6/14ff.)
- One can also show that there is no polynomial algorithm with better performance unless P=NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Example of the "too simple tree growing" algorithm

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

CDS: The "too simple tree growing" algorithm

- Idea: start with the root, and then greedily choose a neighbor of the tree that dominates as many as possible new nodes
- Black nodes are in the CDS
- · Grey nodes are neighbors of nodes in the CDS
- · White nodes are not yet dominated, initially all nodes are white.
- Start: Choose the node a maximum degree, and make it the root of the CDS, that is, color it black (and its white neighbors grey).
- Step: Choose a grey node with a maximum number of white neighbors and color it black (and its white neighbors grey).

6/9

6/11

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

6/10

Tree Growing Algorithm

- Idea: Don't scan one but two nodes!
- Alternative step: Choose a grey node and its white neighbor node with a maximum sum of white neighbors and color both black (and their white neighbors grey).

Analysis of the tree growing algorithm

- Theorem: The tree growing algorithm finds a connected set of size $|CDS| \le 2(1+H(\Delta)) \cdot |DS_{OPT}|.$
- DS_{OPT} is a (not connected) minimum dominating set
- Δ is the maximum node degree in the graph
- H is the harmonic function with H(n) $\approx \text{log}(n)\text{+}0.7$
- In other words, the connected dominating set of the tree growing algorithm is at most a O(log(Δ)) factor worse than an optimum minimum dominating set (which is NP-hard to compute).
- With a lower bound argument (reduction to set cover) one can show that a better approximation factor is impossible, unless P=NP.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/13

. . .

Charge on S_u

- Initially $|S_u| = u_0$.
- Whenever we color some nodes of S_u, we call this a step.
- The number of white nodes in S_u after step i is u_i.
- After step k there are no more white nodes in S_u.
- In the first step u₀ u₁ nodes are colored (grey or black). Each vertex gets a charge of at most 2/(u₀ – u₁).

6/15

After the first step, node u becomes eligible to be colored (as part of a pair with one of the grey nodes in S_u). If u is not chosen in step i (with a potential to paint u_i nodes grey), then we have found a better (pair of) node. That is, the charge to any of the new grey nodes in step i in S_u is at most 2/u_i.

Proof Sketch

- The proof is done with amortized analysis.
- Let S_u be the set of nodes dominated by $u \in \mathsf{DS}_{\mathsf{OPT}},$ or u itself. If a node is dominated by more than one node, we put it in one of the sets.
- We charge the nodes in the graph for each node we color black. In particular we charge all the newly colored grey nodes. Since we color a node grey at most once, it is charged at most once.
- We show that the total charge on the vertices in an S_u is at most 2(1+H($\Delta)$), for any u.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

6/14

Adding up the charges in ${\rm S_u}$

$$C \leq \frac{2}{u_0 - u_1} (u_0 - u_1) + \sum_{i=1}^{k-1} \frac{2}{u_i} (u_i - u_{i+1})$$
$$= 2 + 2 \sum_{i=1}^{k-1} \frac{u_i - u_{i+1}}{u_i}$$
$$\leq 2 + 2 \sum_{i=1}^{k-1} H(u_i) - H(u_{i+1})$$

$$= 2 + 2(H(u_1) - H(u_k)) = 2(1 + H(u_1)) = 2(1 + H(\Delta))$$

Discussion of the tree growing algorithm

- We have an extremely simple algorithm that is asymptotically optimal unless P=NP. And even the constants are small.
- · Are we happy?
- Not really. How do we implement this algorithm in a real mobile network? How do we figure out where the best grey/white pair of nodes is? How slow is this algorithm in a distributed setting?
- We need a fully distributed algorithm. Nodes should only consider local information.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Example for the Marking Algorithm

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

The Marking Algorithm

- Idea: The connected dominating set CDS consists of the nodes that have two neighbors that are not neighboring.
- 1. Each node u compiles the set of neighbors N(u)
- 2. Each node u transmits N(u), and receives N(v) from all its neighbors
- If node u has two neighbors v,w and w is not in N(v) (and since the graph is undirected v is not in N(w)), then u marks itself being in the set CDS.
- + Completely local; only exchange N(u) with all neighbors
- + Each node sends only 1 message, and receives at most Δ
- Messages have size O(Δ)
- Is the marking algorithm really producing a connected dominating set? How good is the set?

