

Overview

- Motivation
- Dominating Set
- Connected Dominating Set
- The "Tree Growing" Algorithm
- The "Marking" Algorithm
- An algorithm for the unit disk graph

Clustering (Trick 7 revisited)

- Situations where many mobile nodes are close-by. In other words, in situations where it is usually the case that two neighbors are also neighboring. Example: conferences or this classroom.
- Graph to the right has diameter* 2. But what happens when we do flooding (for a first routing step, or a broadcast)? There will be much more than 2 transmissions.

*diameter $=$ longest shortest path

Backbone

- Idea: Some nodes become backbone nodes (gateways). Each node can access and be accessed by at least one backbone node.
- Routing:

1. If source is not a gateway, transmit message to gateway
2. Gateway acts as proxy source and routes message on backbone to gateway of destination.
3. Transmission gateway
 to destination.

(Connected) Dominating Set

- A Dominating Set DS is a subset of nodes such that each node is either in DS or has a neighbor in DS.
- A Connected Dominating Set CDS is a connected DS, that is, there is a path between any two nodes in CDS that only uses nodes that are in CDS.
- A CDS is a good choice for a backbone.
- It might be favorable to have few nodes in the CDS. This is known as the Minimum CDS problem

An MCDS Algorithm

- Input: We are given undirected graph. The nodes in the graph are the mobile stations; there is an edge between two nodes if the nodes are within transmission range of each other.
- Note that the graph is undirected, thus transmission is symmetric. Also note that the graph is not Euclidean.
- Output: Find a Minimum Connected Dominating Set, that is, a CDS with a minimum number of nodes.
- Problem: MCDS is NP-hard.
- Solution: Can we find a CDS that is "close" to minimum?

The "too simple tree growing" algorithm

- Idea: Start with the root and then greedily choose a neighbor of the tree that dominates as many new nodes as possible.
- Black nodes are in the CDS
- Grey nodes are neighbors of nodes in the CDS
- White nodes are not yet dominated, initially all nodes are white.
- Start: Choose a node of maximum degree, and make it the root of the CDS, that is, color it black (and its white neighbors grey).
- Step: Choose a grey node with maximum number of white neighbors and color it black (and its white neighbors grey).

Example of the "too simple tree growing" algorithm

Graph with $2 \mathrm{n}+2$ nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: start

...

Minimum CDS

Tree Growing Algorithm

- Idea: Don't scan one but two nodes!
- Alternative step: Choose a grey node and its white neighbor node with a maximum sum of white neighbors and color both black (and their white neighbors grey).

Analysis of the tree growing algorithm

- Theorem: The tree growing algorithm finds a connected set of size $|C D S| \leq 2(1+\mathrm{H}(\Delta)) \cdot\left|\mathrm{DS}_{\text {OPT }}\right|$.
- $\mathrm{DS}_{\mathrm{OPT}}$ is a (not connected) minimum dominating set
- Δ is the maximum node degree in the graph
- H is the harmonic function with $\mathrm{H}(\mathrm{n}) \approx \log (\mathrm{n})+0.7$
- In other words, the connected dominating set of the tree growing algorithm is at most a $O(\log (\Delta))$ factor worse than an optimum minimum dominating set (which is NP-hard to compute).
- With a lower bound argument (reduction to set cover) one can show that a better approximation factor is impossible, unless $\mathrm{P}=\mathrm{NP}$.

Proof Sketch

- The proof is done with amortized analysis.
- Let S_{u} be the set of nodes dominated by $u \in D S_{\text {OPT }}$, or u itself. If a node is dominated by more than one node, we put it in one of the sets.
- We charge the nodes in the graph for each node we color black. In particular we charge all the newly colored grey nodes. Since we color a node grey at most once, it is charged at most once.
- We show that the total charge on the vertices in an S_{u} is at most $2(1+H(\Delta))$, for any u.

Charge on S_{u}

- Initially $\left|\mathrm{S}_{\mathrm{u}}\right|=\mathrm{u}_{0}$.
- Whenever we color some nodes of S_{u}, we call this a step.
- The number of white nodes in S_{u} after step i is u_{i}.
- After step k there are no more white nodes in S_{u}.
- In the first step $u_{0}-u_{1}$ nodes are colored (grey or black). Each vertex gets a charge of at most $2 /\left(u_{0}-u_{1}\right)$.

- After the first step, node u becomes eligible to be colored (as part of a pair with one of the grey nodes in S_{u}). If u is not chosen in step i (with a potential to paint u_{i} nodes grey), then we have found a better (pair of) node(s). That is, the charge to any of the new grey nodes in step i in S_{u} is at most $2 / u_{i}$.

Adding up the charges in S_{u}

$$
\begin{aligned}
C & \leq \frac{2}{u_{0}-u_{1}}\left(u_{0}-u_{1}\right)+\sum_{i=1}^{k-1} \frac{2}{u_{i}}\left(u_{i}-u_{i+1}\right) \\
& =2+2 \sum_{i=1}^{k-1} \frac{u_{i}-u_{i+1}}{u_{i}} \\
& \leq 2+2 \sum_{i=1}^{k-1}\left(H\left(u_{i}\right)-H\left(u_{i+1}\right)\right) \\
& =2+2\left(H\left(u_{1}\right)-H\left(u_{k}\right)\right)=2\left(1+H\left(u_{1}\right)\right) \leq 2(1+H(\Delta))
\end{aligned}
$$

Discussion of the tree growing algorithm

- We have an extremely simple algorithm that is asymptotically optimal unless $\mathrm{P}=\mathrm{NP}$. And even the constants are small.
- Are we happy?
- Not really. How do we implement this algorithm in a real mobile network? How do we figure out where the best grey/white pair of nodes is? How slow is this algorithm in a distributed setting?
- We need a fully distributed algorithm. Nodes should only consider local information.

The Marking Algorithm

- Idea: The connected dominating set CDS consists of the nodes that have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors $N(u)$
2. Each node u transmits $N(u)$, and receives $N(v)$ from all its neighbors
3. If node u has two neighbors v, w and w is not in $N(v)$ (and since the graph is undirected v is not in $N(w)$), then u marks itself being in the set CDS.

+ Completely local; only exchange $\mathrm{N}(\mathrm{u})$ with all neighbors
+ Each node sends only 1 message, and receives at most Δ
+ Messages have size $O(\Delta)$
- Is the marking algorithm really producing a connected dominating set? How good is the set?

Example for the Marking Algorithm

Correctness of Marking Algorithm

- We assume that the input graph G is connected but not complete.
- Note: If G was complete then constructing a CDS would not make sense. Note that in a complete graph no node would be marked.
- We show:

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS

Proof of a) dominating set

- Proof: Assume for the sake of contradiction that node u is a node that is not in the dominating set, and also not dominated. Since no neighbor of u is in the dominating set, the nodes $N^{+}(u):=u \cup N(u)$ form:
- a complete graph
- if there are two nodes in $N(u)$ that are not connected, u must be in the dominating set by definition
- no node $v \in N(u)$ has a neighbor outside $N(u)$
- or, also by definition, the node v is in the dominating set
- Since the graph G is connected it only consists of the of the complete graph $\mathrm{N}^{+}(\mathrm{u})$. We precluded this in the assumptions, therefore we have a contradiction

Proof of b) connected, c) shortest path in CDS

- Proof: Let p be any shortest path between the two nodes u and v, with $u, v \in$ CDS.
- Assume for the sake of contradiction that there is a node w on this shortest path that is not in the connected dominating set.

- Then the two neighbors of w must be connected, which gives us a shorter path. This is a contradiction.

Improving the Marker Algorithm

- We give each node u a unique id(u).
- Rule 1: If $\mathrm{N}^{+}(\mathrm{v}) \subseteq \mathrm{N}^{+}(\mathrm{u})$ and $\mathrm{id}(\mathrm{v})<\mathrm{id}(\mathrm{u})$, then do not include node v into the CDS.
- Rule 2: Let $u, w \in N(v)$. If $N(v) \subseteq N(u) \cup N(w)$ and id $(v)<i d(u)$ and $\mathrm{id}(\mathrm{v})<\mathrm{id}(\mathrm{w})$, then do not include v into the CDS.
- (Rule 2+: You can do the same with more than 2 covering neighbors, but it gets a little more intricate.)
- ...for a quiet minute: Why are the identifiers necessary?

Example for improved Marking Algorithm

- Node 17 is removed with rule 1
- Node 8 is removed with rule 2

Quality of the Marking Algorithm

- Given a Euclidean chain of n homogeneous nodes
- The transmission range of each node is such that it is connected to the k left and right neighbors, the id's of the nodes are ascending.

- An optimal algorithm (and also the tree growing algorithm) puts every k'th node into the CDS. Thus $\left|C D S_{\mathrm{OPT}}\right| \approx n / k$; with $k=n / c$ for some positive constant c we have $\left|C D S_{\text {OPT }}\right|=O(1)$.
- The marking algorithm (also the improved version) does mark all the nodes (except the k leftmost ones). Thus $\left|C D S_{\text {Marking }}\right|=n-k$; with $\mathrm{k}=\mathrm{n} / \mathrm{c}$ we have $\left|C D S_{\text {Marking }}\right|=\mathrm{O}(\mathrm{n})$.
- The worst-case quality of the marking algorithm is worst-case! $)$

Euclidean Unit Disk Graph

- For the important special case of Euclidean Unit Disk Graphs there is a simple marking algorithm that does the job.
- We make the simplifying assumptions that MAC layer issues are resolved: Two nodes u, v within transmission range 1 receive both all their transmissions. There is no interference, that is, the transmissions are locally always completely ordered.
- Initially no node is in the connected dominating set CDS.

1. If a node u has not yet received an "I AM A DOMINATOR, BABY!" message from any other node, node u will transmit "I AM A DOMINATOR, BABY!"
2. If node v receives a message "I AM A DOMINATOR, BABY!" from node u, then node v is dominated by node v.

Example

- This gives a dominating set. But it is not connected.

Euclidean Unit Disk Graph Continued

3. If a node w is dominated by at least two dominators u and v, and node w has not yet received a message "I am dominated by u and v ", then node w transmits "I am dominated by u and v" and enters the CDS.

- And since this is still not quite enough...

4. If a neighboring pair of nodes w_{1} and w_{2} is dominated by dominators u and v, respectively, and have not yet received a message "I am dominated by u and v ", or "We are dominated by u and v ", then nodes w_{1} and w_{2} both transmit "We are dominated by u and v " and enter the CDS.

Results

- The algorithm for the Euclidean Unit Disk Graph produces a connected dominating set.
- The algorithm is completely local
- Each node only has to transmit one or two messages of constant size.
- The connected dominating set is asymptotically optimal, that is, |CDS| = O(|CDS ${ }_{\text {Opt }} \mid$)
- If nodes in the CDS calculate the Gabriel Graph GG(UDG(CDS)), the graph is also planar
- The routes in GG(UDG(CDS)) are "competitive".
- But: is the UDG Euclidean assumption realistic?

