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Principles of Distributed Computing 
Roger Wattenhofer, Summer 2003 

Chapter 9  

Shared Variables 

Section 9.1: Introduction 
 
(Programmers do not like message passing. They like “global” variables; a.k.a. shared 
memory systems. Shared memory is an amazing and well-studied area within distributed 
computing, that does not get the share it deserves in this course.) 
 
Definition 9.1 [Shared Memory]: A shared memory system is an asynchronous system that 
consists of processors that globally share variables. A processor can atomically access a 
shared variable through a set of predefined operations. 
 
Remarks: 

• Processors can also have local variables. 
• If the processors operate in synchrony there is a model called PRAM (parallel 

random access machine). 
• Typical operations are read, write, or read-modify-write (read and write in one 

atomic step – the written value may depend on the read). 
• Many of the results in message passing have an equivalent in shared memory (e.g. 

consensus) 
• How can we simulate a shared memory system (or even a single global variable) 

with a message passing system? See below. 
 
Algorithm 9.2 [Static Location]: The global variable is stored at a node r, the root of a 
spanning tree in the message passing graph (that is, each node knows its parent in the 
spanning tree). If a node u initiates a read-modify-write operation it sends a request up the 
tree; the request is processed by the root r (atomically), and the reply/result is sent down the 
tree along the same path to the initiating node u. This terminates the operation. 
 
Remarks: 

• This works. Instead of a spanning tree, one can use routing. 
• But it is not very efficient. Assume that the variable is accessed by a single node v 

repeatedly. Then we get a high message/time complexity. Instead v could store the 
variable locally, or at least cache it. But then, in case another node w accesses the 
variable, we might run into consistency problems.  

• Alternative idea: The accessing node should become the new master of the variable. 
The variable is then like a mobile object. There exist several variants of this idea. The 
simplest version is a home-based solution like in Mobile IP. 

 
Protocol 9.3 [Home-Based]: A variable has a home base (a node) that is known to every node. 
If a node accesses the variable, it acquires a lock at the home base, receiving the variable. 
Future requests are then routed through the home base.  
 
Remark: 
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• Home-based solutions suffer from the triangular routing problem. If two close-by node 
access the variable on a rotating basis, all the traffic is routed through the potentially 
far away home-base. 

 

Section 9.2: Arrow and Friends 
 
Algorithm 9.4 [Arrow]: As in Algorithm 9.2 we are given a rooted spanning tree. Each node 
identifies one of its neighbor nodes as parent; the root is its own parent node. When a node u 
wants to acquire exclusive access to the global variable (or object), u sends a “find by u” 
message to the parent node and sets parent := u. A node w receiving “find by u” message by a 
node v does the following: a) if w has a parent other than w, w sends “find by u” to its parent 
and (atomically) sets parent := v. b) if parent = w, w sets parent := v, and sends the variable 
directly to u (once it is done with its operation).  
 
Remarks: 

• When we draw the parent pointers as arrows, in a quiescent moment (where no “find” 
is in motion) the arrows all point towards the root holding the variable. 

• However, what is really great is that the Arrow algorithm also works in a concurrent 
setting.  

 
Theorem 9.5 [Analysis]: In an asynchronous, steady-state, and concurrent setting, a “find” 
operation terminates with message and time complexity D, where D is the diameter of the 
spanning tree. 
 
Lemma 9.6: An edge (u,v) is in one of four states 

1) Pointer from u to v (no message on the edge, no pointer from v to u) 
2) Message on the move from u to v (no pointers) 
3) Pointer from v to u (no message on the edge, no pointer from u to v)  
4) Message on the move from v to u (no pointers) 

 
Proof: Initially the system is in state 1. With a message arrival at u the edge goes to stage 2, 
when the message is received at v we are in 3 – a new message at v then brings the edge back 
to first 4 and then 1.  
 
Proof Theorem 9.5: Since the “find” message will only travel on a static tree, it suffices to 
show that it will not traverse an edge twice. Suppose for the sake of contradiction that there is 
a first “find” message f that traverses an edge e for the second time. The first time f traversed 
e from node u to v, the second time since we are on a tree in the other direction from v to u. 
The message f must re-visit the edge e before visiting any other edges because e is the first 
edge to be traversed twice. Right before f reaches v, the edge e is in state 2 (f is on the move) 
and in state 3 (it will immediately return with the pointer from v to u). This is a contradiction 
to Lemma 9.6. 
 
Remarks: 

• Finding a good tree is an interesting problem. We like to have a tree with low stretch, 
low diameter, low degree, etc. 

• It seems that the Arrow algorithm works especially well when lots of “find” operations 
are initiated concurrently. Most of will find a “close-by” node, thus having low 
message/time complexity.  For the sake of simplicity we analyze a synchronous system.  
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Theorem 9.7 [Concurrent Analysis]: Let the system be synchronous. Initially, the system is in 
a quiescent state. At time 0, a set S of nodes initiates a “find” operation. The message 
complexity of all “find” operations is O(log |S| m*), where m* is the message complexity of 
an optimal (with global knowledge) algorithm on the tree. 
 
 
Proof (Sketch): Let d be the minimum distance of any node in S to the root. There will be a 
node u1 at distance d from the root that reaches the root in d time steps, turning all the arrows 
on the path to the root towards u1. A node u2 that finds (is queued behind) u1 cannot 
distinguish the system from a system where there was no request u1, and instead the root was 
located at u1. The message cost of u2 is consequentially the distance between u1 and u2 on the 
spanning tree. By induction the total message complexity is exactly as if a collector starts at 
the root and then “greedily” collects tokens located at the nodes in S (greedily in the sense 
that the collector always goes towards the closest token). Greedy collecting the tokens is not a 
good strategy in general because it will traverse the same edge more than twice in the worst 
case. An asymptotically optimal algorithm can also be translated into a depth-first-search 
collecting paradigm, traversing each edge at most twice. In another area of computer science, 
we’d call the Arrow algorithm a nearest-neighbor TSP heuristic (without returning to the 
start/root though), and the optimal algorithm TSP-optimal. It was shown that nearest-neighbor 
has a logarithmic overhead, which concludes the proof. 
 
Remarks: 

• An average request set S on a not-to-bad tree gives usually a much better bound. 
However, there is an almost tight (log/loglog) worst-case example.  

• It is believed that Arrow can do as good in a dynamic setting (where nodes are 
allowed to initiate requests at any time), but the problem is still open. 

• What if the spanning tree is a star? Then with Theorem 9.5 each find will terminate in 
2 steps! Since also an optimal algorithm has message cost 1, the algorithm is 2-
competitive…? Yes, but because of its high degree the star centre experiences 
contention… There is no contention-based analysis yet.  

• Thought experiment: Assume a balanced binary spanning tree – by Theorem 9.5 the 
message complexity per operation is log n (also in a dynamic setting). But what about 
contention?!? 

• There are better and worse choices for the spanning tree. The stretch of an edge (u,v) 
is defined as distance between u and v in a spanning tree. The maximum stretch of a 
spanning tree is the maximum stretch over all edges. It is a challenging open problem 
to construct spanning trees with provably low maximum stretch.  

• What if most nodes just want to read the variable? Then it does not make sense to 
acquire the lock. Instead we use caching. 

 
Algorithm 9.8 [Read/Write Caching]:  

• Nodes can either read or write the global variable. For simplicity we first assume that 
reads or writes do not overlap in time (access to the variable is sequential).  

• Nodes store three items: a parent pointer pointing to one of the neighbors (as with 
Arrow), and a cache bit for each edge, plus (potentially) a copy of the variable.  

• Initially the variable is stored at a single variable u; all the parent pointers point 
towards u, all the cache bits are false.  

• When initiating a read, a message follows the arrows (this time: without inverting 
them!) until it reaches a cached version of the variable. Then a copy of the variable is 
cached along the path back to the initiating node, and the cache bits on the visited 
edges are set to true.  
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• A write at u writes the new value locally (at node u), then searches (follow the parent 
pointers and reverse them towards u) a first node with a copy. Delete the copy and 
follow (in parallel, by flooding) all edge that have the cache flag set. Point the parent 
pointer towards u, and remove the cache flags. 

 
Theorem 9.9 [Analysis]: The algorithm above is correct. More surprisingly the message 
complexity is 3-competitive (at most a factor 3 off the best possible). 
 
Proof: Since the accesses do not overlap by definition, it suffices to show that between two 
writes we are 3-competitive. The sequence of accessing nodes is w0, r1, r2, …rk, w1. After w0 
the variable is stored at w0 and not cached anywhere else. All reads cost twice the smallest 
subtree T spanning the write and all the reads since each read only goes to the first copy. The 
write costs T plus the path P from w1 to T. Since any data management scheme must use an 
edge in T and P at least once, and our algorithm uses edges in T at most three times (and in P 
at most once) the theorem follows.  
  
Remarks: 

• Concurrent reads are not a problem, also multiple concurrent reads and one write work 
just fine. 

• What about concurrent writes? To achieve consistency writes need to invalidate the 
caches before writing their value. It is claimed that the strategy then becomes 4-
competitive. 

• Is the algorithm also time competitive? Well, not really: The optimal algorithm that 
we compare to is usually offline. This means it knows the whole access sequence in 
advance. It can then cache the variable before the request even appears! 

• Algorithms on trees are often simpler, but have the disadvantage that they introduce 
the extra stretch factor. In a ring, for example, any tree has stretch n-1; so there is 
always a bad request pattern. 

• In the following we study algorithms that do not restrict to a tree. Of particular interest 
is the special case of a complete graph. (“Peer-to-Peer” if you wish.) 

  

Section 9.3: Ivy and Friends  
 
Algorithm 9.10 [Pointer Forwarding]: Initially the variable is stored at a root r, and there is a 
spanning tree pointing towards r (as earlier each node has a parent pointer pointing towards 
the master of the lock/variable). A node u can acquire the lock of the variable by following 
the parent pointers until they reach the root. The node u will then become the new root, and 
the old root will redirect its parent pointer to the new root u. 
 
Remarks: 

• If the graph is not complete, routing can be used to find the root. 
• Assume that the nodes line up in a linked list. If we always choose the first node of the 

linked list to acquire the lock, we have message/time complexity n. The new topology 
is again a linearly linked list. Pointer forwarding is therefore bad in a worst-case. 

• If edges are not FIFO, it can even happen that the number of steps is unbounded for a 
node having bad luck. An algorithm with such a property is named “not fair,” or, “not 
wait-free.” (Example: Initially we have the list 4à3à2à1; 4 starts a find; when the 
message of 4 passes 3, 3 itself starts a find. The message of 3 may arrive at 2 and then 
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1 earlier, thus the new end of the list is 2à1à3; once the message of 4 passes 2, the 
game re-starts.) 

• There seems to be a natural improvement. 
 

Algorithm 9.11 [Ivy] As pointer forwarding. However, on the path to the root, a message 
redirects all visited nodes to itself. 
 
Remark: 

• Also with this algorithm we might have a bad linked list situation. However, if the 
start of the list acquires the lock, the linked list turns into a star. As the following 
theorem will show the search paths are not long on average. Since paths sometimes 
can be bad we will need amortized analysis. 

 
Theorem 9.12 [Analysis] On average, acquiring a lock has log n steps, where n is the number 
of processors 
 
Proof: We simplify the proof by assuming that accesses are sequential.  We use a potential 
function argument Let s(u) be the size of the subtree rooted at node u (the number of nodes in 
the subtree including u itself). The potential of the whole tree is Sall nodes u log(s(u))/2. A 
simple calculation (Ginat, Sleator, Tarjan) reveals that the amortized cost of each operation is 
at most log n (math done on blackboard only).  
 
Remarks: 

• Systems guys (the algorithm is called Ivy because it was used in a system with the 
same name) have some fancy heuristics to improve performance even more: For 
example, the root every now and then broadcasts its name such that paths will be 
shortened. 

• What about concurrent requests? It works with the same argument as in Arrow. Also 
for Ivy an argument including congestion is missing (and more pressing, since the 
dynamic topology of a tree cannot be chosen to have low degree and thus low 
congestion as in Arrow) 

• Sometimes the type of accesses allows that several accesses can be combined into one 
to reduce congestion higher up the tree. Let the tree in Algorithm 9.2 be a balanced 
binary tree. If the access to the shared variable is for example “add value x to the 
shared variable,” two or more accesses that accidentally meet at a node can be 
combined into one. Clearly accidental meeting is rare in an asynchronous model. We 
can use synchronizers to help meeting a little bit. More on that in a later Chapter. 

 
 
 
 
 
 
 