6/17

6/19

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

6/18

Correctness of Marking Algorithm

- We assume that the input graph G is connected but not complete.
- Note: If G was complete then constructing a CDS would not make sense. Note that in a complete graph, no node would be marked.
- We show:

The set of marked nodes CDS is

- a) a dominating set
- b) connected
- c) a shortest path in G between two nodes of the CDS is in CDS

Proof of a) dominating set

- Proof: Assume for the sake of contradiction that node u is a node that is not in the dominating set, and also not dominated. Since no neighbor of u is in the dominating set, the nodes N⁺(u) := u ∪ N(u) form:
- a complete graph
 - if there are two nodes in N(u) that are not connected, u must be in the dominating set by definition
- no node $v \in N(u)$ has a neighbor outside N(u)
 - or, also by definition, the node v is in the dominating set
- Since the graph G is connected it only consists of the complete graph $N^+(u)$. We precluded this in the assumptions, therefore we have a contradiction

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/21

Improving the Marker Algorithm

- We give each node u a unique id(u).
- Rule 1: If N⁺(v) ⊆ N⁺(u) and id(v) < id(u), then do not include node v into the CDS.
- Rule 2: Let $u, w \in N(v)$. If $N(v) \subseteq N(u) \cup N(w)$ and id(v) < id(u) and id(v) < id(w), then do not include v into the CDS.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

- (Rule 2+: You can do the same with more than 2 covering neighbors, but it gets a little more intricate.)
- ...for a quiet minute: Why are the identifiers necessary?

6/23

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

6/22

• Then the two neighbors of w must be connected, which gives us a

Example for improved Marking Algorithm

shorter path. This is a contradiction.

Proof of b) connected, c) shortest path in CDS

with $u.v \in CDS$.

• Proof: Let p be any shortest path between the two nodes u and v,

Assume for the sake of contradiction that there is a node w on this

shortest path that is not in the connected dominating set.

- Node 17 is removed with rule 1
- Node 8 is removed with rule 2

Quality of the Marking Algorithm

- · Given an Euclidean chain of n homogeneous nodes
- The transmission range of each node is such that it is connected to the k left and right neighbors, the id's of the nodes are ascending.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- An optimal algorithm (and also the tree growing algorithm) puts every k'th node into the CDS. Thus |CDS_{OPT}| ≈ n/k; with k = n/c for some positive constant c we have |CDS_{OPT}| = O(1).
- The marking algorithm (also the improved version) does mark all the nodes (except the k leftmost ones). Thus |CDS_{Marking}| = n – k; with k = n/c we have |CDS_{Marking}| = O(n).
- The worst-case quality of the marking algorithm is worst-case! ©

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/25

Result of the k-local Algorithm

Distributed Approximation

Theorem: E[|DS|] \leq O(α In $\Delta \cdot$ |DS_{OPT}|)

• The value of α depends on the number of rounds *k* (the locality)

 $\alpha \leq \sqrt{k} \cdot (\Delta + 1)^{2/\sqrt{k}}$

The analysis is rather intricate... ☺

Unit Disk Graph

- We are given a set V of nodes in the plane (points with coordinates).
- The unit disk graph *UDG*(*V*) is defined as an undirected graph (with *E* being a set of undirected edges). There is an edge between two nodes *u*,*v* iff the Euclidian distance between *u* and *v* is at most 1.
- Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph UDG is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduced complexity and interference?

The "Dominator!" Algorithm

- For the important special case of Euclidean Unit Disk Graphs there is a simple marking algorithm that does the job.
- We make the simplifying assumptions that MAC layer issues are resolved: Two nodes u,v within transmission range 1 receive both all their transmissions. There is no interference, that is, the transmissions are locally always completely ordered.
- · Initially no node is in the connected dominating set CDS.
- If a node u has not yet received an "I AM A DOMINATOR, BABY!" message from any other node, node u will transmit "I AM A DOMINATOR, BABY!"
- 2. If node v receives a message "I AM A DOMINATOR, BABY!" from node u, then node v is dominated by node v.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 6/29

The "Dominator!" Algorithm Continued

- If a node w is dominated by more two dominators u and v, and node w has not yet received a message "I am dominated by u and v", then node w transmits "I am dominated by u and v" and enters the CDS.
- And since this is still not quite enough...
- 4. If a neighboring pair of nodes w_1 and w_2 is dominated by dominators u and v, respectively, and have not yet received a message "I am dominated by u and v", or "We are dominated by u and v", then nodes w_1 and w_2 both transmit "We are dominated by u and v" and enter the CDS.

Example

This gives a dominating set. But it is not connected.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

6/30

Results

- The "Dominator!" Algorithm produces a connected dominating set.
- The algorithm is completely local
- Each node only has to transmit one or two messages of constant size.
- The connected dominating set is asymptotically optimal, that is, |CDS| = O(|CDS_{OPT}|)
- If nodes in the CDS calculate the Gabriel Graph GG(UDG(CDS)), the CDS graph is also planar
- The routes in GG(UDG(CDS)) are "competitive".
- But: is the UDG Euclidean assumption realistic?

Overview of (C)DS Algorithms

Algorithm	Worst-Case Guarantees	Local (Distributed)	General Graphs	CDS
Greedy	Yes, optimal unless P=NP	No	Yes	No
Tree Growing	Yes, optimal unless P=NP	No	Yes	Yes
Marking	No	Yes	Yes	Yes
k-local	Yes, but with add. factor $\boldsymbol{\alpha}$	Yes (k-local)	Yes	Yes
"Dominator!"	Asymptotically Optimal	Yes	No	Yes

>0

•0

6/33

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer