
SS 2003 Roger Wattenhofer, Aaron Zollinger

Mobile Computing

Exercise 4

Assigned: May 8, 2003
Due: May 29, 2003

Instant Messenger

In this exercise you are going to use the previously developed layers to implement an instant mes-
saging application. Basically, this application will present a list of terminals within transmission
range. The user can choose one such neighbor with which to exchange messages, much like in one
of the well-known instant messaging applications, such as ICQ or AOL Instant Messenger.

In order to allow for interaction of all of our implementations of the application, we have to
define a message format and a number of message types. The message format for this exercise
is based on the basic packet format defined in Exercise 2. In addition to that packet header—
consisting of a sender and a receiver field—we introduce a type field. This field is formed by one
byte placed directly after the sender/receiver header.

We define five different message types, each of which is identified by a byte value. For
some of these messages, our protocol prescribes a certain application behavior upon receipt of
such a message. The PING/PONG message pair is used for neighbor discovery. With the
WHOAREYOU/IAM messages, users can identify themselves with names. The USERMESSAGE
is employed to confer any kind of information to the destination user. The message types are
summarized in the following table:

Message Type Type Value Data Reaction upon Receipt
PING 0x01 none send PONG message to sender of PING
PONG 0x02 none none

WHOAREYOU 0x11 none send IAM message to sender of WHOAREYOU
IAM 0x12 my name none

USERMESSAGE 0x21 any kind none

The last column of the above table only defines the reaction an application MUST implement.
Of course all other message types have to be interpreted in a reasonable way. The first three
message types do not use any data other than the type field. In the last two types the data
segment (after the header) of the packet is also part of the message.

Since the application has to react directly to incoming messages, a java.lang.Thread dedi-
cated to the handling of incoming messages should be used. In order to prevent blocking of this
thread, it can spawn (although this is not mandatory) a new thread for the interpretation of each
received message.

In order to acquire information about the neighboring terminals, the application has to emit
PING messages. This can happen either on user demand or periodically. In any case, the neigh-
borhood information collected from PONG responses has to be kept up to date in a suitable data
structure. Messages of the remaining types can then be used to obtain user names and to transfer
user messages.

A possible solution might offer a little graphical user interface, a command line application
will however also be fine ;-). Finally, a word of caution: Your application will consist of several



threads. Keep in mind that, as soon as two or more threads access a common data unit, they
might come in each other’s way. In order to prevent problems concerning the access of such a
shared data unit, the threads require to be synchronized.

2


